• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 351
  • 83
  • 46
  • 45
  • 14
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 2
  • Tagged with
  • 699
  • 131
  • 81
  • 76
  • 70
  • 63
  • 61
  • 60
  • 55
  • 48
  • 45
  • 44
  • 44
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

The nucleation of poly(ethylene terephthalate) by the phyllosilicate talc

Haubruge, Hugues G 02 October 2003 (has links)
Since decades, nucleation, or the ability of certain organic or inorganic substances to trigger the crystal growth, has been empirically used in the plastics industry. Talc, for instance, is a well-known nucleating agent of poly(ethylene terephthalate) (PET) and other polymers, that allows one to enhance the crystallisation rate of the polymer material and to control its spherulites size. The exact mechanism involved in this nucleation had however remained unknown at the onset of this thesis. Through electron diffraction, performed on thin PET films nucleated by macroscopic talc particles as model samples, this work demonstrates an epitaxial relationship between polymer and substrate and thus confirms the seemingly ubiquitous role of epitaxy in the nucleation of polymers. However, in order to compare the talc-nucleated morphology of PET with the virgin one, new methods of sample preparation for transmission electron microscopy (TEM) have also been developed. Coupled with theoretically justified image analysis techniques, they allow the direct observation of PET crystalline lamellae, both in the bulk and in thin films. Analyses of the semicrystalline structure in the reciprocal and direct spaces were performed from small-angle X-ray scattering (SAXS) data and from observations by TEM on melt-crystallised samples. These independent results were shown to be in good agreement and bring strong evidence in favour of a semicrystalline space-filling model, where the average crystalline thickness is slightly smaller than the average width of the amorphous regions. Discrepancies between characteristic distances derived by several methods from the same experimental results were attributed to the broad distribution of thicknesses, in contrast with the ideal linear stack model commonly used to analyse the data.
92

Nucleation and growth of GaN islands by molecular-beam epitaxy

Pang, Ka-yan. January 2005 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
93

How Physical and Chemical Properties Change Ice Nucleation Efficiency of Soot and Polyaromatic Hydrocarbon Particles

Suter, Katie Ann 2011 August 1900 (has links)
Heterogeneous freezing processes in which atmospheric aerosols act as ice nuclei (IN) cause nucleation of ice crystals in the atmosphere. Heterogeneous nucleation can occur through several freezing mechanisms, including contact and immersion freezing. The mechanism by which this freezing occurs depends on the ambient conditions and composition of the IN. Aerosol properties change through chemical aging and reactions with atmospheric oxidants such as ozone. We have conducted a series of laboratory experiments using an optical microscope apparatus equipped with a cooling stage to determine how chemical oxidation changes the ability of atmospheric aerosols to act as IN. Freezing temperatures are reported for aerosols composed of fresh and oxidized soot and polyaromatic hydrocarbons (PAHs) including anthracene, phenanthrene, and pyrene. Our results show that oxidized soot particles initiate ice freezing events at significantly warmer temperatures than fresh soot, 3 °C on average. All oxidized PAHs studied had significantly warmer freezing temperatures than fresh samples. The chemical changes presumably causing the improved ice nucleation efficiency were observed using Fourier Transform Infrared Spectroscopy with Horizontal Attenuated Total Reflectance (FTIR-HATR). The addition of C=O bonds at the surface of the soot and PAHs led to changes in freezing temperatures. Finally, we have used classical nucleation theory to derive heterogeneous nucleation rates for the IN compositions in this research. The overall efficiency of the IN can be compared in order of least efficient to most efficient: fresh phenanthrene, fresh anthracene, fresh soot, oxidized phenanthrene, fresh pyrene, oxidized anthracene, oxidized soot, and oxidized pyrene. Overall oxidation of aerosols increases their ability to act as IN. Our results suggest that oxidation processes facilitate freezing at warmer temperatures at a broader range of conditions on the atmosphere.
94

Study of Cell Nucleation in Nano Ploymer Foams: An SCFT Approach

Kim, Yeongyoon January 2012 (has links)
This thesis is about "nano-cellular" polymer foams, i.e., to understand nano-bubble nucleation and growth mechanisms, we used Self-Consistent Field Theory(SCFT) for the research.\\ Classical Nucleation Theory (CNT) is often used to calculate nucleation rates, but CNT has assumptions which break down for a nano-sized bubble: it assumes planar sharp interfaces and bulk phases inside bubbles. Therefore, since the size of a nano-sized bubble is comparable to the size of the polymer molecule, we assumed that a bubble surface is a curved surface, and we ivestigated effects of curvature on the nucleation barrier. SCFT results show that sharper curvatures of smaller s cause a higher polymer configurational entropy and lower internal energy, and also the collapse of the bulk phase for smaller bubbles causes low internal energy. Consequently, the homogenous bubble nucleation barrier for curved surfaces is much smaller than flat surface (CNT prediction).\\ We calculated direct predictions for maximum possible cell densities as a function of bubble radius without calculation of nucleation barrier or nucleation rates in CNT. Our results show higher cell densities at higher solvent densities and lower temperatures. Moreover, our cell density prediction reveals that rather than surface tension, the volume free energy, often labelled as a pressure difference in CNT, is the dominant factor for both cell densities and cell sizes. This is not predicted by CNT.\\ We also calculated direct predictions for the maximum possible cell densities as a function of system volume in compressible systems. With an assumption that system pressure has an optimal pressure which gives the maximal density of good quality foams (bulk phase inside bubble), we calculated the inhomogeneous system pressure, the homogeneous system, and cell density as a function of system volume.\\ Maximal cell prediction in compressible system shows the incompressible system prediction is the upperbound maximal cell density, and qualitatively consistent with the compressible system results - higher cell densities at low temperatures and high solvent densities.\\ In addition, our results show a bigger expansion as well as a high cell density at low temperature and high solvent density, but temperature is a more dominant factor than the solvent density. From our results, we assume that a quick pressure dropping is required to get a better quality foam of a higher cell density.
95

Particle cracking damage evolution in 7075 wrought aluminum alloy under monotonic and cyclic loading conditions

Harris, James Joel 22 November 2005 (has links)
7xxx series Al-Zn-Mg-Cu-base wrought Al-alloy products are widely used for aerospace structural applications where monotonic and cyclic mechanical properties are of prime concern. Microstructure of these commercial alloys usually contains brittle coarse constituent particles or inclusions of Fe-rich intermetallic compounds and Mg2Si, typically in the size range of 1 to 50 micron. Plastic deformation and fracture of 7xxx series alloys (as well as of numerous other wrought Al-alloys) is associated with gradual microstructural damage accumulation that involves cracking of the coarse constituent particles, growth of voids around the cracked particles, and the void coalescence. To understand and model the microstructural damage evolution processes such particle cracking, quantitative microstructural data associated with the damage nucleation are required under monotonic as well as cyclic loading conditions. In the past quantitative characterization of particle cracking damage in these alloys has been problematic. However, with recent advances in digital image analysis and stereology based techniques, it is now possible to quantitatively characterize the damage nucleation in hot-rolled 7075(T6) Al-alloy (a typical alloy of 7xxx series) due to cracking of the Fe-rich coarse constituent particles. The objectives of this work are: * Quantitative characterization of the cracking of Fe-rich constituent particles as a function of strain under quasi-static loading. This involves measurements of number density of cracked particles, volume fraction of the cracked particles, their size, shape, and orientation distribution, as well as nearest neighbor distribution and two-point correlation functions to quantify spatial dispersion of the cracked particles in a series of interrupted uniaxial tensile test specimens at different strain levels. * Quantitative characterization of the cracking of Fe-rich constituent particles under cyclic loading to study the differences between the particle cracking damage due to monotonic and cyclic loading.
96

Experimental and theoretical investigation of nucleation and growth of atmospheric aerosols

Zhao, Jun 15 May 2009 (has links)
Aerosol particles have profound impacts on human health, atmospheric radiation, and cloud microphysics and these impacts are strongly dependent on particle sizes. However, formation and growth of atmospheric particles are currently not well understood. In this work, laboratory and theoretical studies have been performed to investigate the formation and growth of atmospheric particles. The first two parts of the dissertation are a laboratory investigation of new particle formation and growth, and a theoretical study of atmospheric molecular complexes and clusters. The nucleation rate was considerably enhanced in the presence of cis-pinonic acid and ammonia. The composition of the critical cluster was estimated from the dependence of the nucleation rate on the precursor concentration and the time evolution of the clusters was then simulated using molecular dynamic simulations. Results from quantum chemical calculations and quantum theory of atoms in molecules (QTAIM) reveal that formation of strong hydrogen bonding between an organic acid and sulfuric acid is likely responsible for a reduction of the nucleation barrier by modifying the hydrophobic properties of the organic acid and allowing further addition of hydrophilic species (e.g., H2SO4, H2O, and possibly NH3) to the hydrophilic side of the clusters. This promotes growth of the nascent cluster to overcome the nucleation barrier and thus enhances the nucleation in the atmosphere. The last part of this dissertation is the laboratory investigation of heterogeneous interactions of atmospheric carbonyls with sulfuric acid. Direct measurement has been performed to investigate the heterogeneous uptake of atmospheric carbonyls on sulfuric acid. Important parameters have been obtained from the time-dependent or timeindependent uptake profiles. The results indicated that the acid-catalyzed reactions of larger aldehydes (e.g. octanal and 2, 4-hexadienal) in sulfuric acid solution were attributed to aldol condensation in high acidity. However such reactions do not contribute much to secondary organic aerosol (SOA) formation due to the low acidity under tropospheric conditions. On the other hand, heterogeneous reactions of light dicarbonyl such as methylglyoxal likely contribute to SOA formation in slightly acidic media. The reactions of methylglyoxal in the atmospheric aerosol-phase involve hydration and subsequent polymerization, which are dependent on the hygroscopicity, rather than the acidity of the aerosols.
97

Study of pure-silica Zeolite Nucleation and Growth from Solution

Li, Xiang 2011 August 1900 (has links)
Zeolites are microporous crystalline materials, which are widely used in catalysis, adsorption, and ion-exchange processes. However, in most cases, the synthesis of novel zeolites as functional materials still relies on trial-and-error methods, which are time consuming and expensive. Therefore, the motivation for this thesis work is to understand the zeolite synthesis mechanismand further develop knowledge for manipulating zeolite properties and ultimately the rational design of porous materials. This work focused on formation of silicalite-1 (pure-silica ZSM-5) from basic aqueous solutions containing tetraorthosilicate (TEOS) as silica source, and tetrapropylammonium (TPA) cations as the organic structure-directing agent. The presence of silica precursor particles with size of 2-5 nm in these mixtures prior to and during hydrothermal treatments have been observed through dynamic light scattering (DLS), small-angle X-ray (SAXS) and transmission electron microscopy (TEM). However, to quantify composition and the molecular structure transformation of these silica precursor particles during zeolite synthesis is still a technical challenge. Another important yet unresolved question is how organocations interact with these nanoparticles and direct zeolite nuclei. Unlike many studies performed analyzing the inorganic phase (silica) present in synthesis mixtures, this study quantified the organocation-silica particle interaction and its ultimate effect on zeolite growth mainly through probing the behavior of the organocations. Pulsed-field gradient (PFG) NMR was used to capture the mobility change of organocations, and was complemented with scattering measurements (DLS, SAXS) on the silica nanoparticles. On the basis of the measurement results, the thermodynamic and kinetic properties of the organic-inorganic interaction were derived. Upon aging at room temperature, this interaction manifested as binding of TPA onto the silica particles due to electrostatic interactions, and such binding behavior can be well described by the Langmuir adsorption model. Upon hydrothermal treatment, a fraction of TPA adsorbed at room temperature dissociates from the growing silica nanoparticles and the corresponding desorption profiles were fitted well by the pseudo-second order kinetic model. The addition of tetramethylammonium (TMA) as "competitors" promoted TPA desorption kinetics and hindered silica nanoparticle growth due to stronger association of TMA with particles than that of TPA. Finally, the TPA adsorption strength increased via addition of monovalent salts with increasing ionic size whereas that of TMA shows an opposite trend. This suggests one potential route for tuning the organic-silica precursor particle interactions and thus possibly affecting some kinetics steps in the synthesis.
98

Transition from nucleation to ripening in the classical nucleation model

Uwaha, Makio, Koyama, Katsunobu 15 March 2010 (has links)
No description available.
99

Quantitative studies of porphyroblastic textures

Hirsch, David Marshall, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references.
100

Particle nucleation, growth, and sintering of metallic films on oxide substrates /

Parker, Stephen Christy. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 126-129).

Page generated in 0.0268 seconds