• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 86
  • 40
  • 11
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 303
  • 187
  • 51
  • 49
  • 48
  • 47
  • 41
  • 38
  • 33
  • 28
  • 28
  • 27
  • 25
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

THE ROLE OF NADPH OXIDASE 2 IN AXON GUIDANCE DURING ZEBRAFISH VISUAL SYSTEM DEVELOPMENT

Aslihan Terzi (9188978) 04 August 2020 (has links)
<p>Reactive oxygen species (ROS) are critical for maintaining cellular homeostasis and function when produced in physiological ranges. Important sources of cellular ROS include NADPH oxidases (Nox), which are evolutionarily conserved multi-subunit transmembrane proteins. Nox-mediated ROS regulate a variety of biological processes including stem cell proliferation and differentiation, calcium signaling, cell migration, and immunity. ROS participate in intracellular signaling by introducing post-translational modifications to proteins and thereby altering their functions. The central nervous system (CNS) expresses different Nox isoforms during both development and adulthood. There is now emerging evidence that Nox-derived ROS also control neuronal development and pathfinding. Our lab has recently shown that retinal ganglion cells (RGCs) from <i>nox2</i> mutant zebrafish exhibit pathfinding errors. However, whether Nox could act downstream of receptors for axonal growth and guidance cues is presently unknown. To investigate this question, we conducted a detailed characterization of the zebrafish <i>nox2</i> mutants that were previously established in our group. Abnormal axon projections were found throughout the CNS of the <i>nox2 </i>mutant zebrafish. Anterior commissural axons failed proper fasciculation, and aberrant axon projections were detected in the dorsal longitudinal fascicle of the spinal cord. We showed that the major brain regions are intact and that the early development of CNS is not significantly altered in <i>nox2 </i>mutants. Hence, the axonal deficits in <i>nox2</i> mutants are not due to general developmental problems, and Nox2 plays a role in axonal pathfinding and targeting. Next, we investigated whether Nox2 could act downstream of slit2/Robo2-mediated guidance during RGC pathfinding. We found that slit2-mediated RGC growth cone collapse was abolished in <i>nox2 </i>mutants <i>in vitro</i>. Further, ROS biosensor imaging showed that slit2 treatment increased growth cone hydrogen peroxide levels via mechanisms through Nox2 activation. Finally, we investigated the possible relationship between slit2/Robo2 and Nox2 signaling <i>in vivo</i>. <i>Astray/nox2</i> double heterozygous mutant larvae exhibited decreased tectal area as opposed to individual heterozygous mutants, suggesting both Nox2 and Robo2 are required for the establishment of retinotectal connections. Our results suggest that Nox2 is part of a signal transduction pathway downstream of slit2/Robo2 interaction regulating axonal guidance cell-autonomously in developing zebrafish retinal neurons.</p>
192

Aging and kinase kinetics of Y77E11.A and Y17G7B.10 in C. Elegans

Goodlaxson, Jacob 12 April 2019 (has links)
Aging and kinase kinetics of Y77E11.A and Y17G7B.10 in C. Elegans Jacob Goodlaxson, Department of Biomedical Sciences, College of Medicine, East Tennessee State University, Johnson City, TN. The free radical theory of aging suggests that free radical induced oxidative damage may play a role in the pathogenesis of age-related neurological diseases. The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) protects against redox stress by providing reducing equivalents to antioxidants such as glutathione and thioredoxin. A measurement of the kinase kinetics of nicotinamide adenine dinucleotide demonstrated a decline in the rate of conversion from NAD into NADP. A homeostatic relationship of NADPH and NADP+ in mitochondria and cytosol may prevent the progression of aging due to the amelioration of the reactive oxygen species (ROS), and other charged particles. The NAPD+ cation is the chief acceptor of negatively charged particles which ionize and create free radical ions. Two previously uncharacterized proteins, Y77E11.A (NADK1) and Y17G7B.10 (NADK2), were studied for their possible kinetic role in producing and maintaining NADPH levels. The roles of NADK1 and NADK2 were determined by taking whole worm lysates of Caenorhabditis elegans deficient of these proteins, followed by supplementation with NAD, then monitoring of NADP levels. These two proteins were statistically important in the conversion of NAD to NADP+. These NADK’s displayed statistically significant reduction in NADP production which could lead to more redox stress. This research indicates that pro-longevity therapies should aim to maintain elevated levels of NADPH and NADP+ to hinder the aging process.
193

Development of Reactive Oxygen Species (ROS) Inhibitors and Prodrugs for Multiple Applications

Senevirathne, Prasadini 24 May 2022 (has links)
No description available.
194

The “Great” Controlling Nucleotide Coenzymes

Veech, Richard L., Todd King, Michael, Pawlosky, Robert, Kashiwaya, Yoshihiro, Bradshaw, Patrick C., Curtis, William 01 May 2019 (has links)
Nucleotide coenzymes dot the map of metabolic pathways providing energy to drive the reactions of the pathway and play an important role in regulating and controlling energy metabolism through their shared potential energy, which is widely unobserved due to the paradox that the energy in the coenzyme pools cannot be determined from the concentration of the coenzyme couples. The potential energy of the nucleotide couples in the mitochondria or the cytoplasm is expressed in the enzyme reactions in which they take part. The energy in these couples, [NAD+]/[NADH], [NADP+]/[NADPH], [acetyl CoA]/[CoA], and [ATP]/[ADP]x[Pi], regulates energy metabolism. The energy contained in the couples can be altered by suppling energy equivalents in the form of ketones, such as, D-β-hydroxybutyrate to overcome insulin resistance, to restore antioxidants capacity, to form potential treatments for Alzheimer's and Parkinson's diseases, to enhance life span, and to increase physiological performance. © 2019 IUBMB Life, 71(5):565–579, 2019.
195

Ketone Bodies Mimic the Life Span Extending Properties of Caloric Restriction

Veech, Richard L., Bradshaw, Patrick C., Clarke, Kieran, Curtis, William, Pawlosky, Robert, King, M. Todd 01 May 2017 (has links)
The extension of life span by caloric restriction has been studied across species from yeast and Caenorhabditis elegans to primates. No generally accepted theory has been proposed to explain these observations. Here, we propose that the life span extension produced by caloric restriction can be duplicated by the metabolic changes induced by ketosis. From nematodes to mice, extension of life span results from decreased signaling through the insulin/insulin-like growth factor receptor signaling (IIS) pathway. Decreased IIS diminishes phosphatidylinositol (3,4,5) triphosphate (PIP3) production, leading to reduced PI3K and AKT kinase activity and decreased forkhead box O transcription factor (FOXO) phosphorylation, allowing FOXO proteins to remain in the nucleus. In the nucleus, FOXO proteins increase the transcription of genes encoding antioxidant enzymes, including superoxide dismutase 2, catalase, glutathione peroxidase, and hundreds of other genes. An effective method for combating free radical damage occurs through the metabolism of ketone bodies, ketosis being the characteristic physiological change brought about by caloric restriction from fruit flies to primates. A dietary ketone ester also decreases circulating glucose and insulin leading to decreased IIS. The ketone body, d-β-hydroxybutyrate (d-βHB), is a natural inhibitor of class I and IIa histone deacetylases that repress transcription of the FOXO3a gene. Therefore, ketosis results in transcription of the enzymes of the antioxidant pathways. In addition, the metabolism of ketone bodies results in a more negative redox potential of the NADP antioxidant system, which is a terminal destructor of oxygen free radicals. Addition of d-βHB to cultures of C. elegans extends life span. We hypothesize that increasing the levels of ketone bodies will also extend the life span of humans and that calorie restriction extends life span at least in part through increasing the levels of ketone bodies. An exogenous ketone ester provides a new tool for mimicking the effects of caloric restriction that can be used in future research. The ability to power mitochondria in aged individuals that have limited ability to oxidize glucose metabolites due to pyruvate dehydrogenase inhibition suggests new lines of research for preventative measures and treatments for aging and aging-related disorders.
196

Knockdown of C. elegans NAD Kinases NADK-1 or NADK-2 Induces an Antioxidant Response Without Affecting Lifespan

Gong, Henry 01 May 2022 (has links)
Nearly all multicellular organisms show changes in redox balance with aging leading to oxidative damage of macromolecules. This study investigated the role of the [NADP+]/[NADPH] redox couple in aging. This redox couple plays an important role in maintaining tissue redox balance and becomes slightly more oxidized in aged tissues. NADPH is a major source of reducing equivalents for enzymes that detoxify hydrogen peroxide. However, catalase detoxifies hydrogen peroxide independently of NADPH. But catalase is absent from mitochondria, a major source of hydrogen peroxide, where instead glutathione plays the major role in hydrogen peroxide detoxification in an NADPH-dependent manner. Three major cytoplasmic and three major mitochondrial NADPH generating enzymes were knocked down by the RNAi feeding technique in C. elegans, but little to no significant effects on lifespan were observed. The C. elegans genome contains two predicted, yet uncharacterized, NAD kinase (NADK) genes nadk-1 and nadk-2 to synthesize NADP+. Data suggest that NADK-1 is cytoplasmic, while NADK-2 is mitochondrial. NADK activity assays strongly suggested that both NADK-1 and NADK-2 possess NADK activity. Knockdown of NADKs did not affect the rate of body bending in young nematodes. However, knockdown of nadk-2 in nadk-1 mutant worms slightly decreased lifespan. Deficiency of NADKs increased the [NADP+]/[NADPH] and decreased the [NAD+]/[NADH], similar to redox changes that occur with aging. Unexpectedly, nadk-1 or nadk-2 knockdown resulted in decreased reactive oxygen species (ROS) levels and increased survival in young adult nematodes in the presence of juglone, a superoxide generator. The antioxidant response generated upon NADK knockdown required the transcription factors DAF-16/FOXO, SKN-1/Nrf2, and HSF-1 in nadk-2 knockdown nematodes, but only required HSF-1 in nadk-1 knockdown nematodes. NADK-1 or NADK-2 deficiency led to increased catalase activity and a strong trend for increased cytoplasmic catalase-1 (ctl-1) gene expression. Peroxisomal catalase-2 (ctl-2) mutant worms showed increased SOD activity when either NADK gene was knocked down, while ctl-1 mutant worms showed increased glutathione peroxidase or glutathione reductase activities following NADK knockdown. In summary, NADK knockdown oxidizes the [NADP+]/[NADPH] to compromise the antioxidant system, but young nematodes are able to mount a compensatory broad antioxidant response leading to decreased ROS levels.
197

Electrochemical Regeneration of Cofactors Using a Novel Cuprous Oxide Derived Cathode

Kadowaki, Jonathan 19 June 2019 (has links)
No description available.
198

The Role of Endocannabinoids in Atherosclerosis

Matthews, Anberitha Tyiona 11 December 2015 (has links)
Cardiovascular disease leads in morbidity and mortality in Western societies with no known cure. NADPH oxidase (Nox) contributes to atherosclerosis through the indirect activation of macrophages leading to the internalization of oxidized low density lipoproteins (oxLDL). Chronic inflammation in activated macrophages contributes to atherosclerosis. Because macrophages are positioned at the cross-roads of lipid metabolism in vessel walls, they are important in the cellular pathology of atherosclerosis. Components of the endocannabinoid (eCB) system are vital to atherosclerotic development, since the eCB system has been found to play an important role in the amelioration of atherosclerosis. The eCB system has several components, including the G-protein-coupled cannabinoid receptors (CB1 and CB2); their endogenous ligands, 2-arachidonoylglycerol (2-AG) and anandamide (AEA); and biosynthetic enzymes that produce and degrading these compounds. CB2 signaling has been shown to upregulate immunoprotective and anti-oxidative pathways, whereas CB1 signaling has opposite effects. We hypothesized a mechanistic link between scavenger receptor activation and Nox activity, which leads to enhanced 2-AG biosynthesis via a signaling pathway that activates diacylglycerol lipase beta (DAGLB). Activation of CB2-mediated signaling by enhanced “eCB tone” can potentially reduce oxidative stress in macrophages. The released 2-AG is subsequently catabolized hydrolytic enzymes, leading to enhanced 2-AGbiosynthesis via activated DAGLB. We first proved that macrophage treated with oxLDL can activate Nox and increase reactive oxygen species production. We used human and mouse macrophages to demonstrate cause and effect. Secondly, we demonstrated that increased levels of superoxide causes enhanced 2-AG biosynthesis within the macrophage, and that upregulation in eCB production is an adaptive response to oxidative stress. Finally, we identified and quantified the serine hydrolases found in smooth muscle cells (SMCs) using an activity-based protein profiling (ABPP)-MudPIT approach that our laboratory has previously done using human macrophages. Additionally, the catabolism of 2-AG by primary SMCs was explored to demonstrate SMCs can hydrolyze 2-AG to its metabolites arachidonic acid and glycerol by the known hydrolytic enzymes. We demonstrated that enhancing endocannabinoid tone within the vessel wall is a valuable strategy to reduce the occurrence of inflammation that leads to atherosclerosis.
199

Regulation of skeletal muscle satellite cell proliferation by NADPH oxidase

Mofarrahi, Mahroo. January 2007 (has links)
No description available.
200

Neuronal or Intestinal Knockdown of C. elegans nadk-1 Decreases Oxygen Consumption and Reactive Oxygen Species

Regan, Jake 01 May 2023 (has links) (PDF)
Reactive oxygen species (ROS) such as H2O2 can damage cellular components and are formed as a byproduct of mitochondrial oxidative metabolism. Studies using the nematode C. elegans have found that increasing ROS during development or early adulthood can extend lifespan, while increasing ROS during later adulthood normally decreases lifespan. NADPH provides the reducing power for several cellular antioxidants and is synthesized in a two-step reaction from NAD+ with the first step being catalyzed by NAD kinase (NADK). In this study, the effects of knocking down C. elegans cytoplasmic NADK, nadk-1 globally or in a neuron or intestine-specific manner starting from early development on oxygen consumption and ROS levels were determined. Surprisingly, whole body knockdown of nadk-1 to decrease cytoplasmic NADPH levels decreased oxygen consumption and tert-butyl hydroperoxide-stimulated ROS levels, which was phenocopied by intestine-specific or neuron-specific knockdown. Thioredoxin reductase measurements following nadk-1 knockdown showed a trend toward increased activity.

Page generated in 0.0431 seconds