• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring Construction of a Company Domain-Specific Knowledge Graph from Financial Texts Using Hybrid Information Extraction

Jen, Chun-Heng January 2021 (has links)
Companies do not exist in isolation. They are embedded in structural relationships with each other. Mapping a given company’s relationships with other companies in terms of competitors, subsidiaries, suppliers, and customers are key to understanding a company’s major risk factors and opportunities. Conventionally, obtaining and staying up to date with this key knowledge was achieved by reading financial news and reports by highly skilled manual labor like a financial analyst. However, with the development of Natural Language Processing (NLP) and graph databases, it is now possible to systematically extract and store structured information from unstructured data sources. The current go-to method to effectively extract information uses supervised machine learning models, which require a large amount of labeled training data. The data labeling process is usually time-consuming and hard to get in a domain-specific area. This project explores an approach to construct a company domain-specific Knowledge Graph (KG) that contains company-related entities and relationships from the U.S. Securities and Exchange Commission (SEC) 10-K filings by combining a pre-trained general NLP with rule-based patterns in Named Entity Recognition (NER) and Relation Extraction (RE). This approach eliminates the time-consuming data-labeling task in the statistical approach, and by evaluating ten 10-k filings, the model has the overall Recall of 53.6%, Precision of 75.7%, and the F1-score of 62.8%. The result shows it is possible to extract company information using the hybrid methods, which does not require a large amount of labeled training data. However, the project requires the time-consuming process of finding lexical patterns from sentences to extract company-related entities and relationships. / Företag existerar inte som isolerade organisationer. De är inbäddade i strukturella relationer med varandra. Att kartlägga ett visst företags relationer med andra företag när det gäller konkurrenter, dotterbolag, leverantörer och kunder är nyckeln till att förstå företagets huvudsakliga riskfaktorer och möjligheter. Det konventionella sättet att hålla sig uppdaterad med denna viktiga kunskap var genom att läsa ekonomiska nyheter och rapporter från högkvalificerad manuell arbetskraft som till exempel en finansanalytiker. Men med utvecklingen av ”Natural Language Processing” (NLP) och grafdatabaser är det nu möjligt att systematiskt extrahera och lagra strukturerad information från ostrukturerade datakällor. Den nuvarande metoden för att effektivt extrahera information använder övervakade maskininlärningsmodeller som kräver en stor mängd märkta träningsdata. Datamärkningsprocessen är vanligtvis tidskrävande och svår att få i ett domänspecifikt område. Detta projekt utforskar ett tillvägagångssätt för att konstruera en företagsdomänspecifikt ”Knowledge Graph” (KG) som innehåller företagsrelaterade enheter och relationer från SEC 10-K-arkivering genom att kombinera en i förväg tränad allmän NLP med regelbaserade mönster i ”Named Entity Recognition” (NER) och ”Relation Extraction” (RE). Detta tillvägagångssätt eliminerar den tidskrävande datamärkningsuppgiften i det statistiska tillvägagångssättet och genom att utvärdera tio SEC 10-K arkiv har modellen den totala återkallelsen på 53,6 %, precision på 75,7 % och F1-poängen på 62,8 %. Resultatet visar att det är möjligt att extrahera företagsinformation med hybridmetoderna, vilket inte kräver en stor mängd märkta träningsdata. Projektet kräver dock en tidskrävande process för att hitta lexikala mönster från meningar för att extrahera företagsrelaterade enheter och relationer.
2

Bootstrapping Annotated Job Ads using Named Entity Recognition and Swedish Language Models / Identifiering av namngivna enheter i jobbannonser genom användning av semi-övervakade tekniker och svenska språkmodeller

Nyqvist, Anna January 2021 (has links)
Named entity recognition (NER) is a task that concerns detecting and categorising certain information in text. A promising approach for NER that recently has emerged is fine-tuning Transformer-based language models for this specific task. However, these models may require a relatively large quantity of labelled data to perform well. This can limit NER models applicability in real-world applications as manual annotation often is costly and time-consuming. In this thesis, we investigate the learning curve of human annotation and of a NER model during a semi-supervised bootstrapping process. Special emphasis is given the dependence of the number of classes and the amount of training data used in the process. We first annotate a set of collected job advertisements and then apply bootstrapping using both annotated and unannotated data and continuously fine-tune a pre-trained Swedish BERT model. The initial class system is simplified during the bootstrapping process according to model performance and inter-annotator agreement. The model performance increased as the training set grew larger with a final micro F1-score of 54%. This result provides a good baseline, and we point out several improvements that can be made to further enhance performance. We further identify classes handled differently by the annotators and potential factors as to why this is. Suggestions for future work include adjusting the current class system further by removing classes that were identified as low-performing in this thesis. / Namngiven entitetsigenkänning (eng. named entity recognition) innebär att identifiera och kategorisera nyckelord i text. En ny lovande teknik för identifiering av namngivna enheter är att finjustera Transformerbaserade språkmodeller för denna specifika uppgift. Dessa modeller kräver dock stora mängder märkt data för att prestera väl. Detta kan begränsa antal områden i vilka de kan användas då manuell märkning av data ofta är kostsamt och tidskrävande. I denna avhandling undersöker vi inlärningskurvan för manuell annotering och för en språkmodell under en halvövervakad bootstrapping process. Särskild vikt läggs på hur modellens och annoterarnas inlärning påverkas av antal klasser och mängden träningsdata som används i processen. Vi annoterar först en samling jobbannonser och tillämpar sedan en bootstrapping process med både märkt och omärkt data i vilken en förtränad svensk BERT-modell kontinuerligt finjusteras. Det första klasssystemet förenklas under processens gång beroende på modellprestation och interannoterar-överenskommelse. Modellen presterade bättre med mer träningsdata och uppnådde en slutlig micro F1-score på 54%. Detta resultat ger en bra baslinje, och vi föreslår flera förbättringar som kan göras för att ytterligare förbättra modellprestationen. Vidare identifierar vi även klasser som hanteras olika av annoterare och potentiella faktorer till vad detta beror på. Förslag för framtida arbete inkluderar att justera det nuvarande klasssystemet ytterligare genom att ta bort klasser som identifierades som lågpresterande i denna avhandling.

Page generated in 0.1004 seconds