• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 15
  • 15
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Treatment of Nitrate-Containing Soil by Nano-scale Iron Particles and Electrokinetic Remediation

Lee, Hsiao-Lan 28 August 2003 (has links)
Abstract A novel process of combining electrokinetic remediation and nano-sized iron wall was used for studying its effectiveness of treating nitrate-containing soil. Nitrates and nitrites are commonly found in surface water and groundwater. These substances, in general, could pose a threat to both organisms in the water bodies and human health. Traditionally, nitrogen oxides in various water bodies are treated by biological denitrification processes. However, it would take a longer time to yield a satisfactory result as compared with physicochemical processes. In recent years, permeable reactive barriers (PRBs) using zero-valent iron have been successfully used for degradation of various compounds including nitrates. Electrokinetic processing (EK) also is considered as an effective in-situ technology for removing both inorganic and organic substances from the treatment zone. In this work, the synthesized nano-scale iron particles were incorporated into a PRB, which was further combined with EK to form a novel process for the degradation of nitrates. Various operating parameters were studied in this work. The nano-sized iron particles were determined to be ranging from 50-80nm in size and having specific surface area of 37.83m2. The isoelctric point of these nanoparticles was found to be at pH 7.3. Experimental results have shown that the best location of the iron wall was 5cm from the anode reservoir. Also, the optimal treatment time would be six days in this study. The treatment efficiency was found to increase with increasing dose of nano-sized iron particles in the PRB. Operating with the polarity reverse would slightly increase the overall treatment efficiency as compared with the case of no polarity reverse (92.38% versus 88.34%). An electric gradient of 1.5V/cm was determined to be the optimal electric field strength in this study. In this work, it was also found that 2.5g nano-scale iron particles outperformed 20g micro-scale iron particles (75-150µm) in terms of nitrate degradation. In a study of using an extended treatment time up to 20 days, the black colored iron wall would fade away becoming a rusty plume toward the cathode as the treatment time elapsed. Furthermore, the Fe2+ concentration was elevated throughout the soil column after the 20-day treatment. Therefore, it is evident that nano-sized iron particles would migrate when they are subjected to EK. Based on the research findings obtained, the novel process employed in this study was found to be an effective one for in-situ treatment of nitrate-containing soil.
2

Treatment of Volatile Organic Compounds in Cooking Oil Fume Emitted from Restaurants by Nano-sized TiO2 Photocatalyst Coated Fiberglass Filter and Ozone Oxidation Technology

Lai, Tzu-Fan 20 August 2012 (has links)
Recently, restaurant employees exposing to cooking oil fume with potential lung cancer was highly concerned, indicating cooking oil fume emitted from restaurants might cause tremendous hazard to human health. This study combined photocatalytic oxidation and ozone oxidation technology to decompose VOCs from the exhaust of cooking oil fume from restaurants. Firstly, this study selected three different types of restaurants to implement air pollutant measurements in the indoor dinning room and stack emission. Indoor TVOCs continuous monitoring data showed that the highest TVOCs concentration was generally observed in the dining peak time. In this study, photocatalyst coated fiberglass filter was prepared by impregnation procedure and its characteristics was analyzed by SEM and XRD. Experimental results showed that the particle size of photocatalyst ranged from 25 to 50 nm and had high percentage of Anatase, suggesting that it had high photocatalytic reactivity. This study designed a continuous-flow reaction system combined nano-sized TiO2 photocatalysis with ozone oxidation technology to decompose VOCs from cooking oil fume. After passing through a fiberglass filter to remove oil droplets, the cooking oil fume then coated with nano-sized titanium oxide (UV/TiO2) fiberglass filter purification system, and then injected ozone into the system to decompose residual VOCs. This study further investigated the influences of operating parameters, including TVOCs initial concentration, O3 injection concentration, and reaction temperature on the decomposition efficiency of TVOCs by using the UV/TiO2/O3 technology. When the photocatalytic reaction temperature was 35~50¢J, the TVOC decomposition efficiency slightly increased with reaction temperature, however, when the reaction temperature went up to 55¢J, the TVOC decomposition efficiency increased only slightly, but did not increased linearly. Combination of photocatalysis and ozone oxidation system performance test results showed that ozone could decompose approximately 34% VOCs, and followed by the photocatalytical reaction of residual pollutants, achieving an overall decomposition efficiency of about 75%; while photocatalytic reaction can remove 64% of TVOCs and followed by O3 for the decomposition of residual pollutants, achieving an overall decomposition efficiency up to 94%. It showed that the combined UV/TiO2+O3 system could effectively remove VOCs in the cooking oil fume from the exhaust of restaurants. By using GC/MS to qualitatively analyze the speciation of TVOCs from cooking oil fume before and after UV/TiO2/O3, the results showed that the composition of VOCs had a decreasing trend. The peak area and dilution factor were applied to estimate the decomposition efficiency of different VOCs species. The decomposition efficiencies of pentane, 2-acrolein, acrolein, heptane, pentanal, hexanal, 2-hexenal, heptanal, heptenal and ethylhexenal were 56.21%, 72.88%, 51.33%, 32.23%, 59.04%, 69.22%, 73.53%, 41.37%, 92.57%, and 96.02%. Finally, a Langmuir-Hinshelwood kinetic model was applied to simulate the photocatalytic decomposition efficiency with the initial concentration of cooking oil fume. Model simulation results showed that the reaction rate increased with the initial TVOCs concentration. However, when TVOCs concentration increased gradually, the reaction rate became constant since the activated sites on the photocatalyst¡¦s surface was limited and cannot allow more VOC molecules diffuse to the activated sites for further photocatalytic reaction.
3

The Feasibility Study of Nano-sized TiO2 Glassfiber Filter for the Treatment of Indoor VOCs

Wang, Ta-chang 12 September 2007 (has links)
This study investigated the feasibility of glassfiber filter coated with titanium dioxide (TiO2) on removing indoor VOCs using photocatalytic technology, which could further expand the electronic filter¡¦s function . First of all, we coated the titanium dioxide (TiO2) photocatalysts on the glassfiber filter with chemical vapor desposition (CVD) method, then dried it at 120¢J, and calcined it to prepare a nano-sized TiO2 coated filter . Secondly, we collected VOC samples in a printery and analyzed their chemical components. The main components of VOCs (benzene¡Btoluene and acetone) were then conducted in a self-designed laboratory-scaled batch photocatalytic reactor. The decomposition of acetone for different operating parameters, including initial VOC concentration, CVD coating time, and calcination temperature, was further conducted. Besides, a nano-sized photocatalyst indoor air purifier was self-designed for this particular study. The air purifier consists of a set of near-UV light source, a nano-sized photocatalyst glassfiber filter, a stainless shelter, and a circulating fan. The air purifier was tested to ascertain its capability on the removal of indoor VOCs in a well-tight environmental chamber. The testing results indicated the nano-sized photocatalyst glassfiber filter can be used to remove indoor VOCs . In the final stage, a nano-sized TiO2 photocatalyst electronic air cleaner was self-designed for this particular further study in a printery. The air cleaner consists of a set of UV light source, a nano-sized photocatalyst glassfiber filter, a set of electronic filter, carborn filter and a pain coated steel plate shelter. The air cleaner was tested to ascertain its capability on the removal of indoor VOCs in a return air channel of air condition system. The testing results indicated that the nano-sized photocatalyst glassfiber filter can be used to remove indoor VOCs
4

Efeito in situ de dentifrício fluoretado e suplementado com nanopartículas de trimetafosfato de sódio sobre a desmineralização do esmalte e biofilme / In situ effect of fluoride toothpaste and supplemented with nano-sized sodium trimetaphosphate on enamel demineralization and biofilm

Emerenciano, Nayara Gonçalves [UNESP] 17 November 2017 (has links)
Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-20T16:47:05Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-22T14:06:59Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-22T18:09:14Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-22T18:12:24Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-22T19:44:22Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-23T11:57:14Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-23T12:57:55Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-23T13:16:31Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-23T13:34:43Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-23T17:24:54Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-23T17:29:01Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-24T12:05:23Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-24T12:39:43Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-24T16:47:37Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-24T17:31:21Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-27T11:40:50Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-27T12:31:51Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-27T13:03:15Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Submitted by NAYARA GONÇALVES EMERENCIANO null (naay.gon@gmail.com) on 2017-11-27T18:08:07Z No. of bitstreams: 1 Dissertação Nayara pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Approved for entry into archive by Claudio Hideo Matsumoto null (claudio@foa.unesp.br) on 2017-11-27T19:18:30Z (GMT) No. of bitstreams: 1 Emerenciano_ng_me_araca_int.pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) / Made available in DSpace on 2017-11-27T19:18:30Z (GMT). No. of bitstreams: 1 Emerenciano_ng_me_araca_int.pdf.pdf: 1794228 bytes, checksum: 0d1861fb1fa0e974db623587fba12d2e (MD5) Previous issue date: 2017-11-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Objetivo: Avaliar o efeito de um dentifrício fluoretado contendo trimetafosfato de sódio de tamanho nanométrico (TMPnano) na desmineralização do esmalte in situ e composição do biofilme. Métodos: Este estudo foi duplo-cego cruzado consistindo em quatro fases experimentais (7 dias cada) com 12 voluntários que utilizavam dispositivos orais contendo quatro blocos de esmalte bovino. O desafio cariogênico foi realizado por solução de sacarose 30% (6x/dia). Os tratamentos com dentífricos (3x/dia) foram os seguintes: sem F/TMP/TMPnano (Placebo), 1100 ppm F (1100F), 1100F mais 3% de TMP micrométrico ou nanométrico (1100F/TMP; 1100F/TMPnano). A porcentagem de perda de dureza da superfície (%SH) e a perda integrada de dureza de subsuperfície (ΔKHN), bem como o cálcio (Ca), o fósforo (P) e o fluoreto (F) foram determinados. Além disso, o biofilme formado nos blocos foi analisado quanto às concentrações de polissacarídeos extracelulares (EPS), F, Ca, P. Os dados foram analisados utilizando ANOVA 1-critério de medidas repetidas seguidas pelo teste Fisher LSD (p < 0,001). Resultados: 1100F/TMPnano promoveu menor %SH e ΔKHN entre todos os grupos (p < 0,001). A adição de TMPnano a 1100F não aumentou a absorção de F no esmalte, mas aumentou significativamente as concentrações de Ca do esmalte (p <0 ,001). 1100F/TMPnano apresentou valores mais baixos de concentração de EPS quando comparados com 1100F (~ 80%) (p < 0,001). Quanto os graus de saturação, os grupos 1100F/TMP e 1100F/TMPnano mostraram a maior saturação em relação ao HA e similares entre si para CaF2 (p > 0,001). A atividade iônica de CaF+ e HF0 para os grupos 1100F/TMP e 1100F/TMPnano foi semelhante (p > 0,001). Conclusão: 1100F/ TMPnano promoveu um efeito protetor maior contra a desmineralização do esmalte e afetou significativamente a composição do biofilme formado in situ, quando comparado ao dentifrício com 1100F. Relevância clínica: Essa formulação testada pode ser uma alternativa viável para pacientes com alto risco de cárie. / Objective: To evaluate the effect of a fluoride toothpaste containing nano-sized sodium trimetaphosphate (TMPnano) on enamel demineralization in situ and composition of the biofilm. Methods: This crossover double-blind study consisted of four phases (7 days each) and 12 volunteers who wore oral appliances containing four enamel bovine blocks. The cariogenic challenge was performed by 30% sucrose solution (6x/day). The toothpaste treatments (3x/day) were as follows: no F/TMP/TMPnano (Placebo), 1,100 ppm F (1100F), 1100F plus 3% micrometric or nano-sized TMP (1100F/TMP; 1100F/TMPnano). Percentage of surface hardness loss (%SH), and integrated loss of subsurface hardness (ΔKHN), as well as enamel calcium (Ca), phosphorus (P), and fluoride (F) were determined. Moreover, biofilm formed on the blocks were analyzed for F, Ca, P, and insoluble extracellular polysaccharide (EPS) concentrations. Data were analyzed using one-way ANOVA, repeated measures followed by Fisher LSD test (p < 0.001). Results: 1100F/TMPnano promoted the lowest %SH and ΔKHN among all groups (p < 0.001). The addition of TMPnano to 1100F did not enhance enamel F uptake, but significantly increased enamel Ca concentrations (p < 0.001). 1100F/TMPnano showed lower values of EPS concentration when compared with 1100F (~80%) (p < 0.001). As for phase saturation, the 1100F/TMP and 1100F/TMPnano groups showed the highest supersaturation with respect to HA and similar to each other for CaF2 (p > 0.001). The ionic activity of CaF+ and HF0 for the 1100F/TMP and 1100F/TMPnano groups were similar (p > 0.001). Conclusion: 1100F/TMPnano promoted a greater protective effect against enamel demineralization and significantly affected the composition of biofilm formed in situ when compared to 1100F toothpaste. Clinical Significance: This toothpaste could be a viable alternative to patients at high risk of caries.
5

Densification of nano-sized boron carbide

Shupe, John 12 January 2009 (has links)
Boron carbide nano-powders, singly-doped over a range of compositions, were pressurelessly-sintered at identical temperature and atmospheric conditions in a dif- ferential dilatometer to investigate sintering behavior. Samples that achieved relative densities greater than 93% of theoretical density were post-HIPed. Post-HIPing re- sulted in an increase in relative density as well as an increase in Vicker's hardness. To optimize the sintering behavior, nano-powders with multiple dopants were prepared based on the results of single dopant experiments. These powders were studied using the same heating schedule as the single dopant samples. The powder with optimized composition was selected, and 44.45 mm diameter disks were pressed to determine the effects of sample size. Powder composition #166 with Al, Ti, W and Mg additions was processed using di¢çerent methods in order to create defect-free green bodies after uniaxial press- ing. The 44.45 mm diameter compacts were heat-treated to remove organics and B₂O₃coatings on particles and then encapsulated in an evacuated fused silica am- pule. Encapsulated samples were HIPed at temperatures below the coarsening region observed in the dilatometric traces of multiply-doped nano-powders. The E-HIPed sample showed a relative density of 96% with a limited extent of nano-sized grain microstructure.
6

Understanding Effects of Nanoparticle Dispersion on Physical and Mechanical Properties of HA/PHBV Nanocomposites

Wadcharawadee Noohom Unknown Date (has links)
This thesis is inspired by a persistent limitation in the use of composite biomaterials for orthopaedic applications, namely the agglomeration of reinforcing particles in these composites, which has resulted in poor mechanical properties. The use of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and hydroxyapatite (HA) nanoparticles to produce biodegradable nanocomposites is investigated. More specifically, the thesis investigates different methods of composite processing, and interfacial modifying agents and the effect that these have on the nano- and micro- scale structure of composites and their mechanical properties. PHBV and HA were chosen because PHBV is a biodegradable/biocompatible polymer and it has a relatively high stiffness when compared to other biodegradable polymers frequently used in orthopaedic applications. HA is chemically similar to ceramic phase found in bones and hard tissues and the inclusion of HA into biomedical materials has been shown to enhance the rate of osteoconduction. HA/PHBV composites were produced using different dispersing agents including poly(acrylic acid) (PAA), a model dispersing agent, polyethyleneimine (PEI) which allowed for the development of a single solvent system for composite preparation, and heparin (Hep), a macromolecule which is produced in vivo. Additionally, HA/PAA/PHBV composites were prepared from both sonicated and non-sonicated HA/PAA suspensions up to approximately 17% by weight (wt %) of HA content. Attempts to prepare composites with higher HA loadings led to inhomogeneous composite mixtures, which were caused by the dual solvent system used for the composite preparation. The HA/PEI/PHBV and HA/Hep/PHBV composites were produced up to approximately 75 wt % of HA content. It was found that the HA/PEI/PHBV and HA/Hep/PHBV composites could be prepared at higher loadings than HA/PAA/PHBV composites due to the single solvent system used for the preparation of the HA/PEI/PHBV composites and the better dispersion of HA/Hep particles in precursor suspensions. Finally, selected HA/PEI/PHBV composites were further processed using a twin screw extruder. All of the composites were characterised in terms of their dispersion levels as well as their compressive mechanical properties. In addition, HA/PEI/PHBV composite reinforced with 20 wt % of HA content was also tested for its mechanical properties using three different test types; compression, three-point bending, and tensile tests. Finally, the HA/PAA/PHBV, HA/PEI/PHBV, and HA/Hep/PHBV composites were tested their compressive mechanical properties in wet state. It was found that the sonicated HA/PAA suspensions in general had better colloidal stability than non-sonicated ones and that this yielded composites with superior compressive moduli than those prepared from non-sonicated suspensions. In addition, the better dispersion of the particles in the composites prepared from the sonicated suspensions, as confirmed by transmission electron microscopic (TEM) images, led to higher percentage crystallinities when compared to the composites prepared from non-sonicated suspensions. It is likely that the greater number of individual HA particles and smaller HA agglomerates observed in the composites prepared from sonication treatment are acting as nuclei for crystal growth more effectively than large HA agglomerates. The largest modulus and yield strength that could be achieved with this system were approximately 1.45 GPa and 80 MPa, respectively. Composites of HA/PEI/PHBV and HA/Hep/PHBV with approximately 55 wt % of HA content were found to exhibit the largest compressive moduli of approximately 2.5 and 2.8 GPa, respectively. Moreover, the yield strengths for the same materials were found to be approximately 123 and 120 MPa, respectively. This was found to correlate with the better levels of dispersion within the nanocomposites that could be achieved using these stabilisers. The extruded samples were found to have an even greater degree of particle dispersion when compared to the unextruded ones. This improved degree of particle dispersion of the extruded samples resulted in higher moduli in comparison to unextruded samples. The largest compressive modulus and yield strength of the extruded samples were found to be approximately 3.2 GPa and 125 MPa, respectively. The compressive moduli of the composites produced in this thesis are significantly greater than that of cancellous bone (0.4 GPa), but significantly lower than that of cortical bone (12.8–17.7 GPa). However, maximum yield strengths of the HA/PEI/PHBV and HA/Hep/PHBV composites match to cortical bone (120–180 MPa), which is a noteworthy finding in this thesis. The wet mechanical results of all composites as well as pure PHBV polymer showed a reduction in both moduli and yield strengths when compared to dry state. In addition, after 2 weeks in wet state both moduli and yield strengths of the composites and pure polymer converged to approximately the same values. Finally, the HA/PEI/PHBV composite samples tested by tensile testing showed the highest Young’s modulus and those tested by compression testing possessed the lowest Young’s modulus. This resulted from the difference in periods of time for heating exposure and void contents of the tested samples, which were prepared by different methods. However, toughness values obtained from the samples tested using three-point bending and tensile tests, was not significantly different.
7

Understanding Effects of Nanoparticle Dispersion on Physical and Mechanical Properties of HA/PHBV Nanocomposites

Wadcharawadee Noohom Unknown Date (has links)
This thesis is inspired by a persistent limitation in the use of composite biomaterials for orthopaedic applications, namely the agglomeration of reinforcing particles in these composites, which has resulted in poor mechanical properties. The use of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and hydroxyapatite (HA) nanoparticles to produce biodegradable nanocomposites is investigated. More specifically, the thesis investigates different methods of composite processing, and interfacial modifying agents and the effect that these have on the nano- and micro- scale structure of composites and their mechanical properties. PHBV and HA were chosen because PHBV is a biodegradable/biocompatible polymer and it has a relatively high stiffness when compared to other biodegradable polymers frequently used in orthopaedic applications. HA is chemically similar to ceramic phase found in bones and hard tissues and the inclusion of HA into biomedical materials has been shown to enhance the rate of osteoconduction. HA/PHBV composites were produced using different dispersing agents including poly(acrylic acid) (PAA), a model dispersing agent, polyethyleneimine (PEI) which allowed for the development of a single solvent system for composite preparation, and heparin (Hep), a macromolecule which is produced in vivo. Additionally, HA/PAA/PHBV composites were prepared from both sonicated and non-sonicated HA/PAA suspensions up to approximately 17% by weight (wt %) of HA content. Attempts to prepare composites with higher HA loadings led to inhomogeneous composite mixtures, which were caused by the dual solvent system used for the composite preparation. The HA/PEI/PHBV and HA/Hep/PHBV composites were produced up to approximately 75 wt % of HA content. It was found that the HA/PEI/PHBV and HA/Hep/PHBV composites could be prepared at higher loadings than HA/PAA/PHBV composites due to the single solvent system used for the preparation of the HA/PEI/PHBV composites and the better dispersion of HA/Hep particles in precursor suspensions. Finally, selected HA/PEI/PHBV composites were further processed using a twin screw extruder. All of the composites were characterised in terms of their dispersion levels as well as their compressive mechanical properties. In addition, HA/PEI/PHBV composite reinforced with 20 wt % of HA content was also tested for its mechanical properties using three different test types; compression, three-point bending, and tensile tests. Finally, the HA/PAA/PHBV, HA/PEI/PHBV, and HA/Hep/PHBV composites were tested their compressive mechanical properties in wet state. It was found that the sonicated HA/PAA suspensions in general had better colloidal stability than non-sonicated ones and that this yielded composites with superior compressive moduli than those prepared from non-sonicated suspensions. In addition, the better dispersion of the particles in the composites prepared from the sonicated suspensions, as confirmed by transmission electron microscopic (TEM) images, led to higher percentage crystallinities when compared to the composites prepared from non-sonicated suspensions. It is likely that the greater number of individual HA particles and smaller HA agglomerates observed in the composites prepared from sonication treatment are acting as nuclei for crystal growth more effectively than large HA agglomerates. The largest modulus and yield strength that could be achieved with this system were approximately 1.45 GPa and 80 MPa, respectively. Composites of HA/PEI/PHBV and HA/Hep/PHBV with approximately 55 wt % of HA content were found to exhibit the largest compressive moduli of approximately 2.5 and 2.8 GPa, respectively. Moreover, the yield strengths for the same materials were found to be approximately 123 and 120 MPa, respectively. This was found to correlate with the better levels of dispersion within the nanocomposites that could be achieved using these stabilisers. The extruded samples were found to have an even greater degree of particle dispersion when compared to the unextruded ones. This improved degree of particle dispersion of the extruded samples resulted in higher moduli in comparison to unextruded samples. The largest compressive modulus and yield strength of the extruded samples were found to be approximately 3.2 GPa and 125 MPa, respectively. The compressive moduli of the composites produced in this thesis are significantly greater than that of cancellous bone (0.4 GPa), but significantly lower than that of cortical bone (12.8–17.7 GPa). However, maximum yield strengths of the HA/PEI/PHBV and HA/Hep/PHBV composites match to cortical bone (120–180 MPa), which is a noteworthy finding in this thesis. The wet mechanical results of all composites as well as pure PHBV polymer showed a reduction in both moduli and yield strengths when compared to dry state. In addition, after 2 weeks in wet state both moduli and yield strengths of the composites and pure polymer converged to approximately the same values. Finally, the HA/PEI/PHBV composite samples tested by tensile testing showed the highest Young’s modulus and those tested by compression testing possessed the lowest Young’s modulus. This resulted from the difference in periods of time for heating exposure and void contents of the tested samples, which were prepared by different methods. However, toughness values obtained from the samples tested using three-point bending and tensile tests, was not significantly different.
8

Understanding Effects of Nanoparticle Dispersion on Physical and Mechanical Properties of HA/PHBV Nanocomposites

Wadcharawadee Noohom Unknown Date (has links)
This thesis is inspired by a persistent limitation in the use of composite biomaterials for orthopaedic applications, namely the agglomeration of reinforcing particles in these composites, which has resulted in poor mechanical properties. The use of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and hydroxyapatite (HA) nanoparticles to produce biodegradable nanocomposites is investigated. More specifically, the thesis investigates different methods of composite processing, and interfacial modifying agents and the effect that these have on the nano- and micro- scale structure of composites and their mechanical properties. PHBV and HA were chosen because PHBV is a biodegradable/biocompatible polymer and it has a relatively high stiffness when compared to other biodegradable polymers frequently used in orthopaedic applications. HA is chemically similar to ceramic phase found in bones and hard tissues and the inclusion of HA into biomedical materials has been shown to enhance the rate of osteoconduction. HA/PHBV composites were produced using different dispersing agents including poly(acrylic acid) (PAA), a model dispersing agent, polyethyleneimine (PEI) which allowed for the development of a single solvent system for composite preparation, and heparin (Hep), a macromolecule which is produced in vivo. Additionally, HA/PAA/PHBV composites were prepared from both sonicated and non-sonicated HA/PAA suspensions up to approximately 17% by weight (wt %) of HA content. Attempts to prepare composites with higher HA loadings led to inhomogeneous composite mixtures, which were caused by the dual solvent system used for the composite preparation. The HA/PEI/PHBV and HA/Hep/PHBV composites were produced up to approximately 75 wt % of HA content. It was found that the HA/PEI/PHBV and HA/Hep/PHBV composites could be prepared at higher loadings than HA/PAA/PHBV composites due to the single solvent system used for the preparation of the HA/PEI/PHBV composites and the better dispersion of HA/Hep particles in precursor suspensions. Finally, selected HA/PEI/PHBV composites were further processed using a twin screw extruder. All of the composites were characterised in terms of their dispersion levels as well as their compressive mechanical properties. In addition, HA/PEI/PHBV composite reinforced with 20 wt % of HA content was also tested for its mechanical properties using three different test types; compression, three-point bending, and tensile tests. Finally, the HA/PAA/PHBV, HA/PEI/PHBV, and HA/Hep/PHBV composites were tested their compressive mechanical properties in wet state. It was found that the sonicated HA/PAA suspensions in general had better colloidal stability than non-sonicated ones and that this yielded composites with superior compressive moduli than those prepared from non-sonicated suspensions. In addition, the better dispersion of the particles in the composites prepared from the sonicated suspensions, as confirmed by transmission electron microscopic (TEM) images, led to higher percentage crystallinities when compared to the composites prepared from non-sonicated suspensions. It is likely that the greater number of individual HA particles and smaller HA agglomerates observed in the composites prepared from sonication treatment are acting as nuclei for crystal growth more effectively than large HA agglomerates. The largest modulus and yield strength that could be achieved with this system were approximately 1.45 GPa and 80 MPa, respectively. Composites of HA/PEI/PHBV and HA/Hep/PHBV with approximately 55 wt % of HA content were found to exhibit the largest compressive moduli of approximately 2.5 and 2.8 GPa, respectively. Moreover, the yield strengths for the same materials were found to be approximately 123 and 120 MPa, respectively. This was found to correlate with the better levels of dispersion within the nanocomposites that could be achieved using these stabilisers. The extruded samples were found to have an even greater degree of particle dispersion when compared to the unextruded ones. This improved degree of particle dispersion of the extruded samples resulted in higher moduli in comparison to unextruded samples. The largest compressive modulus and yield strength of the extruded samples were found to be approximately 3.2 GPa and 125 MPa, respectively. The compressive moduli of the composites produced in this thesis are significantly greater than that of cancellous bone (0.4 GPa), but significantly lower than that of cortical bone (12.8–17.7 GPa). However, maximum yield strengths of the HA/PEI/PHBV and HA/Hep/PHBV composites match to cortical bone (120–180 MPa), which is a noteworthy finding in this thesis. The wet mechanical results of all composites as well as pure PHBV polymer showed a reduction in both moduli and yield strengths when compared to dry state. In addition, after 2 weeks in wet state both moduli and yield strengths of the composites and pure polymer converged to approximately the same values. Finally, the HA/PEI/PHBV composite samples tested by tensile testing showed the highest Young’s modulus and those tested by compression testing possessed the lowest Young’s modulus. This resulted from the difference in periods of time for heating exposure and void contents of the tested samples, which were prepared by different methods. However, toughness values obtained from the samples tested using three-point bending and tensile tests, was not significantly different.
9

Influência da razão combustível-oxidante nas características de óxidos nanoestruturados sintetizados por combustão em solução

Toniolo, Juliano Cantarelli January 2009 (has links)
Com o aumento do uso do método de síntese por combustão em solução para obtenção de pós cerâmicos, há uma crescente percepção da necessidade de se entender as características únicas deste processo. Esta tese apresenta uma investigação baseada na obtenção de diferentes pós nanoestruturados: Al2O3-α (alumina), Cr2O3 (crômia), Fe2O3-α (hematita), Fe3O4 (magnetita), NiO (bunsenita) e CoO, Co3O4 (óxidos de cobalto), como opção para futuras aplicações. Estes foram caracterizados via ATD, BET, DRX, MET, MEV, VSM, XPS e FTIR. O foco particular deste trabalho é o estudo da razão combustível-oxidante e sua influência nas características dos materiais resultantes. Outros parâmetros de combustão foram identificados e também devidamente avaliados, tais como: tipo de chama, temperatura, gases gerados e composição química dos reagentes precursores. O cálculo termodinâmico da reação de combustão em solução mostrou que, quando a razão combustível-oxidante aumenta, obtêm-se uma elevação da temperatura de chama adiabática e da quantidade de gás produzida, definindo características do particulado como morfologia, tamanho de cristalito, área superficial e nível de agregação. A formação dos óxidos e metais seguiu um comportamento termodinâmico esperado, conforme energia livre de Gibbs. Menores tamanhos de cristalito foram obtidos sempre na condição deficiente em combustível para todos os sistemas estudados. Já a temperatura foi o principal parâmetro de reação que governou a taxa de crescimento e concorreu com a geração de gases para a formação dos cristalitos em certas condições redutoras. Os resultados deste trabalho melhoraram significativamente o entendimento do efeito da razão combustível-oxidante no comportamento das características físicas dos pós. Esta correlação foi avaliada com intuito de fornecer base de conhecimento para possível aplicação desta tecnologia na otimização ou desenvolvimento de novos sistemas de pós. / With the increasing use of solution combustion synthesis method for powder obtaining, there is a growing realization of the need to understand the unique characteristics of this process. This thesis presents the novel investigation of this technique specifically based upon some nanostructured powders such as α - Al2O3 (alumina), Cr2O3 (eskolite), α - Fe2O3 (hematite), Fe3O4 (magnetite), NiO (bunsenite), and CoO, Co3O4 (cobalt oxides) as a core option for future applications. These were characterized via DTA, BET, XRD, TEM, SEM, VSM, XPS, and FTIR. The particular focus of this work is based on the study of the fuel-to-oxidant ratio influence to the characteristics of the resulting materials. Other combustion parameters were identified and also proper appraised as flame type, temperature, gas generation, and chemical composition of precursor reagents. The thermodynamic calculation of the combustion reaction shows that as fuel-tooxidant ratio increases the amount of gas produced, and adiabatic flame temperature also increases. Powder characteristics as morphology, crystallite size, surface area and aggregation degree are mainly governed by the flame temperature, and generation of gases. The oxide and metals formation followed a thermodynamic behavior as expected, conform to Gibbs free energy. Lower crystallite sizes were always obtained by fuel-lean condition for all studied systems. The temperature was the main reaction parameter controlling the growth rate, while it competed with generation of gases to form crystallites under certain reducing conditions. The outcomes of this work have significantly improved the understanding of the fuelto- oxidant ratio effects on the behavior of the physical characteristics of powders. This correlation has been drawn in order to provide a knowledge basis for possible application of this technology to optimize or develop new powder systems.
10

Influência da razão combustível-oxidante nas características de óxidos nanoestruturados sintetizados por combustão em solução

Toniolo, Juliano Cantarelli January 2009 (has links)
Com o aumento do uso do método de síntese por combustão em solução para obtenção de pós cerâmicos, há uma crescente percepção da necessidade de se entender as características únicas deste processo. Esta tese apresenta uma investigação baseada na obtenção de diferentes pós nanoestruturados: Al2O3-α (alumina), Cr2O3 (crômia), Fe2O3-α (hematita), Fe3O4 (magnetita), NiO (bunsenita) e CoO, Co3O4 (óxidos de cobalto), como opção para futuras aplicações. Estes foram caracterizados via ATD, BET, DRX, MET, MEV, VSM, XPS e FTIR. O foco particular deste trabalho é o estudo da razão combustível-oxidante e sua influência nas características dos materiais resultantes. Outros parâmetros de combustão foram identificados e também devidamente avaliados, tais como: tipo de chama, temperatura, gases gerados e composição química dos reagentes precursores. O cálculo termodinâmico da reação de combustão em solução mostrou que, quando a razão combustível-oxidante aumenta, obtêm-se uma elevação da temperatura de chama adiabática e da quantidade de gás produzida, definindo características do particulado como morfologia, tamanho de cristalito, área superficial e nível de agregação. A formação dos óxidos e metais seguiu um comportamento termodinâmico esperado, conforme energia livre de Gibbs. Menores tamanhos de cristalito foram obtidos sempre na condição deficiente em combustível para todos os sistemas estudados. Já a temperatura foi o principal parâmetro de reação que governou a taxa de crescimento e concorreu com a geração de gases para a formação dos cristalitos em certas condições redutoras. Os resultados deste trabalho melhoraram significativamente o entendimento do efeito da razão combustível-oxidante no comportamento das características físicas dos pós. Esta correlação foi avaliada com intuito de fornecer base de conhecimento para possível aplicação desta tecnologia na otimização ou desenvolvimento de novos sistemas de pós. / With the increasing use of solution combustion synthesis method for powder obtaining, there is a growing realization of the need to understand the unique characteristics of this process. This thesis presents the novel investigation of this technique specifically based upon some nanostructured powders such as α - Al2O3 (alumina), Cr2O3 (eskolite), α - Fe2O3 (hematite), Fe3O4 (magnetite), NiO (bunsenite), and CoO, Co3O4 (cobalt oxides) as a core option for future applications. These were characterized via DTA, BET, XRD, TEM, SEM, VSM, XPS, and FTIR. The particular focus of this work is based on the study of the fuel-to-oxidant ratio influence to the characteristics of the resulting materials. Other combustion parameters were identified and also proper appraised as flame type, temperature, gas generation, and chemical composition of precursor reagents. The thermodynamic calculation of the combustion reaction shows that as fuel-tooxidant ratio increases the amount of gas produced, and adiabatic flame temperature also increases. Powder characteristics as morphology, crystallite size, surface area and aggregation degree are mainly governed by the flame temperature, and generation of gases. The oxide and metals formation followed a thermodynamic behavior as expected, conform to Gibbs free energy. Lower crystallite sizes were always obtained by fuel-lean condition for all studied systems. The temperature was the main reaction parameter controlling the growth rate, while it competed with generation of gases to form crystallites under certain reducing conditions. The outcomes of this work have significantly improved the understanding of the fuelto- oxidant ratio effects on the behavior of the physical characteristics of powders. This correlation has been drawn in order to provide a knowledge basis for possible application of this technology to optimize or develop new powder systems.

Page generated in 0.0335 seconds