Spelling suggestions: "subject:"nanocomposites,"" "subject:"anocomposites,""
301 |
Synthesis of TPP - linked MWCNTs / PVC composites and study of their mechanical, thermal and fire retardancy propertiesAmahiri Nathan, Nwabu 30 June 2014 (has links)
M.Sc. (Chemistry) / The fabrication of multiwalled carbon nanotube/polyvinyl chloride (PVC) composites and a study of their thermal, fire retardancy and mechanical properties are reported. Triphenylphosphine linked - multiwalled carbon nanotube (TPP-MWCNT) and pristine MWCNT were used. The MWCNT were embedded in the polymer matrix through melt blending and solvent casting. The phosphorylation of the MWCNT and their dispersion in the PVC matrix was characterized by scanning electron microscopy and Raman spectroscopy. Thermal analysis of the nanocomposites by thermal gravimetric analysis (TGA) in both solvent casting and melt bending processes, showed different results when compared with the neat PVC. The modulus of the MWCNTs / PVC nanocomposites synthesized via melt blending increased, whilst there was a reduction in their tensile strength, indicating a decrease in polymer toughness. The tensile modulus and strength of MWCNTs / PVC nanocomposite synthesized via Solvent casting decreased whilst there was an increase in Tpp-MWCNT/PVC nanocomposite when compared with its counterpart MWCNTs / PVC nanocomposite, indicating an increase in stiffness and strength. The limited oxygen index (LOI) fire retardant tests of all the neat PVC and its nanocomposites showed no value difference.
|
302 |
Caracterização microestrutural de filmes de blendas de latex / Microstructural characterization of latex blend filmsLinares, Elisangela Moura 14 August 2018 (has links)
Orientador: Fernando Galembeck / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-14T14:09:30Z (GMT). No. of bitstreams: 1
Linares_ElisangelaMoura_M.pdf: 5164980 bytes, checksum: d9e4505544f0a48a985e78fccc9e1832 (MD5)
Previous issue date: 2009 / Resumo: Este trabalho mostra o efeito da distribuição de espécies iônicas na morfologia e nas propriedades mecânicas de filmes de blendas de látices, e também demonstra o uso da técnica de microscopia eletrônica de transmissão por energia filtrada (EFTEM) para caracterização morfológica das blendas e de seus nanocompósitos com argila, explorando a região de baixa perda de energia de elétrons. Blendas de látex de borracha natural (NR)/poli(estireno-acrilato de butila) [P(S-BA] e NR/poli(cloreto de vinila) [PVC] foram investigadas, utilizando-se microscopia de varredura de potencial elétrico (SEPM). Através dos mapas de potencial elétrico, foi verificada a ocorrência de migração de espécies iônicas da blenda de uma fase polimérica para a outra, durante a preparação da blenda. Esta migração é espontânea, porque permite a redução da energia do sistema através da diminuição da repulsão eletrostática entre íons, distribuindo-os entre as fases, e é direcionada para o polímero que inicialmente tem menor concentração de cargas e apresenta maior constante dielétrica. Os domínios formados pelos dois componentes da blenda apresentam sinais de carga opostos, o que contribui para o aumento na compatibilidade, através da adesão eletrostática. Os espectros de baixa perda de energia mostram diferenças nas estruturas moleculares dos polímeros das blendas. Essas diferenças se expressam através de mudanças de contraste em imagens de perda de energia (mapas moleculares) adquiridas entre 20 e 90 eV. Blendas de NR/P(S-BA), P(S-BA)/PVC, P(S-BA)/poli(estirenometacrilato de 2-hidroxietila) e seus respectivos nanocompósitos foram analisados por EFTEM que revelou domínios em escala nanométrica, mesmo tendo pequenas diferenças na composição química, sem a necessidade de corar a amostra. Nos nanocompósitos, a disposição das lamelas de argila foi revelada graças ao cancelamento do contraste entre os polímeros. / Abstract: This work shows the effect of ionic specie distribution on the morphology and on the mechanical properties of latex blend films, as well as it demonstrates the use of energy-filtered transmission electron microscopy (EFTEM) technique to morphological characterization of these blends and its clay nanocomposites, by exploring the low-loss electron energy region. Natural rubber (NR)/poly(styrenebutyl acrylate) [P(S-BA)] and NR/poly(vinyl chloride) [PVC] blends were investigated by scanning electric potential microscopy (SEPM). Using the electric potential maps, it has been observed ionic specie migration from one polymer phase towards the other, during blend preparation. The migration is spontaneous because it allows the reduction of system energy thanks to the decreasing of ionion electrostatic repulsion given by ion distribution throughout the phases. The migration is directed towards the polymer that has initially the lower charge concentration and that presents the higher dielectric constant. The domains formed by the two blend component present opposite charge signals, which contribute to compatibility enhancement through electrostatic adhesion. Low-energy-loss electron spectra show differences on molecular structure of polymers that form the blends. Such differences are expressed through contrast changing in low-energyloss images (molecular maps) acquired between 20 and 90 eV. NR/P(S-BA), P(SBA)/ PVC, P(S-BA)/poly(styrene-2-hydroxyethyl metacrylate) and their respective clay nanocomposites have been analyzed by EFTEM without staining and it revealed nano-sized domains, even when chemical composition was slightly different. Clay platelet distribution within nanocomposites was revealed due to contrast canceling of polymer domains on EFTEM images. / Mestrado / Físico-Química / Mestre em Química
|
303 |
The effects of capping agents on the synthesis of magnetic-luminescent Fe₃O₄ -InP/ZnSe nanocomposite materialPaulsen, Zuraan January 2015 (has links)
>Magister Scientiae - MSc / Magnetic luminescent nanoparticles of an iron oxide (Fe₃O₄) superparamagnetic core and an indium phosphide/zinc selenide (InP/ZnSe) quantum dot shell are reported. The magnetic nanoparticles (MNP’s) and quantum dots (QD’s) were each synthesized separately before conjugation. The MNP’s were functionalized with a thiol-group allowing the QD shell to bind to the surface of the MNP by the formation of a thiol-metal bond. The nanocomposite was capped with 3-mercaptopropionic acid, 1-propanethiol, 2-methyl-1-propanethiol and their properties investigated using the characterization techniques: high- resolution transmission electron microscopy (HR-TEM), energy-dispersive spectroscopy (EDS), UV-vis, scanning electron microscopy (SEM), superconducting quantum interference device (SQUID), and photoluminescence. These techniques yielded significant information on particle size, morphology, dispersion, and chemical composition including luminescence and florescence.
|
304 |
Produção e caracterização de nanocompósitos expandidos de poliestireno, reforçados com nanofibras e nanowhiskers de celulose obtidas a partir de fibra de curauáNeves, Roberta Motta 13 December 2017 (has links)
No description available.
|
305 |
Avaliação de nova resina contendo nanopartículas para aplicação na isolação elétrica de barras estatóricas = Evaluation of a new resin containing nanoparticles for application in the electrical insulation of stator bars / Evaluation of a new resin containing nanoparticles for application in the electrical insulation of stator barsConceição, Rafael Novaes da, 1978- 27 August 2018 (has links)
Orientador: João Sinézio de Carvalho Campos / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-27T19:06:13Z (GMT). No. of bitstreams: 1
Conceicao_RafaelNovaesda_M.pdf: 10111957 bytes, checksum: 9168b5514bd29d6ead99888af5052aab (MD5)
Previous issue date: 2015 / Resumo: É bem conhecida a necessidade de energia elétrica para o bem estar e desenvolvimento tecnológico da população em nosso planeta. Ao lado dos avanços científicos de novas tecnologias para geração, existem interesses na melhoria do transporte da energia. Dentre estes se encontram materiais para isolação elétrica de barras estatóricas, quer sejam para melhorar a isolação ou mesmo para reduzir custos. Assim, o presente trabalho visa apresentar resultados da aplicação de uma nova resina epóxi bisfenólica (DGEBF) (RN) à base de nanopartículas de sílica e comparar suas propriedades com a resina epóxi bisfenólica (DGEBA) (RE), atualmente utilizada para a isolação de hidrogeradores. Neste sentido, fabricaram-se protótipos de barras estatóricas, destinadas a hidrogeradores, sendo as resinas impregnadas em sistema VPI (Vácuo-Pressão-Impregnação) e avaliaram-se as propriedades físico-químicas pelas técnicas de viscosimetria, TGA, DSC, MEV e EDS. As propriedades elétricas foram avaliadas pelas técnicas de fator de dissipação (tan delta), descargas parciais, envelhecimento acelerado (VET) e tensão de ruptura. Dentre os resultados das propriedades físico-químicas pode-se comprovar um aumento inicial de três vezes o valor de viscosidade para resina RN em comparação com RE. Entretanto, não houve detrimento das características dielétricas em função da viscosidade, o que foi comprovado através dos resultados de tan delta e VET. Obteve-se um valor de Tg de 116°C e 145°C para RN e RE, respectivamente, o que limitaria a aplicação da resina em geradores por estar abaixo da temperatura de operação. Dentre os resultados dos testes elétricos para as resinas observou-se que: (i) o fator de dissipação e de envelhecimento são praticamente os mesmos para ambas as resinas; (ii) o valor de tip-up resultaram em 0,014 % para RE e 0,020 % para a resina RN, sendo que a norma EN 50209 exige que seja inferior a 0,25% e (iii) a estimativa do tempo de vida útil obtida foi de cerca de 40 anos para os dois tipos de resina, o que é aplicável para maioria dos enrolamentos em operação. Neste sentido sugere-se que a resina RN pode ser uma boa alternativa a resina RE, com um desempenho elétrico equivalente, desde que ajustadas suas condições de processamento e temperatura de aplicação / Abstract: It is well know the demand of electrical energy for the wellbeing and technological development of the population in our planet. Among the scientific development of new technologies for generation, are interests to optimize the energy transport. Among them are materials for electrical insulation of stator bars, whether for improving the insulation or even to reduce the costs. Therefore, the present work aim to present the results of the employment of a new bisphenolic epoxy resin (DGEBF) (RN) containing silica nanoparticles and compare its properties with the bisphenolic epoxy resin (DGEBA) (RE) currently used for the insulation of hydrogenerators. In this context, it was manufactured prototype stator bars, designed for hydrogenerators, being the resins impregnated through VPI (Vacuum-Pressure-Impregnation) system and their physicochemical properties evaluated with the technics of viscosimetry, TGA, DSC, MEV and EDS. The electrical properties were evaluated with the tests of dissipation factor (tan delta), partial discharges, voltage endurance test (VET) and breakdown. Among the results of the physicochemical properties it was possible to verify an initial increase of three times the value of viscosity for RN resin compared to RE. However there was no detriment of the dielectric characteristics depending on the viscosity, what was proven with the results of dissipation factor and VET. It was obtained a value of Tg of 116°C and 145°C for RN and RE respectively, what could limit its employment for hydrogenerators as being below the operational temperature. Among the results of electrical tests for the resins it was observed that: (i) the dissipation factor and VET are practically the same for both resins; (ii) the tip-up value resulted in 0,014% for RE and 0,020% for RN, being required lower than 0,25% according to the norm EN 50209 and (iii) the estimating lifecycle was approximately 40 years for both types of resin, what is applicable for most windings under operation. In this context it is suggested that the RN resin can be a good alternative for RE resin with an equivalent performance once the process conditions and employment temperature are adjusted / Mestrado / Ciencia e Tecnologia de Materiais / Mestre em Engenharia Química
|
306 |
Controlling Particle Structures in Polymers through Nanocomposite ProcessingJimenez, Andrew Matthew January 2020 (has links)
The use of polymer nanocomposites (PNCs) for their unique properties has been around for over a century, used in anything from airplanes to raincoats. In the past 30 years, the fabrication of advanced composite materials has expanded this field into a vast array of applications, tailoring the optical, mechanical, and electrical properties of the material for any specific use. As with any composite, the goal is to take advantage of the desirable properties in each individual component and form an overall superior material. In this body of work, we focus on mixing inorganic nanoparticles (NPs), which are strong and dense, with various polymers, typically used for being tough, light, and easy to work with. The reason for using nano-sized fillers is to maximize the inorganic surface area with which the polymer can interact with, allowing for a minimum amount of filler to be used with maximum benefit, though this is not always practically the case. The interaction between the NP and polymer is only optimized if the NP structure can be controlled. Each of the chapters in this thesis work toward finding new, and practical, methods for understanding and controlling NP dispersions in polymers.
In each of the chapters, we focus primarily on the use of silica NPs, ranging from 10-100 nm in diameter, studying methods for controlling their dispersion in polymers like polystyrene (PS), polyethylene (PE), polyisoprene (PI), poly(2-vinyl pyridine) (P2VP), poly(ethylene oxide) (PEO), poly(methyl acrylate) (PMA), and others. First, we take a closer look at how to control and quantify “well-dispersed” NPs in a polymer matrix, taking advantage of various techniques to stabilize the NPs in solution before casting them into the polymer. Once we understand how to reliably disperse the NPs, we can begin to find ways to reorganize them into structures that could provide further improvements in the mechanical properties of the composites, again focusing on methods that would be practically relevant in any polymer system. These techniques take advantage of thermodynamic and kinetic drivers to reorder the NPs in amorphous and semi-crystalline polymers. Forming bound layers of a polymer on a favorably interacting NP surface can stabilize the NPs in a variety of polymer systems, providing initially well-dispersed systems for further study. Alternatively, the grafting of chains onto the NP surface leads to various self-assemblies of the NPs in different matrices, depending on the interaction of the grafted and matrix chains.
Starting with well-dispersed NPs in a semi-crystalline polymer allows us to take advantage of the crystallization process to kinetically force NPs into hierarchical structures throughout the composite. This concept alone encompasses a bulk of this thesis – a technique that simply requires the isothermal crystallization of the polymer at different temperatures to achieve vastly different NP structures. Understanding the interaction of the NPs and the crystal is studying using extensive calorimetry and microscopy experiments, specifically determining how to define the confinement of the system due to the presence of NPs and their effect on growth and nucleation. The resulting alignment of NPs into the interlamellar region of the crystal is then analyzed in detail using a correlation function, commonly applied to neat semi-crystalline structures, but applied here for the first time to a PNC. This analysis provides new insights into the alignment process and ways for quantifying the degree of NP alignment. The alignment technique is then applied to several other systems for the specific focus of improving the mechanical properties of unique and industrially relevant PNCs, specifically using polymer grafted NPs. Finally, we briefly discuss the effect of annealing time and temperature on NP dispersion, dynamics, and resulting in unprecedented changes in the macroscopic properties of the material, uncovering new insights in the aging of PNCs. Each of these techniques provides details around controlling the organization and structure of NPs in polymers for the purpose of improving their mechanical properties, all while simply changing the way in which the material is processed.
|
307 |
Tailoring the Mechanical Properties of Montmorillonite-Nanocomposites via Surface-Bound RAFT-PolymerRauschendorfer, Judith Elisabeth 16 December 2020 (has links)
No description available.
|
308 |
Semiempirical methods for excited states of nanomaterialsCho, Yeongsu January 2021 (has links)
Density functional theory (DFT) provides an affordable computational tool to understand electronic structure of various molecules and solids. However, the use of DFT is still challenging to investigate nanomaterials of intermediate size that are too small to assume translational symmetry and too large to be considered as molecules. This thesis focuses on developing cost-effective but accurate computational methods for nanomaterials and using the methods to rationalize and predict experimental behaviors. A notable difference of a nanomaterial from its bulk counterpart is that its properties are exceptionally sensitive to the dielectric environment, requiring a proper treatment of the surrounding dielectrics for an accurate understanding. The consequences of heterogeneous dielectric screening on transition metal dichalcogenides are studied by developing a new theory based on classical electrostatics, which closely reproduced the band gaps and optical gaps calculated by the ab initio GW approximation and the Bethe-Salpeter equation (BSE). The relative insensitivity of the first optical transition energy observed by experiments was explained for the first time in terms of the cancellation effect of changes of the band gap and the exciton binding energy. The theory of heterogeneous dielectric environments is further developed to be used in an atomistic calculation of layered hybrid organic-inorganic lead halide perovskites via a tight-binding GW-BSE method. The binding energies of trions and biexcitons were also calculated using the stochastic variational method to give spectrum peak energies that show a good agreement with reported experimental measurements. Lastly, the tight-binding GW-BSE method is generalized into an atomistic, semiempirical approach to calculate the electronic structure and optical spectra of arbitrary nanomaterials, termed semiempirical GW (sGW) and BSE (sBSE).
|
309 |
Influence of High Aspect Ratio Nanoparticle Filler Addition on Piezoelectric NanocompositesArmas, Jeremy A 01 December 2018 (has links)
Piezoelectric nanogenerators (PNGs) are a new class of energy harvesting materials that show potential as a direct energy source for low powered electronics. Recently, piezoelectric polymers have been utilized for PNG technology due to low toxicity, high flexibility, and facile solution processing which provide manufacturing opportunities such as screen printing. Throughout the last decade, countless projects have focused on how to enhance the energy harvesting capabilities of these PNGs through the incorporation of nanoparticle fillers, which have been reported to enhance the piezoelectric properties of the film either directly through their intrinsic piezoelectric properties or through acting as surfaces for the interfacial nucleation of piezoelectric polymer crystals.
Herein, two systems of PNGs formed from piezoelectric copolymers poly(vinylidene fluoride-co-hexafluropropylene) or poly(vinylidene fluoride-co-trifluoroethylene) mixed with high aspect ratio zinc oxide nanowires, hydroxyl functionalized multi-walled carbon nanotubes, or carboxylic acid functionalized single walled carbon nanotubes were investigated. Variations of filler type and loading are tested to determine influences on film morphology and piezoelectric properties. Power harvesting tests are conducted to directly determine the effect of nanoparticle addition on the output power of the non-poled devices. Both copolymer systems are found to exhibit a non-linear increase in output power with the increase of nanoparticle filler loading. The crystal polymorph properties of both systems are investigated by Fourier transform infrared spectroscopy. The microstructure of the poly(vinylidene fluoride-co-trifluoroethylene) films are further examined using X-ray diffraction, differential scanning calorimetry, polarized optical microscopy, and atomic force microscopy to determine the mechanism behind the increased power harvesting capabilities. As well, explanations for perceived output power from “self-poled” films are briefly explored.
|
310 |
Surfactant intercalated koppies and boane bentonites for polymer nanotechnologyMassinga, Pedro Horacio January 2013 (has links)
This research aimed to develop technology and processes to further beneficiate two southern
African bentonites for applications in polymer/clay nanotechnology. The bentonites were
from the Koppies mine in South Africa, and the Boane mine in Mozambique. The work was
divided into two parts: (i) preparation of organomodified nanoparticulate smectite clays, and
(ii) preparation of their poly(ethylene-co-vinylacetate) nanocomposites.
Nanoparticulate organobentonites were prepared using purified bentonites. The conventional
organomodification process uses a very low concentration of bentonites at 80 oC. In this
study, a novel method was developed: concentrated slurries of naturally occurring
Ca-bentonite partially activated with soda ash in the presence of a proprietary dispersant were
contacted at ambient temperature with quaternary ammonium surfactants. A known amount
of bentonite dispersion was placed in a planetary mixer before the mixture. Likewise, a
known amount of surfactant, up to 50% excess, based on the estimated cation exchange
capacity (CEC) of the bentonites, was added while mixing the dispersion. The surfactants
added were either in solution or in powdered form. The intercalated bentonite was recovered
by centrifugation and washed repeatedly with water until halide ions could not be detected
using a 1M silver nitrate solution. The solids were dried at ambient temperature and humidity,
and then crushed and milled into a fine powder using a mortar and pestle.
Several instrumental techniques were used to characterise and examine the properties of the
bentonite samples before and after organic treatment.The X-ray diffraction (XRD) results were
consistent with: (i) paraffin-type extended chain intercalation; and (ii) interdigitated monolayer
intercalation of the C12 and C14 single-chain alkyl surfactants and bilayer intercalation of the
single-chain C16 surfactant and the surfactants with double alkyl chains. Fourier transform
infrared (FTIR) spectroscopy analysis of the organobentonite powders confirmed disordered
chain conformations. XRD also detected significant amounts of cristobalite in the samples of
Boane bentonite (from Mozambique). This impurity could not be removed cost-effectively.
The onset decomposition temperature ofthe present organobentonites was around 200 ºC, which
is within the typical range of polymer/organoclay processing temperatures. The thermal stability
of the organobentonites was independent of both the number of alkyl chain substituents and
their length, and also independent of the degree of clay intercalation.
SURFACTANT INTERCALATED KOPPIES AND BOANE BENTONITES FOR POLYMER NANOTECHNOLOGY
ii
Poly(ethylene-co-vinylacetate) nanocomposites were prepared with South African Koppies
bentonite, organomodified with single-chain C12 (and polar 2-hydroxyethyl side chain) and
double-chains C18 alkyl ammonium cationic surfactants. The later surfactant was intercalated
both below and above the clay CEC. Nanocomposites were prepared by twin-screw melt
compounding. Transmission electron microscopy (TEM) indicated the presence of mixed nanoand
micron-sized clay morphologies. XRD studies revealed that the crystallinity of the particles
improved and that the d-spacing values increased on incorporation of the modified bentonites in
the polymer matrix. It is postulated that, rather than indicating polymer co-intercalation, this was
caused by further intercalation of either excess surfactants or surfactant residues that were released
by shear delamination of the clays during compounding. Improved mechanical properties were
realised, especially when using the bentonite containing the longer double-chains surfactant
intercalated at levels in excess of the CEC of the clay. The nanocomposites showed improved
tensile modulus and elongation at break values at the expense of a reduction in impact
strength, while tensile strength was about the same as for the neat polymer. / Thesis (PhD)--University of Pretoria, 2013. / gm2014 / Chemistry / unrestricted
|
Page generated in 0.0626 seconds