• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • Tagged with
  • 32
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Materiales basados en óxidos de manganeso para baterías multivalentes recargables de magnesio y calcio

Miralles, Carmen 28 June 2022 (has links)
En la actualidad, las baterías recargables líderes en el mercado tanto para dispositivos electrónicos como para vehículos eléctricos son las baterías de ion-Li. Estas baterías poseen mayor densidad de energía y mayor voltaje de celda que otras baterías recargables comerciales como, por ejemplo, la de níquel-hidruro metálico, la de plomo-ácido y la de níquel-cadmio (1-3). Sin embargo, las baterías de ion-Li presentan dos inconvenientes principales: el litio se encuentra en una concentración relativamente baja en la corteza terrestre y sus yacimientos se encuentran localizados en algunas zonas, principalmente en América del Sur (4,5). Por ello, es importante investigar en otra clase de baterías que estén compuestas por elementos más abundantes en la corteza terrestre, más fáciles de extraer y, por lo tanto, más baratos que el litio. Las alternativas a las baterías de litio sobre las que se ha investigado en esta tesis doctoral son las baterías multivalentes de magnesio y de calcio. La investigación se ha centrado en la búsqueda de materiales catódicos capaces de proporcionar capacidades y retenciones de capacidad lo suficientemente buenas como para poder considerar un escalado de la batería. El tipo de materiales en el que se ha centrado la investigación es el constituido por los óxidos de manganeso, ya que estos compuestos presentan numerosos tipos de estructuras cristalinas y proporcionan potenciales de oxidación-reducción elevados. Además, estos óxidos presentan ventajas económicas y medioambientales. De hecho, el manganeso es uno de los metales de transición más abundantes de la corteza terrestre y no es tóxico. Los materiales en los que hemos centrado la investigación han sido el Mn2O3, MgMn2O4, Mg2MnO4, H2xMg2-xMnO4 y la marokita de baja cristalinidad. La síntesis de los materiales MgMn2O4, Mg2MnO4, H2xMg2-xMnO4 y la marokita se ha conseguido mediante una variante del método sol-gel, el método Pechini (6). En el caso del Mn2O3, el método empleado ha sido el baño químico. En los materiales Mn2O3, MgMn2O4, Mg2MnO4, H2xMg2-xMnO4 y en la marokita de baja cristalinidad se ha demostrado la inserción-desinserción de magnesio, y en los materiales Mn2O3, MgMn2O4, H2xMg2-xMnO4 y en la marokita de baja cristalinidad, la inserción-desinserción de calcio. El estudio de la inserción-desinserción de los cationes metálicos y sus implicaciones a nivel estructural y morfológico se ha realizado empleando diferentes técnicas: la difracción de rayos X, técnicas microscópicas como la microscopía electrónica de barrido de emisión de campo (FE-SEM) y la de transmisión (TEM) y la espectroscopía fotoelectrónica de rayos X (XPS). Además, para mejorar la caracterización se ha empleado la espectroscopía de emisión por plasma de acoplamiento inductivo (ICP-OES), el análisis termogravimétrico y la espectroscopía infrarroja. Las técnicas de caracterización electroquímica utilizadas han sido la voltametría cíclica, la cronopotenciometría galvanostática (carga-descarga) y la espectroscopía de impedancia electroquímica. Además de las técnicas convencionales, se ha prestado especial atención a las técnicas acopladas de espectroelectroquímica Raman y UV-vis. La espectroelectroquímica Raman la hemos empleado para observar la evolución estructural de los materiales al someterlos a ciclos de carga-descarga y la espectroelectroquímica UV-vis para observar la evolución del estado de oxidación del manganeso en el Mn2O3 durante barridos voltamétricos, aprovechando que los óxidos de manganeso son materiales electrocrómicos. En términos generales, la mayoría de los materiales estudiados sufren un proceso de activación en los primeros ciclos de carga-descarga en medio acuoso. Este proceso de activación está relacionado con la aparición de cambios estructurales y morfológicos de las distintas estructuras cuando se someten a ciclos sucesivos en medio acuoso. Las partículas de los materiales evolucionan hacia láminas cuya morfología depende ligeramente del electrolito empleado. Una vez finalizado el proceso de activación, la capacidad del material comienza a disminuir debido a la disolución del material activo, el aumento de tamaño de las láminas, la desaparición progresiva de las rutas de difusión de los iones a través de la estructura del material electródico y a la posible pérdida de conexión eléctrica entre el depósito y el sustrato. Los materiales que proporcionan mejores resultados en términos de capacidad y retención de la capacidad para la inserción-desinserción de magnesio en medio acuoso son, respectivamente, el H2xMg2-xMnO4 y la marokita de bajo grado de cristalinidad. La capacidad máxima obtenida a 263 mA·g-1 para la marokita es de 100 mA·h·g-1 y para el material H2xMg2-xMnO4 de 177 mA·h·g-1. Los valores de capacidad y retención de la capacidad de los diferentes materiales estudiados para las baterías de calcio en medio acuoso son generalmente inferiores a los valores que proporcionan los materiales para las baterías de magnesio. La marokita de baja cristalinidad proporciona una capacidad máxima de 108.5 mA·h·g-1 y una retención de la capacidad en el ciclo 30 del 67% a 263 mA·g-1. El material H2xMg2-xMnO4 se ha estudiado en medio orgánico húmedo, además de en medio acuoso. El electrolito empleado fue 0.5 M Mg(TFSI)2/DME. Los resultados obtenidos de capacidad y ciclabilidad son inferiores a los resultados proporcionados por el material en medio acuoso. Además, no se observa una inserción eficiente del Mg en la estructura mediante XPS ni un cambio morfológico de las partículas con el ciclado electroquímico en este electrolito. Los resultados obtenidos en los materiales estudiados en esta tesis doctoral en términos de capacidad, retención de la capacidad y cinética de reacción, son similares o incluso superiores a los resultados reportados en bibliografía para materiales catódicos en el contexto de las baterías de magnesio y de calcio.
32

Desarrollo de nuevos electrodos basados en nanoestructuras híbridas de óxidos metálicos semiconductores para aplicaciones energéticas y medioambientales.

Navarro Gázquez, Pedro José 06 July 2023 (has links)
[ES] La presente Tesis Doctoral se centra en la síntesis de nanoestructuras híbridas de TiO2/ZnO para su utilización como fotoelectrocatalizadores durante la producción de hidrógeno a partir de la rotura de la molécula de agua mediante fotoelectrocatálisis y la degradación fotoelectrocatalítica de pesticidas. La principal ventaja de las nanoestructuras híbridas de TiO2/ZnO frente a otros fotocatalizadores basados en materiales semiconductores radica en su capacidad para formar heterouniones en las que se intercalan las bandas de valencia y conducción de ambos semiconductores. Este fenómeno produce una disminución del ancho de banda del fotoelectrocatalizador y de los procesos de recombinación de los pares electrón-hueco fotogenerados y un aumento del rango de absorción de la luz, lo que mejora sus propiedades como fotoelectrocatalizadores. Las nanoestructuras híbridas de TiO2/ZnO obtenidas en la presente Tesis Doctoral se sintetizaron mediante electrodeposición de ZnO sobre nanoesponjas de TiO2. Las nanoesponjas de TiO2 se formaron mediante anodizado electroquímico de titanio en condiciones hidrodinámicas y, posteriormente, se electrodepositó ZnO sobre la superficie de las nanoesponjas de TiO2 modificando la concentración de precursor (Zn(NO3)2 0.5-60 mM), la temperatura (25-75 °C) y el tiempo (15-60 min). Además, se estudió la influencia de electrodepositar ZnO sobre nanoesponjas de TiO2 amorfo o nanoesponjas de TiO2 cristalino, observándose una mejora significativa de la actividad fotoelectrocatalítica de las nanoestructuras híbridas de TiO2/ZnO electrodepositadas sobre nanoesponjas de TiO2 cristalino. Las nanoestructuras híbridas de TiO2/ZnO sintetizadas tuvieron morfología en forma de nanoesponjas, nanobarras hexagonales, nanobarras sin definir y nanoláminas, estudiando la influencia de la concentración de Zn(NO3)2, temperatura y tiempo durante el proceso de electrodeposición de ZnO sobre su comportamiento como fotoelectrocatalizadores. Las nanoestructuras híbridas de TiO2/ZnO sintetizadas se caracterizaron mediante Microscopía Electrónica de Barrido de Emisión de Campo (FE-SEM), Espectroscopía de Energía Dispersiva de Rayos X (EDX), Microscopía Electrónica de Transmisión (TEM), Microscopía de Fuerza Atómica (AFM), Difracción de Rayos X (DRX), Espectroscopía UV-Visible y mediciones de la banda prohibida. Además, se caracterizaron fotoelectroquímicamente mediante ensayos de rotura de la molécula de agua mediante fotoelectrocatálisis y estabilidad frente a la fotocorrosión y electroquímicamente mediante Espectroscopía de Impedancia Fotoelectroquímica (PEIS) y ensayos de Mott-Schottky. Los resultados evidenciaron que las nanoestructuras híbridas de TiO2/ZnO electrodepositadas sobre TiO2 cristalino a 75 °C durante 15 minutos con una concentración de Zn(NO3)2 de 30 mM fueron las más favorables para llevar a cabo aplicaciones fotoelectroquímicas debido a que ofrecieron buena estabilidad frente a la fotocorrosión, elevada respuesta fotoelectroquímica (177 % superior a la de las nanoesponjas de TiO2), baja resistencia a la transferencia de carga y elevada densidad de portadores de carga, en comparación con las nanoesponjas de TiO2. Por último, las nanoestructuras híbridas de TiO2/ZnO óptimas se emplearon como fotoelectrocatalizadores en aplicaciones energéticas y medioambientales. Por un lado, se evaluó la producción teórica de hidrógeno que se obtendría al utilizar las nanoestructuras híbridas de TiO2/ZnO sintetizadas en la presente Tesis Doctoral como fotoánodos durante el proceso de rotura de la molécula de agua mediante fotoelectrocatálisis. Por otro lado, se evaluó la utilización de las nanoestructuras híbridas de TiO2/ZnO óptimas en la degradación fotoelectrocatalítica de pesticidas (Imazalil) en agua, obteniéndose un porcentaje de degradación del 99.6 % llevando a cabo la degradación fotoelectrocatalítica de 10 ppm de Imazalil en Na2SO4 0.1 M durante 24 horas aplicando un potencial de 0.6 V (Ag/AgCl(KCl 3M)). / [CA] La present tesi doctoral se centra en la síntesi de nanoestructures híbrides de TiO2/ZnO per a utilitzar-les com a fotoelectrocatalitzadors durant la producció d'hidrogen a partir del trencament de la molècula d'aigua mitjançant fotoelectrocatàlisi i la degradació fotoelectrocatalítica de pesticides. El principal avantatge de les nanoestructures híbrides de TiO2/ZnO enfront d'altres fotocatalitzadors basats en materials semiconductors radica en la seua capacitat per a formar heterojuncions en les quals s'intercalen les bandes de valència i conducció de tots dos semiconductors. Aquest fenomen produeix una disminució de l'ample de banda del fotoelectrocatalitzador i dels processos de recombinació dels parells electró-forat fotogenerats, i un augment del rang d'absorció de la llum, la qual cosa millora les seues propietats com a fotoelectrocatalitzadors. Les nanoestructures híbrides de TiO2/ZnO es van sintetitzar mitjançant electrodeposició de ZnO sobre nanosponges de TiO2. Les nanosponges de TiO2 es van formar mitjançant anodització electroquímica de titani en condicions hidrodinàmiques i, posteriorment, es va electrodepositar ZnO sobre la superfície de les nanosponges de TiO2 modificant la concentració del precursor (Zn(NO3)2 0.5-60 mm), la temperatura (25-75 °C) i el temps d'electrodeposició (15-60 min). A més, es va estudiar la influència d'electrodepositar ZnO sobre nanosponges de TiO2 amorf o nanosponges de TiO2 cristal·lí, i es va observar una millora significativa de l'activitat fotoelectrocatalítica de les nanoestructures híbrides de TiO2/ZnO en dur a terme el procés d'electrodeposició de ZnO sobre nanosponges de TiO2 cristal·lí. Les nanoestructures híbrides de TiO2/ZnO sintetitzades van tindre morfologia en forma de nanosponges, nanobarres hexagonals, nanobarres sense definir i nanolàmines, i es va estudiar la influència de la concentració de Zn(NO3)2, la temperatura i el temps durant el procés d'electrodeposició de ZnO sobre el seu comportament com a fotoelectrocatalitzadors. Les nanoestructures híbrides de TiO2/ZnO es van caracteritzar mitjançant microscòpia electrònica d'escombratge d'emissió de camp, espectroscòpia de raigs X per dispersió d'energia, microscòpia electrònica de transmissió, microscòpia de força atòmica, difracció de raigs X, espectroscòpia UV visible i mesuraments de la banda prohibida. D'altra banda, es van caracteritzar fotoelectroquímicament mitjançant assajos de trencament de la molècula d'aigua mitjançant fotoelectrocatàlisi i estabilitat enfront de la fotocorrosió, i electroquímicament mitjançant espectroscòpia d'impedància fotoelectroquímica i assajos de Mott-Schottky. Els resultats van evidenciar que les nanoestructures híbrides de TiO2/ZnO electrodepositades sobre TiO2 cristal·lí a 75°C durant 15 minuts amb una concentració de Zn(NO3)2 de 30 mm van ser les més favorables per a dur a terme aplicacions fotoelectroquímiques, pel fet que van oferir bona estabilitat enfront de la fotocorrosió, elevada resposta fotoelectroquímica (un 177 % superior a la de les nanosponges de TiO2), baixa resistència a la transferència de càrrega i elevada densitat de portadors de càrrega, en comparació amb les nanosponges de TiO2. Finalment, les nanoestructures híbrides de TiO2/ZnO òptimes es van emprar com a fotoelectrocatalitzadors en aplicacions energètiques i mediambientals. D'una banda, es va avaluar la producció teòrica d'hidrogen que s'obtindria en utilitzar les nanoestructures híbrides de TiO2/ZnO sintetitzades en la present tesi doctoral com a fotoànodes durant el procés de trencament de la molècula d'aigua mitjançant fotoelectrocatàlisi. D'altra banda, es va avaluar la utilització de les nanoestructures híbrides de TiO2/ZnO òptimes en la degradació fotoelectrocatalítica de pesticides (Imazalil) en aigua, i es va obtenir un percentatge de degradació del 99.6% duent a terme la degradació fotoelectrocatalítica de 10 ppm d'Imazalil en Na2SO4 0.1 M durant 24 h aplicant un potencial de 0.6 V (Ag/AgCl(KCl 3M)). / [EN] This Doctoral Thesis focuses on synthesizing TiO2/ZnO hybrid nanostructures to be used as photoelectrocatalysts in energy and environmental applications, particularly hydrogen production from water splitting by photoelectrocatalysis and photoelectrocatalytic degradation of pesticides. The main advantage of TiO2/ZnO hybrid nanostructures over other photocatalysts based on semiconductor materials is their ability to form heterojunctions in which the valence and conduction bands of both semiconductors are intercalated. This phenomenon produces a decrease in the band gap of the nanostructures, the recombination processes of the photogenerated electron-hole pairs, and an increase in the light absorption range, which improves their properties as photoelectrocatalysts. The TiO2/ZnO hybrid nanostructures formed in this Doctoral Thesis were synthesized by electrodeposition of ZnO on TiO2 nanosponges. First, TiO2 nanosponges were formed by electrochemical anodization of titanium under hydrodynamic conditions (3000 rpm) and, subsequently, ZnO was electrodeposited on the surface of the TiO2 nanosponges by modifying the precursor concentration (Zn(NO3)2 0.5 - 60 mM), the temperature (25 - 75 °C) and the electrodeposition time (15 - 60 min). In addition, the influence of performing the ZnO electrodeposition on amorphous TiO2 nanosponges (before the thermal treatment) or crystalline TiO2 nanosponges (after the thermal treatment) was studied, showing a significant improvement in the photoelectrocatalytic activity of TiO2/ZnO hybrid nanostructures by carrying out the ZnO electrodeposition process on crystalline TiO2 nanosponges. In this Doctoral Thesis, TiO2/ZnO hybrid nanostructures with morphologies of nanosponges, hexagonal nanorods, undefined nanorods, and nanosheets were synthesized by studying the influence of Zn(NO3)2 concentration, temperature and time during the ZnO electrodeposition process. In addition, the performance of TiO2/ZnO hybrid nanostructures as photoelectrocatalysts was studied. The synthesized TiO2/ZnO hybrid nanostructures were characterized morphologically, photoelectrochemically, and electrochemically. On the one hand, they were morphologically characterized by Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Diffraction X-Ray (XRD), UV-Visible Spectroscopy and band gap measurements. On the other hand, they were characterized photoelectrochemically by e water splitting and stability against photocorrosion tests and electrochemically by Photoelectrochemical Impedance Spectroscopy (PEIS) and Mott-Schottky tests. The results showed that TiO2/ZnO hybrid nanostructures electrodeposited on crystalline TiO2 at 75 °C for 15 minutes with a Zn(NO3)2 concentration of 30 mM were the most favourable for carrying out photoelectrochemical applications because they offered good stability against photocorrosion, high photoelectrochemical response (177 % higher than that of TiO2 nanosponges), low resistance to charge transfer and high density of charge carriers, compared to TiO2 nanosponges. Finally, the optimal TiO2/ZnO hybrid nanostructures were used as photoelectrocatalysts in energy and environmental applications. On the one hand, the theoretical hydrogen production obtained with the TiO2/ZnO hybrid nanostructures synthesized in this Doctoral Thesis during the water splitting tests was evaluated. On the other hand, the use of the optimal TiO2/ZnO hybrid nanostructures as photoelectrocatalysts in the photoelectrocatalytic degradation of pesticides (Imazalil) in water was evaluated, obtaining a degradation percentage of 99.6 % carrying out the photoelectrocatalytic degradation of 10 ppm of Imazalil in Na2SO4 0.1 M for 24 hours applying a potential of 0.6 VAg/AgCl (3M KCl). / Agradezco al Ministerio de Ciencia e Innovación la concesión de la subvención proporcionada por el Sistema Nacional de Garantía Juvenil (PEJ2018- 003596-A-AR), al Ministerio de Economía, Industria y Competitividad la concesión del proyecto CTQ2016-79203-R y al Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación la concesión del proyecto PID2019-105844RB- I00/MCIN/AEI/ 10.13039/501100011033, en los cuales he podido participar durante el desarrollo de la presente Tesis Doctoral. / Navarro Gázquez, PJ. (2023). Desarrollo de nuevos electrodos basados en nanoestructuras híbridas de óxidos metálicos semiconductores para aplicaciones energéticas y medioambientales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194708

Page generated in 0.0697 seconds