• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elaboration et conception des dispositifs de la récupération d’énergie à base de nanofils de ZnO et de microfibres de PVDF-TrFE / Development and design of energy harvesting devices based on ZnO nanowires & PVDF-TrFE microfibers

Serairi, Linda 23 May 2017 (has links)
Le développement des énergies renouvelables peut non seulement compenser le manque d'énergie fossile à l'avenir, mais aussi sauver notre planète en réduisant la pollution par les émissions de CO2. Les matériaux piézoélectriques ont la capacité de convertir les mouvements mécaniques environnementaux en énergie électrique. Dans le cadre de cette thèse, deux types de matériaux piézoélectriques ont été étudiés pour la récupération d’énergie : les nanofils de ZnO et les microfibres de PVDF-TrFE. L’objectif ultime de cette thèse est de réaliser les dispositifs de la récupération d’énergie à faible coût pour rendre les capteurs autonomes.Au cours de la dernière décennie, les nanofils de ZnO ont suscité un grand intérêt dans le domaine de la recherche en raison de leurs multifonctionnalités avec un grand potentiel d’applications dans les différents domaines (récupération d’énergie par effet piézoélectrique et photovoltaïque, capteurs biologiques & chimiques, dépollution de l’eau & de l’air par effet photocatalytique, …). Le PVDF-TrFE est un polymère attrayant dans les applications de la récupération d'énergie en raison de ses propriétés piézoélectriques, son faible coût et sa grande flexibilité mécanique.Dans ce travail, deux méthodes de synthèse ont été employées pour obtenir les micro- & nanomatériaux piézoélectriques : Hydrothermale pour les réseaux verticaux des nanofils de ZnO et Electrospinning pour les microfibres de PVDF-TrFE. Les conditions de synthèse ont été optimisées afin d’obtenir les échantillons adéquats aux applications envisagées. Ensuite, deux types de dispositifs de la récupération d’énergie ont été fabriqués. Dans un premier temps, nous avons conçu des microgénérateurs (MGs) à base des microfibres de PVDF-TrFE déposées sur le substrat Kapton. Ces MGs flexibles basés sur l’effet piézoélectrique direct permettant la conversion de l’énergie mécanique en énergie électrique à basse fréquence de l’ordre d’hertz. Le second type de nanogénérateurs (NGs) est basé sur des nanofils verticaux de ZnO sur le substrat en silicium. Les tests de la récupération d’énergie ont été réalisés dans une gamme de fréquences de quelques centaines d’hertz pour l’application aéronautique / Development of renewable energy can not only compensate for the lack of fossil energy in the future, but also save our planet by reducing CO2 emission pollution. Piezoelectric materials have the ability to convert environmental mechanical movements into electrical energy. In this thesis, two types of piezoelectric materials have been studied for energy harvesting: ZnO nanowires and PVDF-TrFE microfibers. The ultimate goal of this thesis is to realize the low cost energy harvesting devices for self-powered sensors.Over the past decade, ZnO nanowires had attracted a great interest in the research field due to their multifunctionality with a great potential in the various applications (energy harvesting by piezoelectric and photovoltaic effect, bio & chemical sensors, water & air purification by photocatalytic effect ...). PVDF-TrFE is also an attractive polymer in energy harvesting due to its piezoelectric properties, high mechanical flexibility, and also for its low cost.In this work, two synthesis methods have been used to obtain the piezoelectric micro- & nanomaterials: Hydrothermal for the ZnO nanowire arrays and Electrospinning for the PVDF-TrFE microfibers. The synthesis conditions have been optimized in order to obtain the suitable samples for the applications. Then, two types of energy harvesting devices were manufactured. First, we realized the microgenerators (MGs) based on the PVDF-TrFE microfibers deposited on the Kapton substrate. These flexible MGs based on the direct piezoelectric effect allowing the conversion of mechanical energy into electrical energy at low frequency of the order of hertz. The second type of nanogenerators (NGs) is based on ZnO nanowire array on the silicon substrate. The energy harvesting tests were carried out in a frequency range of a few hundred hertz for the aeronautical application
2

Carrier profiling of ZnO nanowire structures by scanning capacitance microscopy and scanning spreading resistance microscopy / Profilage porteur de structures de nanofils ZnO par microscopie à capacité de balayage et microscopie à dispersion

Wang, Lin 28 April 2016 (has links)
Ce travail de thèse porte sur l'application des techniques Scanning Capacitance Microscopy (SCM) et Scanning Spreading Resistance Microscopy (SSRM) pour la caractérisation électrique de nanofils de ZnO avec l'objectif d'en déterminer le dopage par profilage des porteurs libres suite à des essais de dopage de type p. Afin de pouvoir utiliser un référentiel planaire nécessaire à ces mesures par sonde locale, un procédé de remplissage par dip-coating et de polissage a été spécialement développé sur des champs de nanofils quasi-verticaux. De plus, dans le but de parvenir à un étalonnage des mesures SCM et SSRM, nous avons conçu et fait fabriquer des échantillons étalons de dopage de type n, contenant des niveaux de Ga en escalier de densité variable de 2×10^17 à 3×10^20 cm^-3. Les mesures sur des coupes transversales de ces deux de structures multicouches ont permis, pour la première fois sur ZnO d'établir un étalonnage des mesures SCM et SSRM et de déterminer le dopage intrinsèque électriquement actif de couches 2D nanométriques, résultat difficilement atteignable par d'autres techniques d'analyse. Des résultats inattendus de concentration résiduelle de porteur de l'ordre de 2×10^18 et 3×10^18 cm^-3 ont été trouvés sur les nanofils de ZnO crus par MOCVD et par CBD respectivement. Outre la caractérisation électrique microscopique des nanofils par SCM et SSRM, des techniques macroscopiques classiques ont été utilisées pour caractériser des assemblées importantes de nanofils de ZnO. L'origine de la difference entre les résultats de deux genres de technique a été discutée. Nous avons aussi étudié les effets des dopages ex-situ par diffusion du phosphore (procédé SOD) et des dopages in situ par incorporation d'antimoine (Sb) pendant la croissance MOCVD. Les résultats majeurs sont obtenus pour l'antimoine, en utilisant des couches ZnO: Sb 2D et des nanofils cœur-coquille ZnO/ZnO: Sb, ou l'hypothèse d'une compensation partielle du dopage n résiduel par un centre accepteur créé par le dopage Sb semble pouvoir être établie raisonnablement. / Based on atomic force microscope (AFM), scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) have demonstrated high efficiency for two dimensional (2D) electrical characterizations of Si semiconductors at nanoscale and then have been extensively employed in Si-based structures/devices before being extended to the study of some other semiconductor materials. However, ZnO, a representative of the third generation semiconductor material, being considered a promising candidate for future devices in many areas, especially in opto-electronic area, has rarely been addressed. Recently, extensive research interests have been attracted by ZnO NWs for future devices such as LED, UV laser and sensor. Therefore, a good understanding of electrical properties of the NWs is in need. In this context, this thesis work is dedicated to the 2D electrical characterization of ZnO NWs with the focus of carrier profiling on this kind of nanostructure in the effort of their p-type doping. For this purpose, a planarization process has been developed for the NWs structure in order to obtain an appropriate sample surface and perform SCM/SSRM measurements on the top of the NWs. For quantitative analysis, Ga doped ZnO multilayer staircase structures were developed serving as calibration samples. Finally, residual carrier concentrations inside the CBD and MOCVD grown ZnO NWs are determined to be around 3×10^18 cm^-3 and 2×10^18 cm^-3, respectively. The results from SCM/SSRM characterization have been compared with that from macroscopic C-V measurements on collective ZnO NWs and the differences are discussed. In addition to carrier profiling on NWs structure, applications of SCM/SSRM on some other ZnO-based nanostructures are also investigated including ZnO:Sb films, ZnO/ZnO:Sb core-shell NWs structure, ZnO/ZnMgO core-multishell coaxial heterostructures.

Page generated in 0.0419 seconds