• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • Tagged with
  • 14
  • 14
  • 12
  • 10
  • 10
  • 10
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Helical Bilayer Nonbenzenoid Nanographene Bearing a [10]Helicene with Two Embedded Heptagons

Yang, Lin, Ju, Yang-Yang, Medel, Miguel A., Fu, Yubin, Komber, Hartmut, Dmitrieva, Evgenia, Zhang, Jin-Jiang, Obermann, Sebastian, Campaña, Araceli G., Ma, Ji, Feng, Xinliang 22 April 2024 (has links)
The precision synthesis of helical bilayer nanographenes (NGs) with new topology is of substantial interest because of their exotic physicochemical properties. However, helical bilayer NGs bearing non-hexagonal rings remain synthetically challenging. Here we present the efficient synthesis of the first helical bilayer nonbenzenoid nanographene (HBNG1) from a tailor-made azulene-embedded precursor, which contains a novel [10]helicene backbone with two embedded heptagons. Single-crystal X-ray analysis reveals its highly twisted bilayer geometry with a record small interlayer distance of 3.2 Å among the reported helical bilayer NGs. Notably, the close interlayer distance between the two layers offers intramolecular through-space conjugation as revealed by in situ spectroelectrochemistry studies together with DFT simulations. Furthermore, the chiroptical properties of the P/M enantiomers of HBNG1 are also evaluated by circular dichroism and circularly polarized luminescence.
12

One-Pot Synthesis of Boron-Doped Polycyclic Aromatic Hydrocarbons via 1,4-Boron Migration

Zhang, Jin-Jiang, Tang, Man-Chung, Fu, Yubin, Low, Kam-Hung, Ma, Ji, Yang, Lin, Weigand, Jan J., Liu, Junzhi, Wing-Wah Yam, Vivian, Feng, Xinliang 17 May 2024 (has links)
Herein, we demonstrate a novel one-pot synthetic method towards a series of boron-doped polycyclic aromatic hydrocarbons (B-PAHs, 1 a–1 o), including hitherto unknown B-doped zethrene derivatives, from ortho-aryl substituted diarylalkynes with high atom efficiency and broad substrate scopes. A reaction mechanism is proposed based on the experimental investigation together with the theoretical calculations, which involves a unique 1,4-boron migration process. The resultant benchtop-stable B-PAHs are thoroughly investigated by X-ray crystallography, cyclic voltammetry, UV/Vis absorption, and fluorescence spectroscopies. The blue and green organic light-emitting diode (OLED) devices based on 1 f and 1 k are further fabricated, demonstrating the promising application potential of B-PAHs in organic optoelectronics.
13

Strukturelle und elektronische Eigenschaften von Nanographen-Graphen-Systemen sowie Schnitt- und Faltverhalten von Graphen

Eilers, Stefan 11 April 2013 (has links)
Im ersten Teil der Arbeit werden Graphen sowie von Monolagen von auf Nanometer großen Graphenen basierenden Hexa-peri(Dodekyl)-Hexabenzocoronen-Molekülen (HBC-C12), adsorbiert auf Graphen, mit Rastertunnelmikroskopie und –spektroskopie an der Fest-Flüssig-Grenzfläche untersucht. Nanographen-Moleküle selbstaggregieren epitaktisch zu hochgeordneten Monolagen. Die Einheitszellen der Moleküllagen auf Monolage Graphen, Bilage Graphen und auf Graphit sind ununterscheidbar. Die Strukturen der Moleküllagen auf gewellten und flachen Teilen des Graphens stimmen überein. Strom-Spannungs-Kennlinien an Nanographen auf Graphen und auf Graphit weisen auf sehr ähnliche elektronische Eigenschaften hin. Zusammengefasst sind strukturelle sowie elektronische Eigenschaften der Nanographenlage homogen, stabil und definiert. Graphen erweist sich als bestens als Substrat und gleichzeitig als Elektrode für hochgeordnete Lagen von Nanographen-Molekülen geeignet. Im zweiten Teil der Arbeit wird Graphen mit der Sonde eines Rasterkraftmikroskops im Kontaktmodus mechanisch manipuliert. Es wird gezeigt, dass Graphen in nur einem Manipulationsschritt zu Streifen und Spalt geschnitten werden kann. Dieses Verhalten wird mit einem klassischen Modell des Biegens theoretisch erklärt. Das Schnittverhalten liegt in der 2-Dimensionalität des Graphens sowie in dessen Faltbarkeit auf Grund hinreichender Elastizität begründet. Durch mechanische Manipulation mit der Sonde des Rasterkraftmikroskops im Kontaktmodus unter atmosphärischen Bedingungen wird eine Flüssigkeitsschicht zwischen Graphen und dem Siliziumdioxidsubstrat nachgewiesen, welche eine mögliche Erklärung des stark kraftabhängigen Materialkontrasts zwischen Graphen und Siliziumdioxid im Amplitudenmodulationsmodus des Rasterkraftmikroskops darstellt. Weiter wird gezeigt, dass das Falten des Graphens durch mechanische Manipulation eine geeignete Methode zur Herstellung nicht epitaktisch aufeinander gestapelter Graphene darstellt. / In the first part of the thesis graphene as well as monolayers of hexa-peri(dodecyl)-hexabenzocoronene molecules (HBC-C12) based on nanometer sized graphenes adsorbed on graphene is investigated by scanning tunnelling microscopy and tunneling spectroscopy at the solid-liquid interface. The nanographene molecules self-assemble on graphene epitaxially to form highly ordered monolayers. The unit cells of the molecular layers on monolayer graphene, bilayer graphene and on graphite appear identical. The structures of the molecular layers occur equal on corrugated and on flat parts of graphene. Current-voltage-characteristics show that the electronic properties of nanographene on graphene and on graphite are very similar. Summarized, structural as well as electronic properties of the nanographene layer are homogeneous, stable and defined. Graphene proves to be excellently qualified for simultaneously being substrate as well as electrode for highly ordered layers of nanographene based molecules. In the second part of the thesis graphene is mechanically manipulated in air in contact mode of a scanning force microscope. It is shown that a single manipulation process can lead to a stripe cut out of graphene. This behaviour is theoretically explained by a classical bending model. The cutting behavior originates from the 2-dimensionality of graphene and its folding ability because of sufficient elasticity. A liquid layer between graphene and the silicon dioxide substrate is verified by mechanical manipulation in contact mode of a scanning force microscope. Hence a possible explanation could be found for the strongly force dependent material contrast between graphene and silicon dioxide in amplitude modulation mode of the scanning force microscope. Further, it is demonstrated that folding graphene by mechanical manipulation is a proper method for the production of graphene stacked on each other non-epitaxially.
14

Characterization of Viral Inhibiting 2D Carbon- Based Structures Using Scanning Probe Microscopy and Raman Spectroscopy

Gholami, Mohammad Fardin 12 June 2024 (has links)
Kohlenstoff 2D-Nanoschichten wie Graphen und Graphenoxid sind vielversprechend, aber schwierig in Bezug auf multivalente Wechselwirkungen zu kontrollieren. Das Verständnis, wie neuartige Funktionalisierungsmethoden die Geometrie, Wechselwirkungen und elektronischen Eigenschaften der Graphenblätter beeinflussen, ist der Schwerpunkt dieser Arbeit. Diese Arbeit untersucht zwei Methoden zur Modifikation von 2D-Graphennanoschichten: "Graft to" und "Graft from" Techniken, unter Verwendung von „[2+1] Nitren-Cycloaddition“ und ringöffnender Polymerisation von Glycerin, zusätzlich zum Wachstum von 2D-Triazin-Kohlenstoffstrukturen. Diese modifizierten Nanoschichten wurden hinsichtlich ihrer Wechselwirkung mit dem Vesikulären Stomatitis-Virus (VSV) und ihrer Zweidimensionalität mittels Rastersondenmikroskopie und Raman-Spektroskopie untersucht. Die Studie zeigt das Potenzial funktionalisierter Graphen in der Virologie und liefert Einblicke für zukünftige Forschungen. Ergebnisse zeigten, dass funktionalisierte 2D-TRGO an VSV-Partikel bindet und flexibel genug bleibt, um auf einer flachen Glimmeroberfläche Falten zu bilden, aber sie können die Virushüllen nicht vollständig umschließen. Dies liegt an den hohen Energiekosten für das Biegen großer lateraler Dimensionen (~1-2 μm) im Vergleich zur 200 nm Länge der VSV-Partikel. Eine optimale laterale Dimension von ~300 nm für funktionalisierte 2D-TRGO-Blätter maximiert virale Wechselwirkungen, Hemmungseffizienz und Anzeichen viraler Umhüllung. Triazin, ein Schlüsselmolekül in der Funktionalisierung, kann zur Herstellung von 2D-Triazin-Strukturen im Gramm-Maßstab verwendet werden. Potenzielle Anwendungen funktionalisierter Graphene umfassen spezialisierte antivirale Therapien und die Verwendung als Plattform für antivirale Medikamente. Zudem zeigten die Ergebnisse minimale Störungen der elektronischen Struktur von Graphen durch Triazin-Funktionalisierung. / Carbon-based 2D nanosheets like graphene and graphene oxide are promising but challenging to control in terms of multivalent interactions. Understanding how novel functionalization methods affect graphene sheets' geometry, interaction specificity and electronic properties is the focus of this thesis, which is crucial for advancing the design of 2D nanomaterials. This thesis examines two novel methods for modifying 2D graphene nanosheets: "graft to" and "graft from" techniques, using [2+1] nitrene cycloaddition reactions and ring-opening multibranch polymerization of glycerol in addition to in plane growth of 2D triazine -carbon based structures. These modified nanosheets were studied for their interaction with vesicular stomatitis virus (VSV) and their two-dimensionality using scanning probe microscopy methods and Raman spectroscopy. The study highlights the potential of functionalized graphene nanosheets in virology and provides insights for future research. Results revealed that functionalized 2D TRGO binds to VSV particles and remains flexible enough to wrinkle on a flat mica interface but they cannot completely wrap the viral envelopes. This is due to the high energy cost of bending large lateral dimensions (~1-2μm) compared to the 200 nm length of VSV particles. An optimum lateral dimension of ~300 nm for functionalized 2D TRGO sheets was found to maximize viral interactions, inhibition efficiency, and signs of viral envelopment. Triazine, a key molecule in functionalization, can also be used to create 2D triazine structures on a gram scale. Functionalized graphene's potential applications include specialized antiviral therapies, such as targeted therapies exploiting multivalent interactions between viruses and cellular receptors, and using functionalized graphene as a delivery platform for antiviral drugs. Additionally, results showed minimal disturbance of graphene electronic structure via Triazine functionalization.

Page generated in 0.0487 seconds