Spelling suggestions: "subject:"nanoplasma"" "subject:"nanoplasmas""
1 |
Static structure and dynamical structural changes of nanoparticles using XFEL pulses / XFELパルスを利用したナノ粒子の静的構造・動的構造変化の研究Hiraki(Nishiyama), Toshiyuki 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22239号 / 理博第4553号 / 新制||理||1654(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 松田 和博, 教授 田中 耕一郎, 教授 佐々 真一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
2 |
Atomic and molecular clusters in intense laser pulsesMikaberidze, Alexey 07 October 2011 (has links) (PDF)
We have investigated processes of ionization, energy absorption and subsequent explosion of atomic and molecular clusters under intense laser illumination using numerical as well as analytical methods. In particular, we focused on the response of composite clusters, those consisting of different atomic elements, to intense light pulses. Another major theme is the effect of the molecular structure of clusters on their Coulomb explosion.
The action of intense laser pulses on clusters leads to fundamental, irreversible changes: they turn almost instantaneously into nanoplasmas and subsequently disintegrate into separate ions and electrons. Due to this radical transformation, remarkable new features arise. Transient cluster nanoplasmas are capable of absorbing enormous amounts of laser energy. In some cases more than 90 % of incident laser energy is absorbed by a gas of clusters with a density much smaller than that of a solid. After the efficient absorption, the energy is transformed into production of energetic ions, electrons, photons, and even neutrons. Composite clusters show especially interesting behavior when they interact with intense laser pulses. Nanoplasmas formed in composite clusters may absorb even more laser energy, than those formed in homogeneous clusters, as we demonstrate in this work.
One of the most important results of this thesis is the identification of a novel type of plasma resonance. This resonance is enabled by an unusual ellipsoidal shape of the nanoplasma created during the ionization process in a helium droplet doped with just a few xenon atoms. In contrast to the conventional plasma resonance, which requires significant ion motion, here, the resonant energy absorption occurs at a remarkably fast rate, within a few laser cycles. Therefore, this resonance is not only the most efficient (like the conventional resonance), but also, perhaps, the fastest way to transfer laser energy to clusters.
Recently, dedicated experimental studies of this effect were performed at the Max Planck Institute in Heidelberg. Their preliminary results confirm our prediction of a strong, avalanche-like ionization of the helium droplet with a small xenon cluster inside.
A conventional plasma resonance, which relies on the cluster explosion, also exhibits interesting new properties when it occurs in a composite xenon-helium cluster with a core-shell geometry. We have revealed an intriguing double plasma resonance in this system. This was the first theoretical study of the influence of the helium embedding on the laser- driven nanoplasma dynamics. Our results demonstrate the important role of the interaction between xenon and helium parts of the cluster. Understanding this interaction is necessary in order to correctly interpret the experimental results.
We have elucidated several important properties of Coulomb explosion in atomic and molecular clusters. Specifically, it was found that the kinetic energy distribution of ions after the Coulomb explosion of an atomic cluster is quite similar to the initial potential energy distribution of ions and is only weakly influenced by ion overtake effects, as was believed before. For the case of molecular hydrogen clusters, we have shown that the alignment of molecules inside the cluster affects its Coulomb explosion.
Investigation of the dynamical processes in composite and molecular clusters induced by intense laser pulses is a step towards understanding them in more complex nano-objects, such as biomolecules or viruses. This is of great interest in the context of x-ray diffractive imaging of biomolecules with atomic resolution, which is one of the main goals of new x-ray free electron laser facilities.
|
3 |
Atomic and molecular clusters in intense laser pulsesMikaberidze, Alexey 19 July 2011 (has links)
We have investigated processes of ionization, energy absorption and subsequent explosion of atomic and molecular clusters under intense laser illumination using numerical as well as analytical methods. In particular, we focused on the response of composite clusters, those consisting of different atomic elements, to intense light pulses. Another major theme is the effect of the molecular structure of clusters on their Coulomb explosion.
The action of intense laser pulses on clusters leads to fundamental, irreversible changes: they turn almost instantaneously into nanoplasmas and subsequently disintegrate into separate ions and electrons. Due to this radical transformation, remarkable new features arise. Transient cluster nanoplasmas are capable of absorbing enormous amounts of laser energy. In some cases more than 90 % of incident laser energy is absorbed by a gas of clusters with a density much smaller than that of a solid. After the efficient absorption, the energy is transformed into production of energetic ions, electrons, photons, and even neutrons. Composite clusters show especially interesting behavior when they interact with intense laser pulses. Nanoplasmas formed in composite clusters may absorb even more laser energy, than those formed in homogeneous clusters, as we demonstrate in this work.
One of the most important results of this thesis is the identification of a novel type of plasma resonance. This resonance is enabled by an unusual ellipsoidal shape of the nanoplasma created during the ionization process in a helium droplet doped with just a few xenon atoms. In contrast to the conventional plasma resonance, which requires significant ion motion, here, the resonant energy absorption occurs at a remarkably fast rate, within a few laser cycles. Therefore, this resonance is not only the most efficient (like the conventional resonance), but also, perhaps, the fastest way to transfer laser energy to clusters.
Recently, dedicated experimental studies of this effect were performed at the Max Planck Institute in Heidelberg. Their preliminary results confirm our prediction of a strong, avalanche-like ionization of the helium droplet with a small xenon cluster inside.
A conventional plasma resonance, which relies on the cluster explosion, also exhibits interesting new properties when it occurs in a composite xenon-helium cluster with a core-shell geometry. We have revealed an intriguing double plasma resonance in this system. This was the first theoretical study of the influence of the helium embedding on the laser- driven nanoplasma dynamics. Our results demonstrate the important role of the interaction between xenon and helium parts of the cluster. Understanding this interaction is necessary in order to correctly interpret the experimental results.
We have elucidated several important properties of Coulomb explosion in atomic and molecular clusters. Specifically, it was found that the kinetic energy distribution of ions after the Coulomb explosion of an atomic cluster is quite similar to the initial potential energy distribution of ions and is only weakly influenced by ion overtake effects, as was believed before. For the case of molecular hydrogen clusters, we have shown that the alignment of molecules inside the cluster affects its Coulomb explosion.
Investigation of the dynamical processes in composite and molecular clusters induced by intense laser pulses is a step towards understanding them in more complex nano-objects, such as biomolecules or viruses. This is of great interest in the context of x-ray diffractive imaging of biomolecules with atomic resolution, which is one of the main goals of new x-ray free electron laser facilities.:1. Introduction 1
2. Interaction of clusters with intense laser pulses 5
2.1. Cluster formation and structure . . . . . . . . . . . . . . . . . . 5
2.1.1. Cluster formation . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Cluster structure . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3. Composite clusters . . . . . . . . . . . . . . . . . . . . . 7
2.2. Matter in intense light fields . . . . . . . . . . . . . . . . . . . . 9
2.2.1. Laser sources . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2. Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Clusters under intense laser pulses . . . . . . . . . . . . . . . . . 11
2.3.1. Three stages of intense laser-cluster interaction . . . . . 12
2.3.2. Pathways of cluster ionization and energy absorption . . 13
2.3.3. Composite clusters in intense laser fields . . . . . . . . . 14
2.4. Scenarios of cluster explosion . . . . . . . . . . . . . . . . . . . 15
2.4.1. Coulomb explosion vs. quasi-neutral expansion . . . . . 15
2.4.2. Anisotropic explosion . . . . . . . . . . . . . . . . . . . . 17
2.5. Comparison between experiment and theory . . . . . . . . . . . 18
3. Theoretical methods for intense laser-cluster interaction 21
3.1. The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Survey of simulation methods . . . . . . . . . . . . . . . . . . . 22
3.2.1. Quantum methods . . . . . . . . . . . . . . . . . . . . . 22
3.2.2. Classical methods . . . . . . . . . . . . . . . . . . . . . . 23
3.3. Our method: classical microscopic molecular dynamics . . . . . 24
3.3.1. Initial configuration . . . . . . . . . . . . . . . . . . . . . 24
3.3.2. Integrating the equations of motion . . . . . . . . . . . . 26
3.3.3. Observables . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4. The role of quantum effects . . . . . . . . . . . . . . . . . . . . 31
4. Cluster nanoplasma: a statistical approach 33
4.1. Vlasov-Poisson formalism . . . . . . . . . . . . . . . . . . . . . . 33
4.2. Nanoplasma electrons at quasi-equilibrium . . . . . . . . . . . . 34
4.2.1. Self-consistent potential and electron density . . . . . . . 34
4.2.2. Energy distribution of nanoplasma electrons . . . . . . . 36
4.3. Harmonic oscillator model . . . . . . . . . . . . . . . . . . . . . 41
4.3.1. Derivation from kinetic equations . . . . . . . . . . . . . 42
4.3.2. Comparison with the molecular dynamics results . . . . 44
4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5. Ionization and energy absorption in helium droplets doped with
xenon clusters 47
5.1. Local ignition and anisotropic nanoplasma growth . . . . . . . . 48
5.1.1. Cluster size dependence . . . . . . . . . . . . . . . . . . 50
5.1.2. Nanoplasma resonance during its anisotropic growth . . 51
5.1.3. Range of laser frequencies and intensities . . . . . . . . . 55
5.1.4. Plasma resonance for circular polarization . . . . . . . . 56
5.1.5. Summary and future work . . . . . . . . . . . . . . . . . 57
5.2. Electron migration and its influence on the cluster expansion . . 59
5.2.1. Charging dynamics . . . . . . . . . . . . . . . . . . . . . 59
5.2.2. Explosion dynamics . . . . . . . . . . . . . . . . . . . . . 61
5.3. Interplay between nanoplasma expansion and its electronic response 63
5.3.1. Single pulse: time-dependence . . . . . . . . . . . . . . . 64
5.3.2. Two pulses: a pump-probe study . . . . . . . . . . . . . 67
5.4. Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . 71
6. Coulomb explosions of atomic and molecular clusters 75
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2. Analytical treatment of the Coulomb explosion . . . . . . . . . . 76
6.2.1. Steplike density profile . . . . . . . . . . . . . . . . . . . 76
6.2.2. Kinetic approach . . . . . . . . . . . . . . . . . . . . . . 79
6.2.3. Gradually decreasing initial density . . . . . . . . . . . . 83
6.3. Coulomb explosions of atomic and molecular hydrogen clusters:
a molecular dynamics study . . . . . . . . . . . . . . . . . . . . 84
6.3.1. Kinetic energy distributions of ions (KEDI) . . . . . . . 85
6.3.2. Information loss during the explosion . . . . . . . . . . . 87
6.3.3. Ion overtake processes . . . . . . . . . . . . . . . . . . . 90
6.3.4. Non-radial motion of ions . . . . . . . . . . . . . . . . . 91
6.3.5. Three-body effects in Coulomb explosion . . . . . . . . . 93
6.4. Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . 96
7. Conclusions and outlook 97
7.1. Physical conclusions . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2. Methodological conclusions . . . . . . . . . . . . . . . . . . . . . 99
7.3. Research perspectives . . . . . . . . . . . . . . . . . . . . . . . . 100
A. Suppression of the cluster barrier 101
B. Structure determination for Xen@Hem clusters 103
C. Calculation of the time-dependent phase shift 107
D. Potential of a uniformly charged spheroid 109
E. On the possibility of molecular alignment inside hydrogen clusters 111
Bibliography
|
4 |
Etude théorique de l'interaction entre une impulsion laser intense et un agrégat de gaz rareMicheau, Samuel 04 July 2007 (has links) (PDF)
L'irradiation d'agrégats de gaz rare de taille nanométrique par une impulsion laser brève (quelques centaines de femtosecondes) et intense (I>10^{15} W/cm2) génère un rayonnement X (multi-keV) de courte durée. Afin de comprendre et modéliser les mécanismes mis en jeu dans ce type d'interaction, nous avons repris un modèle hydrodynamique existant, le modèle "nanoplasma", où la cible est considérée comme une sphère diélectrique irradiée par le champ laser quasistatique, produisant un plasma de taille nanométrique. Nous avons cependant démontré que le modèle en l'état ne pouvait reproduire les résultats expérimentaux tels que les importants degrés d'ionisation observés et les spectres X associés. Nous avons alors inclus dans le modèle deux mécanismes supplémentaires qui améliorent significativement la dynamique d'ionisation:<br /><br /> - Nous avons introduit des processus d'ionisation d'ordres supérieurs en incluant des états excités intermédiaires X^{q+} + e- -> X^{q+*} +e- -> ... -> X^{(q+1)+} +2 e-. Nous avons pour cela utilisé une approche potentiel modèle pour décrire la structure électronique des ions (ou atomes) de l'agrégat et nous avons évalué les sections efficaces totales d'excitation et d'ionisation collisionnelles suivant le formalisme des ondes distordues. <br /> <br /> - Nous avons étudié l'influence des phénomènes d'écran induits par la densité d'électrons libres sur la dynamique de l'interaction. A l'aide d'un potentiel d'écran sophistiqué, nous avons montré que les effets d'écran augmentent les sections totales d'ionisation et réduisent les sections d'excitation par rapport aux données non écrantées. <br /><br />Le modèle nanoplasma amélioré permet à présent de reproduire les populations d'états de charge très élevés observées expérimentalement ainsi que la variation de l'émission He_alpha provenant d'agrégats d'argon en fonction des différents paramètres de l'interaction (durée d'impulsion, taille d'agrégat, éclairement crête, longueur d'onde). Nous avons également simulé les spectres d'émission X résolus en temps et en énergie. Ces spectres indiquent une durée d'émission ultra-brève (inférieure à 100 fs), et confirment ainsi que l'interaction laser-agrégat est une source de rayonnement utilisable dans le cadre d'applications à la science X ultra-rapide.
|
5 |
ULTRAFAST NANOSCALE PATTERNING SYSTEM: SURFING SCANNING PROBE LITHOGRAPHYBojing Yao (12456495) 25 April 2022 (has links)
<p> </p>
<p>The development of the semiconductor industry is encountering a giant leap recently as Moorse’s is extended to the next levels. Advanced nanomanufacturing technology is the major challenge in the way. Higher resolution down to a few nanometers as well as higher throughput is always the key. As the optical lithography determines the feature size, the photomask is still in need of a low-cost and high resolution maskless patterning tool. In another aspect, the growing information allows the generation and storage of data at ever faster rates, which has led to the era of big data reaching a heroic amount of 7 zettabytes of total data in 2020. Future growth requires the total shipment of data storage capacity to double roughly every two years or less. For the future generation of magnetic data storage, the bit patterned medium (BPM) in combination with the current heat assisted magnetic recording (HAMR) is expected to increase the areal storage capacity by another order of magnitude by physically isolating magnetic bits at the nanoscale. Electron beam lithography (EBL) as a universal maskless lithography technique shows great resolution but has a high tool cost and low process throughput. Scanning probe lithography (SPL) is another family of nanoscale patterning techniques with low tool cost but the practical throughput is still limited. For example, dip pen nanolithography utilizes an AFM probe as a writing pen in direct patterning, but the ink delivery is limited by the rate of ink’s capillary transport. Other SPLs such as thermal probes with capabilities of 3D fabrication and surface oxidation via chemical reactions are all facing similar limitations in throughput. One way of breaking this limitation is to use parallel writing with millions of probes which also faces uniformity problems. </p>
<p>In this Ph.D. dissertation, we report our Surfing Scanning Probe lithography (SSPL) method which can boost the scanning speed of SPL by several orders of magnitudes at a low cost by using a hydro-aero-dynamic scanning scheme. We use a homemade patterning head to continuously scan over a partially-wet spinning substrate at a linear speed of meters per second. The head carries several metallic tips which emit electrons and induce electrochemical reactions inside a gap of 10 nm scale. We use a liquid phase precursor and deliver it using the near-field electrospinning method and microfluid structures during the fast patterning. The best linewidth demonstrated is about 15 nm in full-width half maximum (FWHM) which can be further improved using smaller scanning gaps and sharp probe tips. Besides direct writing with a liquid precursor, SSPL can work with gas precursors as well enabled by nano plasma. The rate of material deposition is much high than conventional SPL. The SSPL system is a low-cost nanopatterning technology to produce patterns at high throughput and high resolution.</p>
|
6 |
Étude théorique d'agrégats soumis à des champs laser intensesMegi, Fabien 13 June 2005 (has links) (PDF)
Cette thèse présente deux modèles étudiant l'interaction de lasers intenses (éclairements de 10^11 à 10^17 W/cm^2) avec des agrégats de grande taille (100 atomes à plusieurs milliers).<br /> <br />Premièrement nous proposons d'ajouter un terme d'amortissement avec la surface au modèle nanoplasma original de T.Ditmire et al. (1996). Nous comparons diverses observables expérimentales (xénon) et étudions l'évolution des états de charge avec la taille ou l'éclairement.<br /> <br />Deuxièmement nous proposons un modèle microscopique de dynamique moléculaire à trois dimensions robuste en l'absence d'excitation. L'émission électronique à 10^11 W/cm^2 (sodium) se compare à celle obtenue par d'autres modèles tels que le modèle VUU-LDA. Les électrons de coeur sont émis à partir de 5 10^15 W/cm^2. Les événements rares sont accessibles et nous montrons que l'explosion ionique de type coulombien est autosimilaire (10^16 W/cm^2). Enfin, l'émission électronique (gaz rare) est comparée avec le modèle nanoplasma.
|
Page generated in 0.0491 seconds