• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 20
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nanoplasmonics: properties and applications in photocatalysis, antimicrobials and surface-enhanced Raman spectroscopy

An, Xingda 30 September 2022 (has links)
Localized surface plasmon resonance (LSPR) describes the collective oscillation of conductive electrons in noble metal nanostructures, such as gold, silver and copper; or in selected doped semiconductor nanocrystals. Nanoplasmonics is emerging as a useful and versatile platform that combines the intense and highly tunable optical responses derived from LSPR with the intriguing materials properties at the nanoscale, including high specific surface areas, surface and chemical reactivity, binding affinity, and rigidity. LSPRs in plasmonic nanoparticles (NPs) can provide large optical cross-sections, and can lead to a wide variety of subsequent photophysical responses, such as localization of electric (E-)fields, production of plasmonic hot charge carriers, photothermal heating, etc. Plasmonic NPs can also be combined with other molecular or nanoscale systems into plasmonic heterostructures to further harvest the resonant E-field enhancement or to prolong the lifetime of plasmonic charge carriers. In this dissertation, we study the photophysical properties of plasmonic Ag and Au NPs, particularly E-field localization and hot charge carrier production performances; and illustrate how they can be optimized towards plasmonic photocatalysis, development of nano-antimicrobials, and surface-enhanced Raman spectroscopy (SERS) sensing. We demonstrate that with a lipid-coated noble metal nanoparticle (L-NP) model, the E-field localization properties could be optimized through positioning molecular photosensitizers or photocatalysts within a plasmonic “sweet spot”. This factor renders the plasmonic metal NPs efficient nanoantenna for resonant enhancement of the intramolecular transitions as well as the photocatalytic properties of the molecular photocatalysts. The enhanced photoreactivity have been applied to facilitate fuel cell half reactions for the enhancement of light energy conversion efficiencies; as well as to facilitate the release of broad-band bactericidal compounds that enables plasmonic nano-antimicrobials. Localized E-fields in L-NPs also enhance the inelastic scattering from molecules through SERS. This is utilized to obtain molecular-level information on the configuration of sterol-based, alkyne-containing Raman tags in hybrid lipid membranes, which enables spectroscopic sensing and targeted imaging of biomarker-overexpressing cancer cells at the single-cell level. In contrast to the localized E-field, plasmonic charge carrier generation mechanism relies on non-radiative decay pathways of the excited plasmons that lead to production of ballistic charge carriers. The plasmonic hot charge carriers directly participate in chemical redox processes with degrees of controllability over the nature of the charge carrier produced and direction of their transfers. The implementation and optimization of these mechanisms are explored, and the significances of some relevant applications are discussed.
12

Optical and Terahertz Energy Concentration on the Nanoscale in Plasmonics

Rusina, Anastasia 01 December 2009 (has links)
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled. We establish the principal limits for the nanoconcentration of the terahertz (THz) radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of vacuum wavelength R λ 300 μm 0 0 ≈ ≈ to the unprecedented final size of R = 100 − 250 nm can be achieved, while the THz radiation intensity is increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses, will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This should find a wide spectrum of applications in science, engineering, biomedical research and environmental monitoring. We also develop a theory of the spoof plasmons propagating at the interface between a dielectric and a real conductor. The deviation from a perfect conductor is introduced through a finite skin depth. The possibilities of guiding and focusing of spoof plasmons are considered. Geometrical parameters of the structure are found which provide a good guiding of such modes. Moreover, the limit on the concentration by means of planar spoof plasmons in case of non-ideal metal is established. These properties of spoof plasmons are of great interest for THz technology.
13

Optical and Terahertz Energy Concentration on the Nanoscale in Plasmonics

Rusina, Anastasia 20 October 2009 (has links)
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled. We establish the principal limits for the nanoconcentration of the terahertz (THz) radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of vacuum wavelength ~300 μm to the unprecedented final size of 100-250 nm can be achieved, while the THz radiation intensity is increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses, will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This should find a wide spectrum of applications in science, engineering, biomedical research and environmental monitoring. We also develop a theory of the spoof plasmons propagating at the interface between a dielectric and a real conductor. The deviation from a perfect conductor is introduced through a finite skin depth. The possibilities of guiding and focusing of spoof plasmons are considered. Geometrical parameters of the structure are found which provide a good guiding of such modes. Moreover, the limit on the concentration by means of planar spoof plasmons in case of non-ideal metal is established. These properties of spoof plasmons are of great interest for THz technology.
14

Spectroscopie optique et microscopie électronique environnementale de nanoparticules Ag-In et Ag-Fe en présence de gaz réactifs / Optical spectroscopy and electronic microscopy of Ag-In and Ag-Fe nanoparticles under controlled environment, in the presence of reactive gases

Ramade, Julien 16 November 2016 (has links)
Les nanoparticules (NPs) bimétalliques présentent des propriétés catalytiques très intéressantes qui justifient leur utilisation dans des procédés industriels de catalyse hétérogène. Leur structure (chimique, géométrique, électronique) est néanmoins susceptible d’évoluer dans des conditions environnementales réelles et modifier leurs propriétés. L’objectif de cette thèse pluridisciplinaire est de suivre la réactivité de ces NPs en atmosphère réactive contrôlée. Pour cela, on a développé un dispositif de spectroscopie in situ à modulation spatiale afin de suivre l’évolution de la structure sur une grande population de NPs via l’étude de leur résonance du plasmon de surface (RPS) localisée. Ces observations ont été couplées avec une approche locale (NPs individuelles) par microscopie électronique à transmission environnemental (MET-E). La MET-E a permis de révéler des effets de composition et d’environnement sur la structure chimique de NPs Ag-In. Des alliages stables pauvres en indium se forment, puis une coquille d’oxyde d’indium dont l’épaisseur augmente avec la concentration atomique d’indium. D’autre part, des domaines de structures stables (coeur@coquille, Janus, système réduit) ont été mis en évidence selon les conditions locales de température et de pression d’hydrogène. Enfin, l’oxydo-réduction de NPs Ag-Fe a été suivie in situ via l’étude de leur RPS. La MET, la plasmonique environnementale et les nombreuses simulations (réponse optique, simulations Monte-Carlo) suggèrent une ségrégation du fer et de l’argent avec une surface enrichie en argent. L’oxydation semble induire la diffusion du fer en surface, directement suivie de la formation de magnétite (Fe3O4) / Bimetallic nanoparticles (NPs) are known to present interesting catalytic properties justifying their use in several industrial processes in the domain of heterogeneous catalysis. However, their (chemical, geometrical, electronical) structure may evolve under realistic reactive atmosphere, involving a modification of their properties. In this multidisciplinary work, the aim is focused on the surface reactivity monitoring of these NPs under controlled gaseous environment. For this purpose, we developed an in situ spectrophotometer based on spatial modulation to monitor the structure evolution of a large assembly of NPs through the study of their localized surface plasmon resonance (LSPR). This global approach has been coupled with a more local approach by environmental transmission electronic microscopy (E-TEM). E-TEM observations have shown both composition and environmental effects on the chemical structure of Ag-In NPs. This structure evolves from a stable low-enriched indium alloy to a core@shell configuration with a shell composed of indium oxide as the indium atomic concentration increases. Furthermore, stable structure (core@shell, Janus, reduced system) domains were evidenced under reducing atmosphere, depending on the temperature and hydrogen pressure. Lastly, Ag-Fe NP oxido-reduction was monitored on the new setup through LSPR modifications. MET observations, environmental plasmonics and simulations (optical response, Monte-Carlo simulations) suggest that these metals are initially segregated, with an enriched-silver surface. The exposure to an oxidative atmosphere seems to induce the diffusion of iron onto the surface, followed by the formation of magnetite (Fe3O4)
15

Giant Plasmonic Energy and Momentum Transfer on the Nanoscale

Durach, Maxim 16 October 2009 (has links)
We have developed a general theory of the plasmonic enhancement of many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. It is shown that this interaction has a resonant nature. We have also demonstrated that renormalized interaction is a long-ranged interaction whose intensity is considerably increased compared to bare Coulomb interaction over the entire region near the plasmonic nanostructure. We illustrate this theory by re-deriving the mirror charge potential near a metal sphere as well as the quasistatic potential behind the so-called perfect lens at the surface plasmon (SP) frequency. The dressed interaction for an important example of a metal–dielectric nanoshell is also explicitly calculated and analyzed. The renormalization and plasmonic enhancement of the Coulomb interaction is a universal effect, which affects a wide range of many-body phenomena in the vicinity of metal nanostructures: chemical reactions, scattering between charge carriers, exciton formation, Auger recombination, carrier multiplication, etc. We have described the nanoplasmonic-enhanced Förster resonant energy transfer (FRET) between quantum dots near a metal nanoshell. It is shown that this process is very efficient near high-aspect-ratio nanoshells. We have also obtained a general expression for the force exerted by an electromagnetic field on an extended polarizable object. This expression is applicable to a wide range of situations important for nanotechnology. Most importantly, this result is of fundamental importance for processes involving interaction of nanoplasmonic fields with metal electrons. Using the obtained expression for the force, we have described a giant surface-plasmoninduced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. Under realistic conditions in nanowires, this giant SPIDER generates rectified THz potential differences up to 10 V and extremely strong electric fields up to 10^5-10^6 V/cm. It can serve as a powerful nanoscale source of THz radiation. The giant SPIDER opens up a new field of ultraintense THz nanooptics with wide potential applications in nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine. Additionally, the SPIDER is an ultrafast effect whose bandwidth for nanometric wires is 20 THz, which allows for detection of femtosecond pulses on the nanoscale.
16

Engineering Plasmonic Interactions in Three Dimensional Nanostructured Systems

Singh, Haobijam Johnson January 2016 (has links)
Strong light matter interactions in metallic nanoparticles (NPs), especially those made of noble metals such as Gold and Silver is at the heart of much ongoing research in nanoplasmonics. Individual NPs can support collective excitations (Plasmon’s) of the electron plasma at certain wavelengths, known as the localized surface Plasmon resonance (LSPR) which provides a powerful platform for various sensing, imaging and therapeutic applications. For a collection of NPs their optical properties can be signify cannily different from isolated particles, an effect which originates in the electromagnetic interactions between the localised Plasmon modes. An interesting aspect of such interactions is their strong dependence on the geometry of NP collection and accordingly new optical properties can arise. While this problem has been well considered in one and two dimensions with periodic as well as with random arrays of NPs, three dimensional systems are yet to be fully explored. In particular, there are challenges in the successful de-sign and fabrication of three dimensional (3D) plasmonic metamaterials at optical frequencies. In the work presented in this thesis we present a detail investigation of the theoretical and experimental aspects of plasmonic interactions in two geometrically different three dimensional plasmonic nanostructured systems - a chiral system consisting of achiral plasmonic nanoparticles arranged in a helical geometry and an achiral system consisting of achiral plasmonic nanoparticle arrays stacked vertically into three dimensional geometry. The helical arrangement of achiral plasmonic nanoparticles were realised using a wafer scale technique known as Glancing Angle Deposition (GLAD). The measured chiro-optical response which arises solely from the interactions of the individual achiral plasmonic NPs was found to be one of the largest reported value in the visible. Semi analytical calculation based on couple dipole approximation was able to model the experimental chiro-optical response including all the variabilities present in the experimental system. Various strategies based on antiparticle spacing, oriented elliptical nanoparticles, dielectric constant value of the dielectric template were explored such as to engineer a strong and tunable chiro-optical response. A key point of the experimental system despite the presence of variabilities, was that the measured chiro-optical response showed less than 10 % variability along the sample surface. Additionally we could exploit the strong near held interactions of the plasmonic nanoparticles to achieve a strongly nonlinear circular differential response of two photon photoluminescent from the helically arranged nanoparticles. In addition to these plasmonic chiral systems, our study also includes investigation of light matter interactions in purely dielectric chiral systems of solid and core shell helical geometry. The chiro-optical response was found to be similar for both the systems and depend strongly on their helical geometry. A core-shell helical geometry provides an easy route for tuning the chiro-optical response over the entire visible and near IR range by simply changing the shell thickness as well as shell material. The measured response of the samples was found to be very large and very uniform over the sample surface. Since the material system is based entirely on dielectrics, losses are minimal and hence could possibly serve as an alternative to conventional plasmonic chiro-optical materials. Finally we demonstrated the used of an achiral three dimensional plasmonic nanostructure as a SERS (surface enhance Raman spectroscopy) substrate. The structure consisted of porous 3D metallic NP arrays that are held in place by dielectric rods. For practically important applications, the enhancement factor, as well as the spatial density of the metallic NPs within the laser illumination volume, arranged in a porous 3D array needs to be large, such that any molecule in the vicinity of the metal NP gives rise to an enhanced Raman signal. Having a large number of metallic NPs within the laser illumination volume, increases the probability of a target molecule to come in the vicinity of the metal NPs. This has been achieved in the structures reported here, where high enhancement factor (EF) in conjunction with large surface area available in a three dimensional structure, makes the 3D NP arrays attractive candidates as SERS substrates.
17

Simulation de la propagation d'ondes électromagnétiques en nano-optique par une méthode Galerkine discontinue d'ordre élevé / Simulation of electromagnetic waves propagation in nano-optics with a high-order discontinuous Galerkin time-domain method

Viquerat, Jonathan 10 December 2015 (has links)
L’objectif de cette thèse est de développer une méthode Galerkine discontinue d’ordre élevé capable de prendre en considération des simulations réalistes liées à la nanophotonique. Au cours des dernières décennies, l’évolution des techniques de lithographie a permis la création de structure géométriques de tailles nanométriques, révélant ainsi une large gamme de phénomènes nouveaux nés de l’interaction lumière-matière à ces échelles. Ces effets apparaissent généralement pour des objets de taille égale ou (très) inférieure à la longueur d’onde du champ incident. Ce travail repose sur le développement et l’implémentation de modèles de dispersion appropriés (principalement pour les métaux), ainsi que sur un large éventail de méthodes computationnelles classiques. Deux développements méthodologiques majeurs sont présentés et étudiés en détails: (i) les éléments courbes, et (ii) l’ordre d’approximation local. Ces études sont accompagnées de plusieurs cas-tests réalistes tirés de la nanophotonique. / The goal of this thesis is to develop a discontinuous Galerkin time-domain method to be able to handle realistic nanophotonics computations. During the last decades, the evolution of lithography techniques allowed the creation of geometrical structures at the nanometer scale, thus unveiling a variety of new phenomena arising from light-matter interactions at such levels. These effects usually occur when the device is of comparable size or (much) smaller than the wavelength of the incident field. This work relies on the development and implementation of appropriate models for dispersive materials (mostly metals), as well as on a large panel of classical computational techniques. Two major methodological developments are presented and studied in details: (i) curvilinear elements, and (ii) local order of approximation. This work is complemented with several physical studies of real-life nanophotonics applications.
18

Probing Light-Matter Interactions in Plasmonic Nanotips

Schröder, Benjamin 14 July 2020 (has links)
No description available.
19

Effective Nonlinear Susceptibilities of Metal-Insulator and Metal-Insulator-Metal Nanolayered Structures

Hussain, Mallik Mohd Raihan 22 June 2020 (has links)
No description available.
20

MODELING, DESIGN, AND ADJOINT SENSITIVITY ANALYSIS OF NANO-PLASMONIC STRUCTURES

Ahmed, Osman S. 04 1900 (has links)
<p>The thesis intends to explain in full detail the developed techniques and approaches for the modeling, design, and sensitivity analysis of nano-plasmoic structures. However, some examples are included for audiences of general microwave background. Although the thesis is mainly focused on simulation-based techniques, analytical and convex optimization approaches are also demonstrated. The thesis is organized into two parts. Part 1 includes Chapters 2-4, which cover the simulation-based modeling and sensitivity analysis approaches and their applications. Part 2 includes Chapters 5 and 6, which cover the analytical optimization approaches.</p> / <p>We propose novel techniques for modeling, adjoint sensitivity analysis, and optimization of photonic and nano-plasmonic devices. The scope of our work is generalized to cover microwave, terahertz and optical regimes. It contains original approaches developed for different categories of materials including dispersive and plasmonic materials. Artificial materials (metamaterials) are also investigated and modeled. The modeling technique exploits the time-domain transmission line modeling (TD-TLM) technique. Generalized adjoint variable method (AVM) techniques are developed for sensitivity analysis of the modeled devices. Although TLM-based, they can be generalized to other time-domain modeling techniques like finite difference time-domain method (FDTD) and time-domain finite element method (FEM).</p> <p>We propose to extend the application of TLM-based AVM to photonic devices. We develop memory efficient approaches that overcome the limitation of excessive memory requirement in TLM-based AVM. A memory reduction of 90% can be achieved without loss of accuracy and at a more efficient calculation procedure. The developed technique is applied to slot waveguide Bragg gratings and a challenging dielectric resonator antenna problem.</p> <p>We also introduce a novel sensitivity analysis approach for materials with dispersive constitutive parameters. To our knowledge, this is the first wide-band AVM approach that takes into consideration the dependence of material properties on the frequency. The approach can be utilized for design optimization of innovative nano-plasmonic structures. The design of engineered metamaterial is systematic and efficient. Beside working with engineered new designs, dispersive AVM can be utilized in bio-imaging applications. The sensitivity of the objective function with respect to dispersive material properties enables the exploitation of parameter and gradient based optimization for imaging in the terahertz and optical regimes. Material resonance interaction can be easily investigated by the provided sensitivity information.</p> <p>In addition to the developed techniques for simulation-based optimization, several analytical optimization algorithms are proposed to foster the parameter extraction and design optimization in terahertz and optical regimes. In terahertz time-domain spectroscopy, we have developed an efficient parameter based approach that utilizes the pre-known information about the material. The algorithm allows for the estimation of the optical properties of sample materials of unknown thicknesses. The approach has been developed based on physical analytical dispersive models. It has been applied with the Debye, Lorentz, Cole-Cole, and Drude model.</p> <p>Furthermore, we propose various algorithms for design optimization of coupled resonators. The proposed algorithms are utilized to transform a highly non-linear optimization problem into a linear one. They exploit an approximate transfer function of the coupled resonators that avoids negligible multiple reflections among them. The algorithms are successful for the optimization of very large-scale coupled microcavities (150 coupled ring resonators).</p> / Doctor of Philosophy (PhD)

Page generated in 0.4667 seconds