Spelling suggestions: "subject:"nanoscale"" "subject:"nanoscaled""
221 |
Next-Generation Ultrafast Transmission Electron Microscopy – Development and ApplicationsFeist, Armin 05 June 2018 (has links)
No description available.
|
222 |
THERMAL IMAGING AS A TOOL FOR ASSESSING THE RELIABILITY, HEAT TRANSPORT, AND MATERIAL PROPERTIES OF MICRO TO NANO-SCALE DEVICESESami Alajlouni (12446577) 22 April 2022 (has links)
<p> We utilize thermoreflectance (TR) thermal imaging to experimentally study heat transport and reliability of micro to nano-scale devices. TR imaging provides 2D thermal maps with sub-micron spatial resolution. Fast thermal transients down to 50 ns resolution can be captured. In addition, finite element modeling is carried out to better understand the underlying physics of the experiment. We describe four main applications; 1) Development of a full-field thermoreflectance imaging setup with a variable optical (laser) heating source as a general characterization tool. We demonstrate the setup’s sensitivity to extract anisotropic<br>
thermal conductivity of thin flms and evaluate its sensitivity for detecting buried (below the surface) defects in 3D integrated circuits. This method provides a low-cost noncontact alternative to destructive defect localization methods. It also doesn’t require any special sample<br>
preparations. 2) Physics of localized electromigration-failures in metallic interconnects is investigated. One can distinguish two separate mechanisms responsible for electromigration depending on the current density and temperature gradient. 3) Thermal transport in silicon near sub-micron electrical heaters is studied. Quasiballistic and hydrodynamic (fluid-like) behavior is observed at room temperature for different device sizes and geometries. 4) Temperature-dependent thermoreflectance coefcient of phase-change materials is characterized. We focus on tungsten (W) doped VO<sub>2</sub> (W<sub>0.02</sub>V<sub>0.98</sub>O<sub>2</sub>) compound, which experiences an insulator-to-metal transition (IMT) at ≈33 °C. Strong TR-signal non-linearity is observed at the IMT temperature. This non-linearity is used to localize the phase-change boundary with resolutions down to ≈0.2 µm. TR full-feld imaging enables a simple and fast characterization complementing near-feld microscopy techniques. <br>
</p>
|
223 |
Thermo-Mechanische Charakterisierung von Grenzflächen zwischen Einwandigen Kohlenstoffnanoröhren und Metallen mittels Auszugsversuchen / Thermo-Mechanical Characterization of Interfaces between Single-Walled Carbon Nanotubes and Metals by Pull-Out TestingHartmann, Steffen 22 April 2016 (has links) (PDF)
Vor dem Hintergrund zukünftiger Sensoren, basierend auf dem piezoresistiven Effekt von einwandigen Kohlenstoffnanoröhren (SWCNT), werden in dieser Arbeit umfangreiche Ergebnisse zum mechanischen Verhalten von Grenzflächen zwischen SWCNTs und edlen Metallen am Beispiel von Pd und Au präsentiert. Im Fokus steht dabei die Synergie von rechnerischen und experimentellen Methoden Molekulardynamik (MD), nanoskalige Tests und Analytik , um (1) mit guter Genauigkeit maximale Kräfte von gezogenen SWCNTs, welche in Metall eingebettet sind, vorauszuberechnen und (2) einen wertvollen Beitrag zum Verständnis der zu Grunde liegenden Fehlermechanismen zu liefern.
Es wurde ein MDModell eines in eine einkristalline Matrix eingebetteten SWCNTs mit Randbedingen eines Auszugsversuchs entwickelt. Mit diesem Modell können Kraft-Weg-Beziehungen und Energieverläufe für einen quasistatischen verschiebungsgesteuerten Auszugsversuch errechnet werden. Das Modell liefert kritische Kräfte bei Versagen des Systems. Des Weiteren können mit diesem Modell der Einfluss des SWCNT-Typus, der Einbettungslänge, der Temperatur, von intrinsischen Defekten und Oberflächengruppen (SFGs) auf das Grenzflächenverhalten untersucht werden.
Zum Vergleich wurden kritische Kräfte experimentell durch in situ Auszugsversuche in einem Rasterelektronenmikroskop bestimmt. Es wurde eine sehr gute Übereinstimmung von rechnerischen und experimentellen Daten festgestellt. Der vorherrschende Fehler im Experiment ist der SWCNT-Bruch, jedoch wurden auch einige SWCNT-Auszüge beobachtet.
Mit Hilfe der MD-Simulationen wurde gefunden, dass die SFGs als kleine Anker in der umgebenden metallischen Matrix wirken und somit die maximalen Kräfte signifikant erhöhen. Diese Grenzflächenverstärkung kann Zugspannungen verursachen, die genügend hoch sind, so dass SWCNT-Bruch initiert wird. Im Gegensatz dazu zeigten Simulationen von Auszugstests mit idealen SWCNTs nur kleine Auszugskräfte, welche meistens unabhängig von der Einbettungslänge des SWCNTs sind. Dieses Verhalten wird mit einer inkommensurablen Konfiguration der Kristallstrukturen an der Grenzfläche von SWCNTs und der einbettenden Edelmetalle interpretiert.
Zur Qualifizierung der Existenz von carboxylatischen Oberflächengruppen auf dem genutzten SWCNT-Material wurden analytische Untersuchungen mittels Fluoreszenzmarkierung von Oberflächengruppen durchgeführt. In Übereinstimmung mit Literaturstellen zum gesicherten Nachweis von SFGs, bedingt durch technologische Behandlungen, weisen diese Experimente stark auf das Vorhandensein von carboxylatischen Oberflächengruppen auf dem genutzten SWCNT-Material hin. Demnach kann der dominante SWCNT-Bruch Fehler durch die Grenzflächenverstärkung auf Grund von SFGs erklärt werden. / In the light of future sensors, that are based upon the piezoresistive effect of singlewalled carbon nanotubes (SWCNTs), this work presents comprehensive results of studies on the mechanical behavior of interfaces between SWCNTs and noble metals using the examples of Pd and Au. With this contribution, the focus is on a synergy between computational and experimental approaches involving molecular dynamics (MD) simulations, nanoscale testing, and analytics (1) to predict to a good degree of accuracy maximum forces of pulled SWCNTs embedded in a noble metal matrix and (2) to provide valuable input to understand the underlying mechanisms of failure.
A MD model of a SWCNT embedded in a single crystalline matrix with pull-out test boundary conditions was developed. With this model, force-displacement relations and energy evolutions for a quasi-static displacement controlled test can be computed. The model provides critical forces for failure of the system. Furthermore, the influence of SWCNT type, embedding length, temperature, intrinsic defects and surface functional groups (SFGs) on the interface behavior can be studied using this model.
For comparison, critical forces were experimentally determined by conducting pull-out tests in situ, inside a scanning electron microscope. A very good agreement of computational and experimental values was discovered. The dominant failure mode in the experiment was a SWCNT rupture, although several pull-out failures were also observed.
From MD simulations, it was found that SFGs act as small anchors in the metal matrix and significantly enhance the maximum forces. This interface reinforcement can lead to tensile stresses sufficiently high to initiate SWCNT rupture. In contrast, pull-out test simulations of ideal SWCNTs show only small pull-out forces, which are mostly independent on SWCNT embedding length. This behavior is interpreted with an incommensurate configuration of crystal structures at the interface between SWCNTs and embedding noble metals.
To qualify the existence of carboxylic SFGs on the used SWCNT material, an analytical investigation by means of fluorescence labeling of surface species was performed. In agreement with literature reports on the secured verification of SFGs due to necessary technological treatments, these experiments strongly indicate the presence of carboxylic SFGs on the used SWCNT material. Thus, the dominant SWCNT rupture failure is explained with an interface reinforcement by SFGs.
|
224 |
Ultrafast electronic processes at nanoscale organic-inorganic semiconductor interfacesParkinson, Patrick January 2009 (has links)
This thesis is concerned with the influence of nanoscale boundaries and interfaces upon the electronic processes that occur within both organic and inorganic semiconductors. Photoluminescent polymers, highly conducting polymers and nanoscale inorganic semiconductors have been investigated using state-of-the-art ultrafast optical techniques, to provide information on the sub-picosecond photoexcitation dynamics in these systems. The influence of dimensionality on the excitation transfer dynamics in a conjugated polymer blend is studied. Using time-resolved photoluminescence spectroscopy, the transfer transients both for a three-dimensional blend film, and for quasi-two-dimensional monolayers formed through intercalation of the polymer blend between the crystal planes of a SnS2 matrix have been measured. A comparison of the experimental data with a simple, dimensionality-dependent model is presented, based on point dipole electronic coupling between electronic transition moments. Within this approximation, the energy transfer dynamics are found to adopt a three-dimensional character in the solid film, and a two-dimensional nature in the monolayers present in the SnS2 -polymer nanocomposite. The time-resolved conductivity of isolated GaAs nanowires has been investigated by optical-pump terahertz-probe time-domain spectroscopy. The electronic response exhibits a pronounced surface plasmon mode that forms within 300 fs, before decaying within 10 ps as a result of charge trapping at the nanowire surface. The mobility has been extracted using the Drude model for a plasmon and is found to be remarkably high, being roughly one third of that typical for bulk GaAs at room-temperature and indicating the high quality and low bulk defect density in the nanowires studied. Finally, the time-resolved conductivity dynamics of photoexcited polymer-fullerene bulk heterojunction blends for two model polymers, P3HT and MDMO-PPV, blended with PCBM are presented. The observed terahertz-frequency conductivity is characteristic of dispersive charge transport for photoexcitation both at the π−π* absorption peak (560 nm for P3HT), and significantly below it (800 nm). The photoconductivity at 800 nm is unexpectedly high, which is attributed to the presence of a charge transfer complex. In addition, the excitation-fluence dependence of the photoconductivity is studied over more than four orders of magnitude. The time-averaged photoconductivity of the P3HT:PCBM blend is over 20 times larger than that of P3HT, indicating that long-lived positive polarons are responsible for the high photovoltaic efficiency of polymer:fullerene blends. At early times (~ ps) the linear dependence of photoconductivity upon fluence indicates that interfacial charge transfer dominates as an exciton decay pathway, generating charges with mobility of at least ~0.1cm2 V−1 s−1. At later times, a sub-linear relationship shows that carrier-carrier recombination effects influence the conductivity on a longer timescale (> 1 μs).
|
225 |
Advanced Computer Simulations of Nafion / Water Systems / Simulations avancées de systeme Nafion/EauMarchand, Gabriel 16 July 2012 (has links)
Les membranes fluorées sont utilisées en particulier dans les dénommées piles à combustible à membrane électrolyte polymère. Grâce à sa grande mobilité en protons, le célèbre ionomer Nafion® (Dupont) est un matériau de référence pour les applications liées aux piles à combustible. En présence d’eau ou d’autres solvants hydrophiles la membrane se sépare en une matrice polymérique hydrophobe et une sous-phase aqueuse contenant des clusters d’eau et ions, dont les tailles et la connectivité augmente quand la quantité d’eau augmente [1]. Quelle est la morphologie du Nafion et la structure du solvant, dans de tels systèmes?Il a été récemment montré [2] sur des simulations de large systèmes que plusieurs modèles morphologiques reproduisent les données expérimentales de diffusion, évoquant l’incapacité des mesures de diffusion seules à élucider la véritable structure du Nafion.Néanmoins, un modèle ’aléatoire’ décrit dans [2], c’est à dire l’unique modèle étudié sans présumer d’une structure initiale particulière, n’a pas pu reproduire les données expérimentales.Générer en simulations moléculaires des configurations du système qui soient vraiment décorrélées de la configuration initiale reste un vrai défi statistique. Les échelles de temps réalisables ne permettent simplement pas d’obtenir des mouvements significatifs du polymère (comme des transitions de conformations, repliements de chaînes, etc.). Nous proposons ainsi dans cette étude un nouveau modèle de Nafion à morphologie aléatoire. Un algorithme récemment développé est utilisée pour générer des chaînes de Nafion avec des chemins et des points de départ aléatoires. Une différence majeure avec le modèle aléatoire dans [2] est que nous ne construisons pas nos systèmes à une densité proche de la densité finale. Pour ne pas démarrer avec des chaînes trop enchevêtrées, les systèmes sont initialement préparés à une densité en dessous de la référence expérimentale. La densité après équilibration est de nouveau proche de l’expérience. Bien qu’il soit facilement envisageable d’améliorer les nouveaux algorithmes, nous démontrons ici qu’avec la présente version plusieurs séries de configurations compatibles avec les données expérimentales de diffusion disponibles peuvent être générées et équilibrées. Douze large systèmes de Nafion à morphologie aléatoire sont construits avec des positions initiales des atomes ainsi que des quantités d’eau et des longueurs de chaînes (Nafion/Hyflon) différentes. Ils sont équilibrés puis simulés sur plusieurs dizaines de nanosecondes. Après équilibration, les structures sont, comme indiqué ci-dessus,compatibles avec les données expérimentales de diffusion. En plus nous étudions un modèle ressemblant à celui de Schmidt-Rohr and Chen [3], c’est à-dire le plus récent modèle morphologique. Avec ce modèle, les données expérimentales sont également reproduites de manière satisfaisante, d’où la prolongation du débat sur la structure du Nafion. La cohésion entre les valeurs calculées et celles mesurées expérimentalement incite à des analyses plus en détails de ces configurations obtenues. Nous caractérisons et analysons les structures locales, intermédiaires et à grande échelle avec divers paramètres structuraux et distributions des tailles de domaines. Nous calculons donc, par exemple, des fonctions de distribution radiale (rdf), des facteurs de structure (S(q)) totaux et partiels tout comme des nombres et des tailles de clusters hydrophiles (selon la définition d’un cluster). La dynamique de diverses espèces dans le système est également examinée,par exemple au travers des déplacements carrés moyens (msd) et des coefficients de diffusion. Ces simulations sont probablement à la limite de ce qui est réalisable aujourd’hui avec des simulations ’full-atom’ du type MD. Nous espérons que ce travail fera avancer le débat sur la structure et la dynamique de ces matériaux importants. / Perfluorinated membranes are used in particular in polymer electrolyte fuel cells(PEFC). The well-known ionomer Nafion® (Dupont) is, due to its high proton mobility,a reference material for fuel cell applications. In water or other hydrophilic solvents themembrane segregates into a hydrophobic backbone matrix and a hydrophilic sub-phasecontaining clusters of both water and ions, where the cluster sizes and connectivity increasewith increasing water content [1].What is the Nafion morphology and the structure of the solvent in such systems? It hasbeen shown recently [2] on large simulated systems that several morphological modelsfit the experimental scattering data, suggesting the inability of scattering experimentsalone to elucidate the true structure of Nafion. However, a ’random’ model describedin [2], i.e. the only explored model that did not assume a particular initial structure,could not reproduce the experimental data.It remains a real computational challenge to generate in molecular simulations systemconfigurations which are really decorrelated from the initial one. The time scales thatcan be achieved simply do not allow to obtain significant motions of the polymer (e.g.conformational changes, folding, etc.). We thus propose in this work a new randommodel of Nafion. A newly developped algorithm is used to generate Nafion chains withrandom growth paths and random starting points. A significant difference with therandom model in [2] is that we do not build our systems at a density close to the finalone. In order not to start with too much entangled chains, the systems are initiallybuilt at a density below the experimental one. The density after equilibration is againclose to the experimental one.Even though further improvements of the new algorithms can easily be envisaged,we demonstrate here that with the present version several sets of configurations thatare compatible with the available scattering data can be generated and equilibrated.Twelve large random Nafion systems are built with different initial positions of theatoms as well as different water contents and side chain lengths (Nafion/Hyflon). Theyare equilibrated and then simulated for several ten nanoseconds. After equilibration,the structures are, as mentioned, compatible with the experimental scattering data. Inaddition we study a model similar to the one by Schmidt-Rohr and Chen [3], i.e. thenewest morphological model of Nafion. The experimental scattering data are also satisfactorilyreproduced with this model, hence, the prolonged debate over the structureof Nafion.This agreement gives confidence that a more detailed analysis of the so-obtained configurationsis scientifically warranted. We characterize and analyze the local, intermediateand large-scale structures by various structural parameters and domain size distributions.We therefore compute, for example, radial distribution functions (rdf), total andpartial structure factors (S(q)) as well as numbers and sizes of hydrophilic clusters (dependingon the definition of a cluster). The dynamics of various species in the systemis also investigated, e.g. via the computation of the mean square displacements (msd)and the self-diffusion coefficients. These simulations are probably at the limit of whatcan today be achieved with all-atom molecular simulations of the MD type. We hopethat this work will advance the ongoing debate on the structure and dynamics of theseimportant materials. / Perfluorierte Membranen werden insbesondere in Polymerelectrolyt-Brennstoffzellen(PEFC) eingesetzt. Das wohlbekannte Ionomer Nafion® (Dupont) ist wegen seinerhohen Protonenbeweglichkeit ein Referenzmaterial für solche Anwendungen in Brennstoffzellen.Die Membran separiert in Wasser oder anderen hydrophilen Lösungsmittelin eine hydrophobe Polymermatrix und eine hydrophile Subphase, die Cluster mitWasser und Ionen enthält. Dabei vergroeßern sich die Ausdehnung der Cluster und ihreKonnektivität mit zunehmendem Wassergehalt [1].Welche ist die Morphologie des Nafions und die Struktur des Lösungsmittels in diesenSystemen? Es ist jüngst anhand großer simulierter Systeme gezeigt worden [2], dassmehrere morphologische Modelle die experimentellen Streudaten wiedergeben können,was nahelegt, dass solche Streudaten alleine nicht geeignet sind, die wahre Strukturdes Nafion aufzudecken. Ein in [2] beschriebenes ’Zufallsmodell’, d.h. das einzigeder untersuchten Modelle, das keine besondere Anfangsstruktur annahm, konnte dieexperimentellen Daten allerdings nicht wiedergeben.In molekularen Computersimulationen Konfigurationen zu erzeugen, die wirklich nichtmehr mit der angenommenen Anfangskonfiguration korreliert sind, bleibt eine echteHerausforderung. Die erreichbaren Zeitskalen sind zu kurz, um eine signifikante Bewegungdes Polymers (z.B Konformationsänderungen, Faltungen, usw.) zuzulassen. Indieser Arbeit wird daher ein neues Zufallsmodell für Nafion vorgestellt. Ein neuentwickelterAlgorithmus erzeugt Nafionketten mit zufälligem Wachstumspfad ausgehendvon zufälligen Anfangspunkten. Ein signifikanter Unterschied zu dem Zufallsmodellvon [2] ist, dass hier nicht versucht wird, die Systeme bei einer Dichte vergleichbarder experimentellen Dichte aufzubauen. Anstattdessen werden die Systeme, um alzustarkes Verknäuelung zu vermeiden, anfangs bei einer deutlich kleineren Dichte erzeugt.Nach äquilibrierung ist die Systemdichte wieder in etwa gleich der experimentellen.Wiewohl weitere Verbesserungen des neu Algorithmuses leicht ins Auge gefaßt werdenkönnen, so kann hier doch gezeigt werden, dass mit der gegenwärtigen VersionKonfigurationen erzeugt und äquilibriert werden können, die mit den verfügbarenStreudaten kompatibel sind. Zwölf große Nafion Zufallssysteme, mit verschiedenenAnfangspositionen der Atome, verschiedenem Wassergehalt und Längen der Seitenketten(Nafion/Hyflon) werden aufgebaut. Diese werden äquilibriert und mehrerezehn Nanosekunden lang simuliert. Nach der äquilibrierung sind die Strukturen, wieerwähnt, kompatibel mit den experimentellen Streudaten. Weiterhin wird ein Modellähnlich dem von Schmidt-Rohr und Chen [3], d.h. dem neuesten morphologischen Modellfür Nafion, studiert. Auch hier werden die experimentellen Streudaten zufriedenstellendwiedergegeben, daher die weiterhin bestehende Debatte über die Struktur desNafion.Die gefundenen übereinstimmungen lassen darauf vertrauen, dass eine detaillierte Analyseder simulierten Konfigurationen wissenschaftlich sinnvoll ist. So wird die Strukturder Systeme auf verschiedenen Längenskalen charakterisiert, zum Beispiel durch radialePaarverteilungsfunktionen (rdf), totale und partielle Strukturfaktoren (S(q)) sowieAnzahl- und Größenverteilungen hydrophiler Cluster (abhängig von der Definition einesClusters). Die Dynamik einzelner Spezies im System wird ebenfalls untersucht, zumBeispiel durch die Berechnung der mittleren quadratischen Verschiebungen (msd) undder Selbstdiffusionskoeffizienten. Diese Simulationen sind wahrscheinlich an der Grenzedessen, was heute mit ’all-atom’ molekularen MD-Simulationen möglich ist. Ich vertrauedarauf, dass diese Arbeit dennoch einen Fortschritt in der aktuellen Debatte überdie Struktur und Dynamik dieser wichtigen Materiale darstellt.
|
226 |
Ultrafast low-energy electron diffraction at surfaces / Probing transitions and phase-ordering of charge-density wavesVogelgesang, Simon 05 December 2018 (has links)
No description available.
|
227 |
Progrès en thermométrie quantitative aux échelles micro et nanométriques par microscopie thermique à balayage (SThM) / Advances in quantitative micro/nanoscale thermometry using scanning thermal microscopyNguyen, Tran Phong 18 January 2018 (has links)
Les caractérisations thermiques à l'échelle nanométrique restent un défi depuis l'émergence de dispositifs nano structurés. Ayant des avantages en termes de résolution latérale par rapport aux techniques de champ lointain, la microscopie thermique à balayage est devenue un outil essentiel pour la caractérisation locale des propriétés thermiques des matériaux. Dans le cadre du projet européen « Quantiheat », plusieurs laboratoires ont travaillé ensemble pour essayer de comprendre et d'obtenir des mesures quantitatives couvrant les échelles spatiales allant du micro au nanomètre.Ce document contient six chapitres avec quatre parties principales, dans lesquelles des sondes SThM à thermocouples microfilaires ont été utilisées pour améliorer nos connaissances en thermométrie quantitative à cette échelle. Ce type de sonde a été développé et amélioré pendant plusieurs années. Nous démontrons qu'il est adapté pour mesurer la température d’échantillons actifs ainsi que la conductivité thermique d’échantillons passifs.Grâce à la thèse, la dernière version du microscope (matériel, logiciel) et la conception de la sonde sont présentés. Fixé sur un diapason en quartz, la force de contact pointe-échantillon peut être quantifiée. Placé dans une chambre à vide, ce système permet un contrôle complet des paramètres prédominants sur la mesure, tels que la pression de l'air et la force de contact. Les mesures en modes actif et passif ont pu être menées grâce aux échantillons fournis par les partenaires du projet « Quantiheat » afin de démontrer que des mesures quantitatives sont envisageables. En changeant les conditions ambiantes allant du vide primaire à la pression ambiante, les mécanismes de transfert de chaleur de l'échantillon-pointe ont été analysés en détail pour mettre en évidence le rôle prépondérant de l'air et des conductions de contact solide-solide. / Thermal characterizations at nano-scale remain a challenge since the emergence of nano-structured devices. Having advantages in term of lateral resolution compared to far field techniques, the scanning thermal microscopy has become an essential tool for local materials heat transport characterization. In the frame of the European Quantiheat Project, several laboratories have worked together trying to figure out and to obtain quantitative thermal measurements covering spatial scales from the micrometre to the nanometre.This document contains six chapters with four main parts, in which micro-wire thermocouple based SThM probes have been used to enhance our knowledge in quantitative thermometry at this scale. This kind of probe has been developed and improved for several years. We demonstrate that it is adapted for measuring temperature of active samples as well as thermal conductivity of passive samples.Through the dissertation, the last version of the microscope (hardware, software) and probe design are presented. Attached on a quartz tuning fork, the tip-sample contact force can be quantified. Placed in a vacuum chamber, this system permits a full control of predominant parameters on the measurement such as air pressure and contact force. Thanks to samples provided by Quantiheat partners, measurements in active and passive modes have been performed to demonstrate that quantitative measurements are feasible. By changing ambient conditions from primary vacuum to ambient pressure, the tip-sample heat transfer mechanisms have been analysed in detail to reveal the preponderant role of air and solid-solid contact conductions.
|
228 |
Giant Plasmonic Energy and Momentum Transfer on the NanoscaleDurach, Maxim 16 October 2009 (has links)
We have developed a general theory of the plasmonic enhancement of many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. It is shown that this interaction has a resonant nature. We have also demonstrated that renormalized interaction is a long-ranged interaction whose intensity is considerably increased compared to bare Coulomb interaction over the entire region near the plasmonic nanostructure. We illustrate this theory by re-deriving the mirror charge potential near a metal sphere as well as the quasistatic potential behind the so-called perfect lens at the surface plasmon (SP) frequency. The dressed interaction for an important example of a metal–dielectric nanoshell is also explicitly calculated and analyzed. The renormalization and plasmonic enhancement of the Coulomb interaction is a universal effect, which affects a wide range of many-body phenomena in the vicinity of metal nanostructures: chemical reactions, scattering between charge carriers, exciton formation, Auger recombination, carrier multiplication, etc. We have described the nanoplasmonic-enhanced Förster resonant energy transfer (FRET) between quantum dots near a metal nanoshell. It is shown that this process is very efficient near high-aspect-ratio nanoshells. We have also obtained a general expression for the force exerted by an electromagnetic field on an extended polarizable object. This expression is applicable to a wide range of situations important for nanotechnology. Most importantly, this result is of fundamental importance for processes involving interaction of nanoplasmonic fields with metal electrons. Using the obtained expression for the force, we have described a giant surface-plasmoninduced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. Under realistic conditions in nanowires, this giant SPIDER generates rectified THz potential differences up to 10 V and extremely strong electric fields up to 10^5-10^6 V/cm. It can serve as a powerful nanoscale source of THz radiation. The giant SPIDER opens up a new field of ultraintense THz nanooptics with wide potential applications in nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine. Additionally, the SPIDER is an ultrafast effect whose bandwidth for nanometric wires is 20 THz, which allows for detection of femtosecond pulses on the nanoscale.
|
229 |
Charge Transport through Organized Organic Assemblies in Confined GeometriesSchuckman, Amanda Eileen 2011 May 1900 (has links)
Organic molecules such as porphyrins and alkanethiols are currently being
investigated for applications such as sensors, light-emitting diodes and single electron
transistors. Porphyrins are stable, highly conjugated compounds and the choice of metal
ion and substituents bound to the macrocycle as well as other effects such as chemical
surrounding and cluster size modulate the electronic and photonic properties of the
molecule. Porphyrins and their derivatives are relatively non-toxic and their very rich
photo- and electro-chemistry, and small HOMO-LUMO gaps make them outstanding
candidates for use in molecularly-enhanced electronic applications.
For these studies, self-assembled tri-pyridyl porphyrin thiol derivatives have
been fully characterized on Au(111) surfaces. A variety of surface characterization
techniques such as Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy
(STM), FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS) have been
implemented in order to obtain information regarding the attachment orientation based
on the angle and physical height of the molecule, conductivity which is determined
based on the apparent height and current-voltage (I-V) measurements of the molecule, conductance switching behavior due to conformational or other effects as well as the
stability of the molecular ensembles. Specifically, the transport properties of free base
and zinc coordinated tri-pyridyl porphyrin thiol molecular islands inserted into a
dodecanethiol matrix on Au(111) were investigated using STM and cross-wire inelastic
electron tunneling spectroscopy (IETS). The zinc porphyrin thiol islands observed by
STM exhibited reversible bias induced switching at high surface coverage due to the
formation of Coulomb islands of ca. 10 nm diameter driven by porphyrin aggregation.
Low temperature measurements (~ 4 K) from crossed-wire junctions verified the
appearance of a Coulomb staircase and blockade which was not observed for single
molecules of this compound or for the analogous free base. Scanning probe lithography
via nanografting has been implemented to directly assemble nanoscale patterns of zinc
porphyrin thiols and 16-mercapotohexadecanoic acid on Au surfaces. Matrix effects
during nanopatterning including solvent and background SAMs have been investigated
and ultimately ~ 10 nm islands of zinc porphyrins have been fabricated which is the
optimal size for the observed switching effect.
|
230 |
Experimental nanomechanics of 1D nanostructuresPant, Bhaskar 02 July 2010 (has links)
Nanotechnology offers great promise for the development of nanodevices. Hence it becomes important to study the mechanical behavior of nanostructures for their use in such systems. MEMS (Micro ElectroMechanical Systems) provide an effective and precise method for testing nanostructures. Consequently this study focuses on the development of a MEMS thermal nanotensile tester to investigate the mechanical behavior of one-dimensional nanostructures. Extensive characterization of these MEMS devices (structural, electrical and thermal behavior) was performed using experimental as well as finite element methods.
Tensile testing of nanostructures requires manipulation of individual nanostructures on the MEMS device. The study involves the development of an efficient methodology for the manipulation of nanowires and nanobeams for nanoscale testing.
Furthermore, two different sensing schemes for the developed devices, namely capacitive and resistive, have been extensively investigated and the advantages and various issues related to both have been discussed. Nanocrystalline (nc) Ni nanobeams (typical dimensions of 500 nm x 200 nm x 20 µm) have been tested to failure using the MEMS devices.
Improvements in the design for the MEMS nanotensile tester have been suggested to significantly enhance the device performance and to resolve the various issues involved with nano scale tests. Differential capacitive sensing for stress-strain measurements has been suggested to improve the accuracy of strain measurements.
|
Page generated in 0.0438 seconds