• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 11
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 14
  • 13
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Probabilistic modeling of natural attenuation of petroleum hydrocarbons

Hosseini, Amir Hossein 11 1900 (has links)
Natural attenuation refers to the observed reduction in contaminant concentration via natural processes as contaminants migrate from the source into environmental media. Assessment of the dimensions of contaminant plumes and prediction of their fate requires predictions of the rate of dissolution of contaminants from residual non-aqueous-phase liquids (NAPLs) into the aquifer and the rate of contaminant removal through biodegradation. The available techniques to estimate these parameters do not characterize their confidence intervals by accounting for their relationships to uncertainty in source geometry and hydraulic conductivity distribution. The central idea in this thesis is to develop a flexible modeling approach for characterization of uncertainty in residual NAPL dissolution rate and first-order biodegradation rate by tailoring the estimation of these parameters to distributions of uncertainty in source size and hydraulic conductivity field. The first development in this thesis is related to a distance function approach that characterizes the uncertainty in the areal limits of the source zones. Implementation of the approach for a given monitoring well arrangement results in a unique uncertainty band that meets the requirements of unbiasedness and fairness of the calibrated probabilities. The second development in this thesis is related to a probabilistic model for characterization of uncertainty in the 3D localized distribution of residual NAPL in a real site. A categorical variable is defined based on the available CPT-UVIF data, while secondary data based on soil texture and groundwater table elevation are also incorporated into the model. A cross-validation study shows the importance of incorporation of secondary data in improving the prediction of contaminated and uncontaminated locations. The third development in this thesis is related to the implementation of a Monte Carlo type inverse modeling to develop a screening model used to characterize the confidence intervals in the NAPL dissolution rate and first-order biodegradation rate. The development of the model is based on sequential self-calibration approach, distance-function approach and a gradient-based optimization. It is shown that tailoring the estimation of the transport parameters to joint realizations of source geometry and transmissivity field can effectively reduce the uncertainties in the predicted state variables.
22

Mobilization and natural attenuation of arsenic in acid mine drainage ( AMD )

Asta Andrés, María Pilar 12 June 2009 (has links)
L’anomenat drenatge àcid de mina (AMD) ve generat per l’oxidació de sulfurs i és causa major de contaminació d’aigües a nivell mundial. L’arsènic és un del princiapls contaminants laconcentració del qual pot assolir centenars de mgL-1, és a dir, de 5 a 6 ordres de magnitud més gran que el límit de potabilitat per a l’aigua (10μg L-1) establert per la UE en 1998. En aquesta tesi, s’estudia l’impacte de la mobilització de l’arsènic al llarg de descàrregues de drenatge àcid de mina. L’oxidació de sulfurs que contenen arsènic (tal com l’arsenopirita (AsFeS), la pirita rica en arsènic (FeS2) o la marcassita (FeS2) és una de les principals fonts d’alliberament d’arsènic a l’aigua. En la primera part de la tesi, s’ha estudiat la cinètica de dissolució de l’arsenopirita i de la marcassita a pHs àcids i neutre, utilitzant reactors de flux continu, i s’han valorat els efectes del pH, de l’oxigen dissolt i de la temperatura en la dissolució d’ambdós sulfurs. A partir de les velocitats en estat estacionari establertes, es proposen les respectives lleis de dissolució que tenen en compte el lleu i el fort efecte del pH i de l’oxigen dissolt, respectivament, en llur dissolució. La incorporació d’aquestes lleis cinètiques en les bases de dades del codis geoquímics i de transport reactitu permeten fer prediccions molt més realistes. L’impacte mediambiental causat per l’arsènic alliberat a les aigües depèn de la seva atenuació natural. El principal procés que controla el destí i la mobilitat de l’arsènic aquós és l’adsorció de l’arsenat en fases de ferro precipitades. Per tant, cal tenir en compte el paper que juga l’estat d’oxidació de l’arsènic. En la segona part de la tesi, shan estudiat tant l’oxidació de l’arsènic com l’adsorció de l’arsènic. L’oxidació s’estudia en condicions abiòtiques i biòtiques a pH i composició típics d’aigües àcides de mina, fent servir experiments de tipus batch. S’hi mostra com en condicions biòtiques tenen lloc simultàniament l’oxidació de Fe(II) a Fe (III) i d’arsenit a arsenat, de manera que mentre els bacteris governen la primera, el contingut de Fe(III) domina la segona. En condicions abiòtiques, l’oxidació d’arsenit a arsenat en presència de Fe(III) és lenta, tot i que augmenta augmentant la presència de Fe(III) i de clorur amb llum de dia. L’adsorció d’arsènic en llocs d’AMD, i per tant l’atenuació d’arsènic, ocorre mitjançant l’adsorció d’arsenat en precipitats formats per oxi-hidròxids i oxi-hidròxid-sulfats de ferro (principalment schwertmannita (Fe8O8(OH)5.5(SO4)1.25), K-jarosita (KFe3(SO4)2(OH)6) i goetita (FeOOH)). S’han estudiat les capacitats d’adsorció de la jarosita i de la goetita i s’han comparat amb la de la schwertmannita. Amb aquest propòsit es van fer experiments de tipus batch a pH molt àcid i amb mostres sintetitzades de K-jarosita i de goetita. Sense la competència d’altres anions, la capacitat de la jarosita per eliminar arsenat és més alta que la de la goetita. També s’ha vist que la força iònica té un escàs efecte en l’adsorció d’ambdós minerals, però que la presència de sulfat, que és l’anió més abundant en aigües àcides de mina, minva llurs capacitas d’adsorció. Cal conèixer bé els mecanismes dominants que controlen el contingut d’arsènic en les aigües, no només en condicions de laboratori, sinó també en les condicions de camp. Per tant, en la tercera part de la tesi s’han estudiat el processos d’atenuació de l’arsènic en un sistema natural. Amb aquest objetiu s’han caracterizat exhaustivament l’aigua i els sediments del rieron provinent de la mina abandonada Tinto Santa Rosa, situada a la Faixa Pirítica Ibèrica (IPB). La característica dominant de l’aigua del rierol és un descens del pH aigües avall que va acompanyat d’un decreixement sistemàtic de les concentracions de ferro ferrós i de ferro total, d’arsenit i d’arsenat, així com d’arsènic total. A més a més, els sediments de llit mostren contiguts alts d’arsènic. Els principals mecanismes que dominen el destí i la mobilitat de l’arsènic en aquestes aigües de camp són l’oxidació del ferro i de l’arsènic i la precipitatió de compostos de Fe(III) que adsorbeixen l’arsenat. S’ha proposat un model unidimensional de trasnport reactiu, utilitzant el codi PHREEQC, per explicar i quantificar els processos mencionats que han estat estudiats en condicions de laboratori. / Acid mine drainage (AMD) generated by sulfide oxidative dissolution is a major cause of water contamination world-wide. Arsenic is one of the main AMD pollutants whose concentration can reach up to hundreds of mg L-1, i.e. 5-6 orders of magnitude higher than the limit of 10 μg L-1 for potable water established by the European Union in 1998. This thesis is concerned with the impact of arsenic mobilization along AMD discharges. Oxidation of As-bearing sulfides such as arsenopyrite (AsFeS), As-rich pyrite (FeS2) or marcasite (FeS2) is one of the main sources of arsenic release. The first part of this thesis is focused on the dissolution kinetics of arsenopyrite and marcasite at acidic to neutral pH using long term flow-through experiments. The effects of pH, dissolved oxygen and temperature on their dissolution were assessed. The respective dissolution rate laws were proposed on the basis of the steady-state rates, taking into consideration the slight pH effect and the strong dissolved oxygen effect on dissolution. The incorporation of these rate laws into the kinetic databases of geochemical and reactive transport codes allows us to obtain better realistic simulations. The environmental impact of released arsenic into waters depends on its natural attenuation. The arsenic oxidation state is considered given that the main process that controls the fate and mobility of aqueous arsenic is arsenate sorption onto precipitated Fe-phases. The second part of the thesis discusses arsenic oxidation and arsenic sorption. Oxidation was studied by means of batch experiments under abiotic and biotic conditions at typical AMD water pH and water composition. Simultaneous oxidation of Fe(II) to Fe(III) and arsenite to arsenate occurs under biotic conditions, the former mediated by bacteria, and the latter by the presence of Fe(III). Under abiotic conditions, oxidation of arsenite to arsenate in the presence of Fe(III) is slow, but is enhanced by increasing dissolved Fe(III) and chloride concentrations in the presence of light. Arsenic sorption at AMD sites, and hence arsenic attenuation, occurs via arsenate sorption on new iron-oxyhydroxide and iron-oxyhydroxide-sulphate precipitates (mainly, schwertmannite (Fe8O8(OH)5.5(SO4)1.25), jarosite (KFe3(SO4)2(OH)6) and goethite (FeOOH)). The sorption capacity of goethite and jarosite was studied and compared with the one reported for schwertmannite. To this end, batch experiments were conducted using synthetic powders of K-jarosite and goethite at highly acidic pH. In the absence of competitive effects of other anions, K-jarosite presented better removal efficiency for arsenate, and ionic strength and pH had little effect on the sorption capacity of the two minerals. In contrast, these sorption capacities diminished considerably in the presence of sulfate, which is the main anion in AMD waters. A deeper understanding of the dominant mechanisms controlling arsenic content in waters demands the study of the processes not only under laboratory but also under natural conditions. Accordingly, the third part of this thesis deals with the arsenic attenuation processes in a natural system. To this end, the acidic water and sediments of the abandoned Tinto Santa Rosa mine discharge, located in the Iberian Pyritic Belt, were studied. The most striking feature of the water was a pH decrease accompanied by a systematic decrease in ferrous iron, total iron, arsenite, arsenate and total arsenic concentration. Additionally, bed-stream sediments showed high arsenic contents. The main processes that control the fate and mobility of arsenic in waters in the field were iron and arsenic oxidation, precipitation of Fe(III)- minerals and sorption of As(V) onto them. A 1-D reactive transport model using the PHREEQC code was used to explain and quantify the aforementioned processes that had been studied previously under laboratory conditions.
23

Metolachlor and TCE Plume Characteristics in a Dolostone Aquifer Using a Transect

Plett, James January 2006 (has links)
Much is known about natural attenuation of contaminants in granular aquifers because many contaminant plumes in these aquifers have been intensively monitored with detailed sampling along cross sections positioned across the plumes (i. e. transects). However, little is known about natural attenuation of contaminant plumes in fractured rock. In this thesis study, strong natural attenuation of a persistent co-mingled plume of trichloroethylene (TCE) and an herbicide (metolachlor) in a 100 <em>m</em> thick dolostone aquifer used for municipal water supply in Cambridge, Ontario is shown based on detailed delineation of groundwater contaminant concentrations along a single transect located 150 <em>m</em> downgradient from the area where the metolachlor entered the dolostone and 300 <em>m</em> downgradient from the TCE source area. This delineation was accomplished using depth-discrete, multilevel groundwater monitoring systems in five cored holes and detailed analyses of contaminant concentration in rock cores. The maximum metolachlor concentration on the transect is a factor of 20 below the maximum concentration in the metolachlor source area and the maximum TCE concentration on the transect is lower by a factor of 100 from the TCE source area. <br /><br /> Matrix diffusion and strong temporal variability of the groundwater flow system caused by pumping of nearby municipal wells have likely caused strong natural attenuation of metolachlor and TCE and degradation has likely contributed to even stronger TCE attenuation. The transect shows rock core concentrations much higher than the groundwater concentrations in the multilevel systems at the same locations and in the conventional monitoring wells, which indicates that plume persistence is likely maintained by back diffusion from the rock matrix, which has very low hydraulic conductivity but substantial porosity, into the active groundwater flow in the fractures. <br /><br /> Metolachlor has been observed at very low concentrations and has persisted at these concentrations in the nearest municipal pumping well located approximately 780 <em>m</em> downgradient of the transect, however this well shows no detectable TCE. The relatively low concentrations along the transect and the replenishment of the plume by back diffusion suggests that a substantial increase of metolachlor or TCE in the municipal well is unlikely.
24

Natural Gradient Tracer Tests to Investigate the Fate and Migration of Oil Sands Process-Affected Water in the Wood Creek Sand Channel

Tompkins, Trevor 08 September 2009 (has links)
The In Situ Aquifer Test Facility (ISATF) has been established on Suncor Energy Inc’s (Suncor) oil sands mining lease north of Fort McMurray, Alberta to investigate the fate and transport of oil sands process-affected (PA) water in the Wood Creek Sand Channel (WCSC) aquifer. In 2008, the ISATF was used for preliminary injection experiments in which 3,000 and 4,000 L plumes of PA water were created in the WCSC. Following injection, the evolution of the plumes was monitored to determine if naphthenic acids (NAs) naturally attenuated in the WCSC and if trace metals were mobilized from the aquifer solids due to changes in redox conditions. Post-injection monitoring found groundwater velocities through the aquifer were slow (~3-10 cm/day) despite hydraulic conductivities on the order of 10-3 m/s. While microbes in the WCSC were capable of metabolizing acetate under the manganogenic/ferrogenic redox conditions, field evidence suggests naphthenic acids behaved conservatively. Following the injections, there was an apparent enrichment in the dissolved concentrations of iron, manganese, barium, cobalt, strontium and zinc not attributable to elevated levels in the PA injectate. Given the manganogenic/ferrogenic conditions in the aquifer, Mn(II) and Fe(II) were likely released through reductive dissolution of manganese and iron oxide and oxyhydroxide mineral coatings on the aquifer solids. Because naphthenic acids make up the bulk of dissolved organic carbon (DOC) in the injectate and are apparently recalcitrant to oxidation in the WCSC, some question remains as to what functioned as the electron donor in this process.
25

Metolachlor and TCE Plume Characteristics in a Dolostone Aquifer Using a Transect

Plett, James January 2006 (has links)
Much is known about natural attenuation of contaminants in granular aquifers because many contaminant plumes in these aquifers have been intensively monitored with detailed sampling along cross sections positioned across the plumes (i. e. transects). However, little is known about natural attenuation of contaminant plumes in fractured rock. In this thesis study, strong natural attenuation of a persistent co-mingled plume of trichloroethylene (TCE) and an herbicide (metolachlor) in a 100 <em>m</em> thick dolostone aquifer used for municipal water supply in Cambridge, Ontario is shown based on detailed delineation of groundwater contaminant concentrations along a single transect located 150 <em>m</em> downgradient from the area where the metolachlor entered the dolostone and 300 <em>m</em> downgradient from the TCE source area. This delineation was accomplished using depth-discrete, multilevel groundwater monitoring systems in five cored holes and detailed analyses of contaminant concentration in rock cores. The maximum metolachlor concentration on the transect is a factor of 20 below the maximum concentration in the metolachlor source area and the maximum TCE concentration on the transect is lower by a factor of 100 from the TCE source area. <br /><br /> Matrix diffusion and strong temporal variability of the groundwater flow system caused by pumping of nearby municipal wells have likely caused strong natural attenuation of metolachlor and TCE and degradation has likely contributed to even stronger TCE attenuation. The transect shows rock core concentrations much higher than the groundwater concentrations in the multilevel systems at the same locations and in the conventional monitoring wells, which indicates that plume persistence is likely maintained by back diffusion from the rock matrix, which has very low hydraulic conductivity but substantial porosity, into the active groundwater flow in the fractures. <br /><br /> Metolachlor has been observed at very low concentrations and has persisted at these concentrations in the nearest municipal pumping well located approximately 780 <em>m</em> downgradient of the transect, however this well shows no detectable TCE. The relatively low concentrations along the transect and the replenishment of the plume by back diffusion suggests that a substantial increase of metolachlor or TCE in the municipal well is unlikely.
26

Natural Gradient Tracer Tests to Investigate the Fate and Migration of Oil Sands Process-Affected Water in the Wood Creek Sand Channel

Tompkins, Trevor 08 September 2009 (has links)
The In Situ Aquifer Test Facility (ISATF) has been established on Suncor Energy Inc’s (Suncor) oil sands mining lease north of Fort McMurray, Alberta to investigate the fate and transport of oil sands process-affected (PA) water in the Wood Creek Sand Channel (WCSC) aquifer. In 2008, the ISATF was used for preliminary injection experiments in which 3,000 and 4,000 L plumes of PA water were created in the WCSC. Following injection, the evolution of the plumes was monitored to determine if naphthenic acids (NAs) naturally attenuated in the WCSC and if trace metals were mobilized from the aquifer solids due to changes in redox conditions. Post-injection monitoring found groundwater velocities through the aquifer were slow (~3-10 cm/day) despite hydraulic conductivities on the order of 10-3 m/s. While microbes in the WCSC were capable of metabolizing acetate under the manganogenic/ferrogenic redox conditions, field evidence suggests naphthenic acids behaved conservatively. Following the injections, there was an apparent enrichment in the dissolved concentrations of iron, manganese, barium, cobalt, strontium and zinc not attributable to elevated levels in the PA injectate. Given the manganogenic/ferrogenic conditions in the aquifer, Mn(II) and Fe(II) were likely released through reductive dissolution of manganese and iron oxide and oxyhydroxide mineral coatings on the aquifer solids. Because naphthenic acids make up the bulk of dissolved organic carbon (DOC) in the injectate and are apparently recalcitrant to oxidation in the WCSC, some question remains as to what functioned as the electron donor in this process.
27

Remediation of petroleum-hydrocarbon contaminated groundwater by natural attenuation

Chang, Li-ju 13 August 2004 (has links)
Contamination of groundwater by petroleum-hydrocarbons is a widespread environmental problem. Because the petroleum-hydrocarbon resulted plumes could be quite diffuse and widespread, some more economic approaches are desirable for groundwater remediation to provide for long-term control of contaminated groundwater. Monitored natural attenuation (MNA) has been considered as a passive remedial approach to degrade and dissipate contaminants in groundwater. In this study, a full-scale and detailed natural bioremediation investigation was conducted at a petroleum-hydrocarbon spill site in Kaohsiung County, Taiwan. In this natural attenuation study, the following tasks were conducted: (1) groundwater analysis; (2) evaluation of the occurrence of natural attenuation, (3) calculation of biodegradation capacity and natural attenuation rate calculation, (4) evaluation of the percent loss of hydrocarbons due to biodegradation processes by BIOSCREEN model, and (5) application of BIOPLUME III model for the development of remedial strategies. Results show that benzene, toluene, ethylbenzene, and xylene isomers (BTEX) concentrations dropped to below detection limit (BDL) before they reached the downgradient monitor well located 280 m from the spill location. A first-order decay model was applied for the natural attenuation rate calculation. Results reveal that natural biodegradation process was the major cause of the BTEX reduction among the natural attenuation mechanisms. Results from the groundwater analyses indicate that mixed anaerobic biodegradation patterns occurred between the source and mid-plume area, and the aerobic biodegradation dominated the mid and downgradient area. Approximately 74% of the BTEX removal was due to intrinsic biodegradation processes. The calculated natural attenuation rates for BTEX, methyl tert-butyl ether (MTBE), and 1,2,4-trimethylbenzene (1,2,4-TMB) were 0.13, 0.06, and 0.19 1/day, respectively. Evidence for the occurrence of natural attenuation was the decreased contaminant mass flux through the plume cross-sections along the transport path. Evidences for the occurrence of natural BTEX biodegradation included the following: (1) depletion of dissolved oxygen (DO) within the plume; (2) production of biodegradation by-products [Fe(II), CO2, and methane] within the plume; and (3) decreased BTEX concentrations and BTEX as carbon to TOC ratio along the transport path. The calculated biodegradation capacity (45 mg/L) at this site is much higher than the detected concentrations of petroleum-hydrocarbons (1.5 mg/L) within the most contaminated area inside the plume. Thus, natural biodegradation should be able to remove the contaminants effectively. Results suggest that natural attenuation mechanisms can effectively contain the plume and cause the significant removal of petroleum hydrocarbons. Moreover, pump-and-treat and air sparging systems are also feasible technologies to remediate contaminated groundwater at this site.
28

Probabilistic modeling of natural attenuation of petroleum hydrocarbons

Hosseini, Amir Hossein Unknown Date
No description available.
29

Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones

You, Kehua 03 October 2013 (has links)
Understanding the gas phase flow and transport of volatile organic compounds (VOCs) in unsaturated zones is indispensable to develop effective environmental remediation strategies, to create precautions for fresh water protection, and to provide guidance for land and water resources management. Atmospheric pressure and water table fluctuations are two important natural processes at the upper and lower boundaries of the unsaturated zone, respectively. However, their significance has been neglected in previous studies. This dissertation systematically investigates their influence on the gas phase flow and transport of VOCs in soil and ground water remediation processes using analytically and numerically mathematical modeling. New semi-analytical and numerical solutions are developed to calculate the subsurface gas flow field and the gas phase transport of VOCs in active soil vapor extraction (SVE), barometric pumping (BP) and natural attenuation taking into account the atmospheric pressure and the water table fluctuations. The accuracy of the developed solutions are checked by comparing with published analytical solutions under extreme conditions, newly developed numerical solutions in COMSOL Multiphysics and field measured data. Results indicate that both the atmospheric pressure and the tidal-induced water table fluctuations significantly change the gas flow field in active SVE, especially when the vertical gas permeability is small (less than 0.4 Darcy). The tidal-induced downward moving water table increases the depth-averaged radius of influence (ROI) for the gas pumping well. However, this downward moving water table leads to a greater vertical pore gas velocity away from the gas pumping well, which is unfavorable for removing VOCs. The gas flow rate to/from the barometric pumping well can be accurately calculated by our newly developed solutions in both homogeneous and multi-layered unsaturated zones. Under natural unsaturated zone conditions, the time-averaged advective flux of the gas phase VOCs induced by the atmospheric pressure and water table fluctuations is one to three orders of magnitude less than the diffusive flux. The time-averaged advective flux is comparable with the diffusive flux only when the gas-filled porosity is very small (less than 0.05). The density-driven flux is negligible.
30

Modeling Natural Attenuation Of Petroleum Hydrocarbons (btex) In Heterogeneous Aquifers

Ucankus, Tugba 01 December 2005 (has links) (PDF)
Natural Attenuation can be an effective cleanup option for remediation of Groundwater contamination by BTEX. One of the important aspects of the methodology that has been recognized recently is that mass removal rates, the most important parameters used to determine effectiveness of the methodology, is controlled by groundwater flow regime, which to a large extent controlled by aquifer heterogeneity. Considering this recognition, the primary objective of this research is to quantitatively describe the relationship between natural attenuation rates of BTEX and aquifer heterogeneity using numerical solution techniques. To represent different levels of aquifer heterogeneity, hydraulic conductivity distributions are simulated using Turning Bands Algorithm, changing statistical parameters Coefficient of Variation (CV) and correlation length (h). Visual MODFLOW is used to model the transport of BTEX contamination, at different hydraulic conductivity fields. Degradation rates are calculated by Buscheck&amp / Alcantar and Conservative Tracer Methods. The results show that, for a given h, as CV increases, the plume slows down and stays longer at the domain, so areal extent of plume decreases. For anisotropic field, plumes are more dispersed along x and y-direction, and areal extents of the plumes are greater. During MNA feasibility studies, for the aquifer heterogeneity level of CV and h smaller than 100 % and 10 m, respectively, a minimum recommended biodegradation rate constant of 0.02 d-1 can be used, whereas for the aquifer heterogeneity level of CV and h greater than 100 % and 10 m, respectively, using a minimum biodegradation rate constant of 0.06 d-1 can be recommended.

Page generated in 0.3975 seconds