• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 25
  • 24
  • 17
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 180
  • 180
  • 77
  • 51
  • 42
  • 34
  • 30
  • 27
  • 23
  • 22
  • 21
  • 20
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

NUMERICAL AND EXPERIMENTAL STUDIES OF NATURAL CONVECTIVE HEAT TRANSFER FROM VERTICAL AND INCLINED NARROW FLAT PLATES AND SHORT CYLINDERS

KALENDAR, ABDULRAHIM 08 November 2011 (has links)
Natural convective heat transfer from flat plates and short cylinders inclined at an angle to the vertical in laminar and transition flow regions with isothermal or constant heat flux conditions have been numerically and experimentally studied. When the width of the plate is relatively small compared to its height, i.e., the plate is narrow, the heat transfer rate can be considerably greater than that predicted by these two-dimensional flow results. When the narrow plate is inclined to the vertical, pressure changes normal to the plate surface arise and these pressure changes can alter the nature and the magnitude of the edge effects. When two narrow inclined rectangular flat plates of the same size separated vertically or horizontally, the flow interaction between these heated plates can have a significant effect on the heat transfer. When relatively small square and circular cylinders with exposed top surfaces inclined to the vertical are used, the interaction of the flow over the surfaces that make up the cylinder and inclination angle have, in general, a considerable effect on the magnitude of the mean heat transfer rate and on the nature of the flow over the cylinder surfaces. In the present numerical studies it has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces, this having been treated using the Boussinesq approach. The numerical solution was obtained by numerically solving the full three-dimensional form of the governing equations, these equations being written in dimensionless form. The solution was obtained using a commercial CFD code, FLUENT. Results were only obtained for a Prandtl number of 0.7; this being approximately the value of air. In the experimental studies, the average heat transfer rates from cylinders were determined by the transient method, which involves heating the model and then measuring its temperature-time variation while it cools. The average heat transfer rates from the flat plates were determined using a steady state method, which basically involved electrically heating the plate. The tests were carried out inside a large enclosure. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2011-06-27 19:27:45.724
112

Experimental investigation of thermal and fluid dynamical behavior of flows in open-ended channels : Application to Building Integrated Photovoltaic (BiPV) Systems

Sanvicente, Estibaliz 03 July 2013 (has links) (PDF)
Among technologies capable to produce electricity locally without contributing to GHG releases, building integrated PV systems (BIPV) could be major contributor. However, when exposed to intense solar radiation, the temperature of PV modules increase significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decrease the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. An experimental investigation of heat transfer and fluid flow characteristics of natural convection of air in vertical and inclined open-ended heated channels is therefore undertaken so as provide reliable information for the design of BIPV. Two experimental set ups were developed and used during the present investigations; one located at the CETHIL laboratory in Lyon, the F-device and the other located at the University of New South Wales in Sydney, the R-device. Both channels consisted of two wide parallel plates each of which could be subjected to controlled uniform or non-uniform heat fluxes. The investigation has been conducted by analyzing the mean wall temperatures, measured by thermocouples and mean velocity profiles and turbulent quantity distributions of the flow, measured with a PIV system. Flow patterns close to the heated faces were also investigated. The study is particularly focused on the transition region from laminar to turbulent flow. Three different heating geometric arrangements are examined in the modified Rayleigh number range from 3.86 x 105 to 6.22 x 106. The first is a vertical channel with one wall uniformly heated while the other was unheated, the second was a vertical channel in which both walls were non-uniformly heated and the third is an inclined channel uniformly heated from above. In the vertical configurations the width-to-height channel aspect ratio was fixed at 1:15 and in the inclined ones at 1:16. It is shown that the flow is very sensitivity to disturbances emanating from the ambient conditions. Moreover, the propagation of vortical structures and unsteadiness in the flow channel which are necessary to enhance heat transfer, occurred downstream of the mid-channel section at Ra* = 3.5 x 106 for uniformly and asymmetrically heated channels inclined between 60° and 90° to the horizontal. Indeed, these unsteady flow phenomena appears upstream the location of the inflexion point observed in the temperature excess distribution of the heated wall. In the case of non-uniform heating on both sides of the channel, a stronger 'disruption mechanism' exists, which leads to enhanced mixing and increased Reynolds stresses over most of the width of the channel. Empirical correlations of average Nusselt number as a function of modified Rayleigh number were obtained for each configuration.
113

[en] SOLIDIFICATION AND FUSION OF PURE SUBSTANCES UNDER THE INFLUENCE OF LAMINAR AND TURBULENT NATURAL CONVECTION / [es] SOLIDIFICACIÓN Y FUSIÓN DE SUSTANCIAS PURAS SOBRE LA INFLUENCIA DE CONVECCIÓN NATURAL LAMINAR Y TURBULENTA / [pt] SOLIDIFICAÇÃO E FUSÃO DE SUBSTÂNCIAS PURAS SOB A INFLUÊNCIA DA CONVECÇÃO NATURAL LAMINAR E TURBULENTA

LUIZ JOAQUIM CARDOSO ROCHA 27 July 2001 (has links)
[pt] Solidificação e fusão fazem parte de uma classe de problemas transientes de transferência de calor conhecidos como problemas de mudança de fase ou de fronteira móvel. A solução desta classe de problemas envolve uma dificuldade inerente ao processo que é o movimento da interface entre as fases sólida e líquida. Este movimento está relacionado à absorção ou remoção do calor latente na interface. Como conseqüência a localização da interface sólido/líquido não é conhecida a priori tornando-se parte da solução. No presente trabalho, considera-se a mudança de fase em regime transiente de um material puro, na presença de convecção natural, em uma cavidade fechada bidimensional. A interface entre as fases sólida e líquida se comporta como um contorno bem definido com temperatura igual à temperatura de mudança de fase do material. O material na fase líquida é considerado um fluido Newtoniano e a aproximação de Boussinesq é utilizada. Tanto na região líquida, quanto na região sólida, as propriedades termofísicas são constantes e uniformes, porém, diferentes entre si. O sistema de coordenadas adotado é aquele onde suas coordenadas adaptam-se ao contorno da geometria, e considera, quando existe movimento de fronteira e/ou interface, sua velocidade de deslocamento. A intensidade na qual o fluido se movimenta provoca mudanças na forma da interface e é de fundamental importância no fenômeno da mudança de fase. No começo do processo de mudança de fase, o modo de transferência de calor na fase líquida é devido somente à condução de calor. À medida que a velocidade do fluido aumenta, o processo de transferência de calor por convecção começa a dominar. O escoamento ocorre no regime laminar mas eventualmente torna- se turbulento, o que aumenta significativamente as taxas de transferência de calor ao longo da interface. Além disso, como as partículas fluidas se deslocam mais rapidamente há uma melhor distribuição destas taxas ao longo da interface, com uma diminuição em sua curvatura. O modelo de turbulência selecionado pertence à família de modelos k-e. O modelo k-e tradicional é utilizado no núcleo turbulento, e um outro conjunto de equaçõesdesenvolvido a partir de dados de simulação numérica direta, é utilizado na região próxima às paredes. A metodologia implementada permite determinar naturalmente a transição do regime laminar para o turbulento. O presente trabalho apresenta uma nova metodologia no tratamento da interface entre as regiões sólida e líquida. Um volume de controle de espessura zero representa a posição da interface. Uma vez resolvida a equação do balanço combinado de massa e energia na interface, nenhum artifício é necessário para se avaliar sua nova posição. Devido ao salto de massa específica na interface alguma variação no volume total do material é esperada. Entretanto, o modelo atual não prevê aumento no volume total do material e algum artifício deve ser utilizado para adicionar ou retirar massa do domínio. A utilização do volume de controle zero na interface permite retirar ou adicionar massa sem a necessidade de termos de fonte adicionais. Também é utilizado o artifício de redistribuir os pontos nodais entre as fases sólida e líquida no intuito de não alocar muitos pontos nodais em regiões de pequenas espessuras. A redistribuição de pontos garante um refinamento melhor junto à interface e, possibilita a utilização de maiores intervalos de tempo sem introduzir dificuldade de convergência. Os resultados numéricos são comparados a dados experimentais e resultados numéricos para os processos de fusão e solidificação de materiais puros. A boa concordância com dados experimentais revela que a metodologia apresentada resulta numa melhora na resolução deste tipo de problemas. / [en] Solidification and fusion belong to a class of transient heat transfer problems known as phase change problems or moving boundary problems. The solution of this class of problems presents an additional difficulty concerning the movement of the interface. This movement is due to the absorption or removal of the latent heat at the interface. As a consequence the position of the interface is not known, being part of the solution. At the present work, the transient phase change of a pure substance is considered in the presence of natural convection in a closed two dimensional cavity. The interface is a well-defined boundary at the phase change temperature. The liquid phase is assumed to be Newtonian and the Boussinesq approximation is adopted. The properties of both liquid and solid phases are constant, although different of each other. A non-orthogonal coordinate system, which adapts to the geometry, is employed. This coordinate system moves with time to adapt to the varying interface position. The intensity of the fluid movement promotes changes in the interface shape, and it is extremely important for the phase change phenomena. At the beginning of the phase change process, the heat transfer mechanism at the liquid phase is due only to conduction. As the fluid velocity increases, the heat transfer by convection begins to dominate the process. The flow is laminar, and eventually the fluid flow becomes turbulent, substantially increasing the heat transfer rate along the interface. Further, since the fluid particles move more rapidly, theses heat fluxes along the interface are better distributed, causing a reduction of the interface curvature. The turbulence model selected belongs to the k-e family. The traditional k-e é employed at the turbulent core and another set of equations, developed based on direct numerical simulation data, is employed at the near wall region. The methodology is capable of determining the transition from laminar to turbulent flow. The present works presents a new methodology to determine the interface between solid and liquid regions. A zero thickness control volume represents the interface position. Once the mass and energy balance equations are solved at the interface, no further schemeis necessary to evaluate its new position. The zero thickness control volume at the interface allows the mass to be conserved at the liquid region without the need of any special treatment, in spite of the specific mass jump across the interface. The grid distribution is adjusted between the liquid and solid phase during the phase change process, in order to optimize the grid distribution in the domain. Further, the grid redistribution allows the use of larger time steps, without convergence difficulties. The numerical results are compared with experimental and numerical data available in the literature for fusion and solidification of pure substances. The good agreement reveals that the presented methodology furnishes an improved solution for this type of problems. The point redistribution allows the specification of larger time steps without compromising the convergence and precision. / [es] Solidificación y fusión forman parte de una clase de problemas de transferencia de calor conocidos como problemas de cambio de fase o de frontera movil. La solución de esta clase de problemas envuelve una dificuldad inherente al proceso: el movimiento de la interfaz entre las fases sólida y líquida. Este movimiento está relacionado con la absorción o extracción del calor latente en la interfaz. Como consecuencia, la localización de la interfaz sólido/líquido no se conoce a priori, por lo que forma parte de la solución. En el presente trabajo, se considera el cambio de fase en régimen transitorio de un material puro, en presencia de convección natural, en una cavidad cerrada bidimensional. La interfaz entre las fases sólida y líquida se comporta como un contorno bien definido con temperatura igual a la temperatura de cambio de fase del material. El material en fase líquida es considerado un fluido Newtoniano, por lo que se utiliza la aproximación de Bousinesq. Tanto en la región líquida como en la sólida, las propiedades termofísicas son constantes y uniformes, aunque diferentes entre sí. El sistema de coordenadas adoptado es aquel donde las coordenadas se adaptan al contorno de la geometría; y considera su velocidad de deslizamiento cuando existe movimiento de fronteira y/o interfaz. La intensidad del fluido provoca cambios en la forma de la interfaz lo que resulta de fundamental importancia en el fenómeno del cambio de fase. Al inicio del proceso de cambio de fase, el modo de transferencia de calor en la fase líquida se debe solamente a la conducción de calor. A medida que la velocidad del fluido aumenta, el proceso de transferencia de calor por convección comienza a dominar. El fujo ocurre en el régimen laminar, pero eventualmente se vuelve turbulento, lo que aumenta significativamente las tasas de transferencia de calor a lo largo de la interfaz. Además de esto, como las partículas fluidas se desplazan más rapidamente, hay una mejor distribución de estas tasas a lo largo de la interfaz, con una disminución en su curvatura. El modelo de turbulencia seleccionado pertence a la família de modelos k-y. El modelo k-y tradicional se utiliza en el núcleo turbulento, y se desarrolla otro conjunto de ecuaciones a partir de datos de simulación numérica directa, que es utilizado en la región próxima a las paredes. La metodología implementada permite determinar naturalmente la transición del régimen laminar para el turbulento. Este trabajo presenta una nueva metodología en el tratamiento de la interfaz entre las regiones sólida y líquida. El volúmen de control de espesura cero representa la posición de la interfaz. Una vez resuelta la ecuación del equilibrio combinado de masa y energía en la interfaz, no se necesita evaluar su nueva posición. Debido al salto de masa específica en la interfaz, se espera alguna variación en el volúmen total del material. Sin embargo, el modelo actual no prevee un aumento en el volumen total del material y se debe utilizar cierto artificio para adicionar o retirar masa del dominio. La utilización del volumen de control cero en la interfaz permite retirar o adicionar masa sin necesidad de términos de fuente adicionales. También es utilizado el artificio de redistribuir los puntos nodales entre las fases sólida y líquida con el objetivo de no considerar muchos puntos nodales en regiones de pequenas espesuras. Esta redistribución garantiza un mejor refinamiento junto a la interfaz y, posibilita la utilización de mayores intervalos de tiempo sin introducir mayores problemas de convergencia. Los resultados numéricos son comparados con datos experimentales y con resultados numéricos para los procesos de fusión y solidificación de materiales puros. La concordancia con datos experimentales revela que la metodología presentada mejora la resolución de este tipo de problemas.
114

Avaliação numérica e experimental da convecção natural em coletor solar de tubos evacuados

Manea, Tiago Francisco January 2016 (has links)
O coletor solar de tubos evacuados une uma alta absortividade de radiação solar a um ótimo grau de isolamento térmico. Estas características, aliadas a um custo relativamente baixo, fazem deste tipo de coletor o mais utilizado no mundo. Por isso, diversos tipos de abordagens estão sendo adotadas para descrever seu comportamento térmico. Nesta linha, este trabalho foi desenvolvido através de abordagem experimental e teórica, sendo a última subdividida em numérica por CFD e analítica. A abordagem experimental contou com a construção de uma bancada para medida de temperatura e radiação, em um coletor de 24 tubos evacuados acoplados em um reservatório de 178 L. A abordagem por CFD utilizou um modelo tridimensional transiente. Com o modelo numérico validado, utilizando resultados experimentais, simularam-se diferentes condições de operação, em termos de ângulo de inclinação, fluxo de calor sobre o coletor, tamanho do reservatório e temperatura de entrada da água. Em relação à abordagem analítica, esta é dividida em: modelo de irradiância, modelo do tubo e modelo do reservatório. O modelo de irradiância determina a distribuição da radiação solar ao longo da circunferência do tubo. Parte desta radiação é absorvida pelo coletor e transferida para água. Esta quantidade é determinada com o modelo do tubo, que é baseado no método de resistências térmicas. O modelo do reservatório descreve o comportamento térmico da água em seu interior, tanto em aquecimento quanto em resfriamento, analisando a interação energética com o coletor e com o meio externo. O desenvolvimento do modelo do tubo passa pela avaliação da vazão mássica entre o tubo e o reservatório, além disso, o coeficiente de transferência de calor por convecção no interior do tubo deve ser determinado. Tais variáveis são determinadas a partir de uma correlação para o número de Reynolds, a qual foi obtida com resultados da avaliação por CFD e é função dos números de Nusselt, Grashof e Prandtl. A correlação proposta apresentou bom ajuste com os resultados numéricos. Com a bancada de ensaio experimental foram feitas medidas de temperatura da água no reservatório ao longo de alguns dias. Para as mesmas condições do experimento, a temperatura média da água no reservatório foi estimada com resultados da integração dos modelos de irradiância, do tubo e do reservatório. A diferença entre os resultados experimental e teórico foi de 4,8% para a energia acumulada. / The evacuated tube solar collector combines high solar radiation absorptivity to a great thermal insulation degree. These characteristics, combined with a relatively low cost, make this type of collector the most used in the world. Therefore, various types of approaches are being adopted to describe its thermal behavior. In this way, this work was developed through experimental and theoretical approaches, the latter being subdivided into numeric, by CFD, and analytical analysis. For the experimental approach a test bench was built. The tests was carried on a solar collector with 24 evacuated tubes coupled to a 178 L tank, measuring temperature and solar radiation. The CFD approach used a transient three-dimensional model. After the numerical model validation using experimental data, simulations was carried over different operating conditions in terms of angle, heat flux on the collector, tank size and water inlet temperature. The analytical approach is divided into: irradiance model, tube model and tank model. The irradiance model determines the irradiance distribution of solar radiation along the circumference of the tube. Part of this radiation is absorbed by the collector and transferred to water, this amount is determined with the tube model, using the thermal resistance method. The tank model describes the thermal behavior of inside water, both in heating and in cooling, analyzing energy interaction with the collector and the external environment. The development of the tube model involves the assessment of the mass flow rate between the tube and the tank, furthermore the convection heat transfer coefficient inside the tube must be determined. These variables are determined from a correlation for the Reynolds number, which was obtained with evaluation results by CFD. Proposed Reynolds number is a function of the Nusselt, Prandtl and Grashof numbers. The correlation presented a good agreement with the numerical results. Using the experimental test bench the water temperature was measured into the tank over a few days. For the same experiment conditions, the average temperature of the water into the tank was estimated by results of integration of irradiance, tube and tank models. The difference between the experimental and theoretical results was 4.8% for the accumulated energy.
115

Estudo da formação de gelo durante o armazenamento a granel de vegetais congelados

Urquiola Mujica, Ana January 2018 (has links)
Este trabalho propõe um modelo de transferência de calor e massa para prever a formação de gelo em um container preenchido com legumes congelados. O problema físico é modelado como um meio poroso composto pelo próprio produto e o ar em seu entorno. O regime de convecção natural é assumido dentro do container, o qual promove o transporte de massa. Como uma primeira validação, o modelo é simulado considerando diferentes temperaturas de ar externo, causadas por flutuações da vizinhança. Resultados para quatro ciclos de temperaturas foram comparados, variando separadamente a temperatura média do ar, amplitude e frequência de oscilação. De modo geral, é observado que a temperatura do produto se comporta assim como era esperado e este resultado é diretamente associado à formação de gelo dentro do container. A formação de gelo cresce com uma maior amplitude de oscilação, porém decresce com um aumento na frequência e na temperatura média. Os parâmetros do modelo foram obtidos para dois diferentes produtos: fatias de cenouras congeladas e vagens congeladas, ambos em meio ao ar. As definições de parâmetros são oriundas de revisão bibliográfica, medições experimentais e simulações numéricas. Os parâmetros encontrados para a caracterização desses meios porosos foram similares para ambos os produtos, mesmo eles possuindo diferentes geometrias. A validação experimental foi feita para as fatias de cenoura considerando dois ciclos de temperatura O modelo numérico é capaz de prever o campo de velocidades do ar, as temperaturas do produto e a formação de gelo local. Os resultados foram validados em relação a um grupo independente de resultados numéricos, tal comparação apresentou uma boa concordância. A circulação de ar encontrada é, de fato, devido à convecção natural. O comportamento da temperatura dos produtos simulados concorda com os valores medidos e os valores de temperaturas diferem por menos de 12%. Com respeito à formação de gelo, o modelo é capaz de prevê-la corretamente nas regiões mais suscetíveis a este fenômeno. Porém, a quantidade de gelo formado prevista pelo modelo (1,56 g/semana) é menor do que a experimental (4,67 g/semana), apesar de serem de mesma ordem de magnitude. O efeito de cada parâmetro no modelo é estudado visando detectar maneiras de aprimorar o modelo. Foi encontrado que os parâmetros mais importantes para a formação de gelo total são a difusividade de massa efetiva e o coeficiente de transferência de calor convectivo dentro do container. Ajustando estes parâmetros duas vezes foi possível encontrar resultados melhores com respeito à formação de gelo (3,09 g/semana). / A model of heat and mass transfer is proposed in order to predict frost formation into a closed container filled with frozen vegetables. The physical problem is modeled as a macroporous media composed by the product itself and the surrounding air. Natural convection air flow is assumed into the container, who promotes water mass transport. As a first validation, the model is simulated for several exterior air temperatures, under environmental fluctuations (boundary conditions). Results of four temperature cycles were compared, varying average air temperature, amplitude and frequency of oscillation, one by one. As a general result, it is observed that the product temperature behavior is as expected, and it is directly associated with frost formation into the container. Frost formation increases with large amplitude of oscillation, but decreases with higher frequencies and higher mean temperatures. Model parameters were obtained for two assembling: frozen slices of carrots and air, and frozen extra thin green beans and air. Parameter definition and evaluation combines literature review, measurements and numerical simulation. In general, parameters which characterize these porous media were similar for both products, even though they display different geometries. The experimental validation is performed for carrot slices with two temperature cycles The numerical model is able to predict air velocity field, air and product temperatures, and local frost formation. Results are validated in respect to a set of independent experimental results that shown a good agreement. Air flow circulation is as expected due to natural convection. Product temperature simulated behavior agrees with measurements, and temperature values differ by less than 12%. Respect to frost formation predictions, the model predicts correctly the most susceptible regions to frost formation. However, the quantity of frost formed predicted by the model (1.56 g/ week)is lower than the experimental one (4.67g/week), despite being of the same order of magnitude. The effect of each parameter in the model is study in order to detect how to improve the model. The most important parameters affecting total frost formation are effective mass diffusivity and convective heat coefficient into the storage container. Adjusting these parameters to twice, better results in terms of frost formation could be obtained (3.09 g/ week).
116

Análise numérica da dinâmica do escoamento em circuitos de circulação natural / Numerical analysis of the fluid dynamics in a natural circulation loop

ANGELO, GABRIEL 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:41:29Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:20Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
117

Estabelecimento de um sistema padrão primário para raios X baixas com uma câmara de ionização de ar livre de energias / Establishment a primary standard system for low energy X-rays using a free air ionization chamber

SILVA, NATALIA F. da 22 June 2016 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2016-06-22T12:43:46Z No. of bitstreams: 0 / Made available in DSpace on 2016-06-22T12:43:46Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
118

Avaliação numérica e experimental da convecção natural em coletor solar de tubos evacuados

Manea, Tiago Francisco January 2016 (has links)
O coletor solar de tubos evacuados une uma alta absortividade de radiação solar a um ótimo grau de isolamento térmico. Estas características, aliadas a um custo relativamente baixo, fazem deste tipo de coletor o mais utilizado no mundo. Por isso, diversos tipos de abordagens estão sendo adotadas para descrever seu comportamento térmico. Nesta linha, este trabalho foi desenvolvido através de abordagem experimental e teórica, sendo a última subdividida em numérica por CFD e analítica. A abordagem experimental contou com a construção de uma bancada para medida de temperatura e radiação, em um coletor de 24 tubos evacuados acoplados em um reservatório de 178 L. A abordagem por CFD utilizou um modelo tridimensional transiente. Com o modelo numérico validado, utilizando resultados experimentais, simularam-se diferentes condições de operação, em termos de ângulo de inclinação, fluxo de calor sobre o coletor, tamanho do reservatório e temperatura de entrada da água. Em relação à abordagem analítica, esta é dividida em: modelo de irradiância, modelo do tubo e modelo do reservatório. O modelo de irradiância determina a distribuição da radiação solar ao longo da circunferência do tubo. Parte desta radiação é absorvida pelo coletor e transferida para água. Esta quantidade é determinada com o modelo do tubo, que é baseado no método de resistências térmicas. O modelo do reservatório descreve o comportamento térmico da água em seu interior, tanto em aquecimento quanto em resfriamento, analisando a interação energética com o coletor e com o meio externo. O desenvolvimento do modelo do tubo passa pela avaliação da vazão mássica entre o tubo e o reservatório, além disso, o coeficiente de transferência de calor por convecção no interior do tubo deve ser determinado. Tais variáveis são determinadas a partir de uma correlação para o número de Reynolds, a qual foi obtida com resultados da avaliação por CFD e é função dos números de Nusselt, Grashof e Prandtl. A correlação proposta apresentou bom ajuste com os resultados numéricos. Com a bancada de ensaio experimental foram feitas medidas de temperatura da água no reservatório ao longo de alguns dias. Para as mesmas condições do experimento, a temperatura média da água no reservatório foi estimada com resultados da integração dos modelos de irradiância, do tubo e do reservatório. A diferença entre os resultados experimental e teórico foi de 4,8% para a energia acumulada. / The evacuated tube solar collector combines high solar radiation absorptivity to a great thermal insulation degree. These characteristics, combined with a relatively low cost, make this type of collector the most used in the world. Therefore, various types of approaches are being adopted to describe its thermal behavior. In this way, this work was developed through experimental and theoretical approaches, the latter being subdivided into numeric, by CFD, and analytical analysis. For the experimental approach a test bench was built. The tests was carried on a solar collector with 24 evacuated tubes coupled to a 178 L tank, measuring temperature and solar radiation. The CFD approach used a transient three-dimensional model. After the numerical model validation using experimental data, simulations was carried over different operating conditions in terms of angle, heat flux on the collector, tank size and water inlet temperature. The analytical approach is divided into: irradiance model, tube model and tank model. The irradiance model determines the irradiance distribution of solar radiation along the circumference of the tube. Part of this radiation is absorbed by the collector and transferred to water, this amount is determined with the tube model, using the thermal resistance method. The tank model describes the thermal behavior of inside water, both in heating and in cooling, analyzing energy interaction with the collector and the external environment. The development of the tube model involves the assessment of the mass flow rate between the tube and the tank, furthermore the convection heat transfer coefficient inside the tube must be determined. These variables are determined from a correlation for the Reynolds number, which was obtained with evaluation results by CFD. Proposed Reynolds number is a function of the Nusselt, Prandtl and Grashof numbers. The correlation presented a good agreement with the numerical results. Using the experimental test bench the water temperature was measured into the tank over a few days. For the same experiment conditions, the average temperature of the water into the tank was estimated by results of integration of irradiance, tube and tank models. The difference between the experimental and theoretical results was 4.8% for the accumulated energy.
119

Estudo da formação de gelo durante o armazenamento a granel de vegetais congelados

Urquiola Mujica, Ana January 2018 (has links)
Este trabalho propõe um modelo de transferência de calor e massa para prever a formação de gelo em um container preenchido com legumes congelados. O problema físico é modelado como um meio poroso composto pelo próprio produto e o ar em seu entorno. O regime de convecção natural é assumido dentro do container, o qual promove o transporte de massa. Como uma primeira validação, o modelo é simulado considerando diferentes temperaturas de ar externo, causadas por flutuações da vizinhança. Resultados para quatro ciclos de temperaturas foram comparados, variando separadamente a temperatura média do ar, amplitude e frequência de oscilação. De modo geral, é observado que a temperatura do produto se comporta assim como era esperado e este resultado é diretamente associado à formação de gelo dentro do container. A formação de gelo cresce com uma maior amplitude de oscilação, porém decresce com um aumento na frequência e na temperatura média. Os parâmetros do modelo foram obtidos para dois diferentes produtos: fatias de cenouras congeladas e vagens congeladas, ambos em meio ao ar. As definições de parâmetros são oriundas de revisão bibliográfica, medições experimentais e simulações numéricas. Os parâmetros encontrados para a caracterização desses meios porosos foram similares para ambos os produtos, mesmo eles possuindo diferentes geometrias. A validação experimental foi feita para as fatias de cenoura considerando dois ciclos de temperatura O modelo numérico é capaz de prever o campo de velocidades do ar, as temperaturas do produto e a formação de gelo local. Os resultados foram validados em relação a um grupo independente de resultados numéricos, tal comparação apresentou uma boa concordância. A circulação de ar encontrada é, de fato, devido à convecção natural. O comportamento da temperatura dos produtos simulados concorda com os valores medidos e os valores de temperaturas diferem por menos de 12%. Com respeito à formação de gelo, o modelo é capaz de prevê-la corretamente nas regiões mais suscetíveis a este fenômeno. Porém, a quantidade de gelo formado prevista pelo modelo (1,56 g/semana) é menor do que a experimental (4,67 g/semana), apesar de serem de mesma ordem de magnitude. O efeito de cada parâmetro no modelo é estudado visando detectar maneiras de aprimorar o modelo. Foi encontrado que os parâmetros mais importantes para a formação de gelo total são a difusividade de massa efetiva e o coeficiente de transferência de calor convectivo dentro do container. Ajustando estes parâmetros duas vezes foi possível encontrar resultados melhores com respeito à formação de gelo (3,09 g/semana). / A model of heat and mass transfer is proposed in order to predict frost formation into a closed container filled with frozen vegetables. The physical problem is modeled as a macroporous media composed by the product itself and the surrounding air. Natural convection air flow is assumed into the container, who promotes water mass transport. As a first validation, the model is simulated for several exterior air temperatures, under environmental fluctuations (boundary conditions). Results of four temperature cycles were compared, varying average air temperature, amplitude and frequency of oscillation, one by one. As a general result, it is observed that the product temperature behavior is as expected, and it is directly associated with frost formation into the container. Frost formation increases with large amplitude of oscillation, but decreases with higher frequencies and higher mean temperatures. Model parameters were obtained for two assembling: frozen slices of carrots and air, and frozen extra thin green beans and air. Parameter definition and evaluation combines literature review, measurements and numerical simulation. In general, parameters which characterize these porous media were similar for both products, even though they display different geometries. The experimental validation is performed for carrot slices with two temperature cycles The numerical model is able to predict air velocity field, air and product temperatures, and local frost formation. Results are validated in respect to a set of independent experimental results that shown a good agreement. Air flow circulation is as expected due to natural convection. Product temperature simulated behavior agrees with measurements, and temperature values differ by less than 12%. Respect to frost formation predictions, the model predicts correctly the most susceptible regions to frost formation. However, the quantity of frost formed predicted by the model (1.56 g/ week)is lower than the experimental one (4.67g/week), despite being of the same order of magnitude. The effect of each parameter in the model is study in order to detect how to improve the model. The most important parameters affecting total frost formation are effective mass diffusivity and convective heat coefficient into the storage container. Adjusting these parameters to twice, better results in terms of frost formation could be obtained (3.09 g/ week).
120

Analise teorica e experimental da tranferencia de calor em placas de circuito impresso formando canais verticais abertos / Theoretical and experimental analysis of the heat transfer in printed circuit boards forming open vertical channels

Avelar, Ana Cristina 22 July 2018 (has links)
Orientador: Marcelo Moreira Ganzarolli / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-07-22T20:18:14Z (GMT). No. of bitstreams: 1 Avelar_AnaCristina_M.pdf: 5757345 bytes, checksum: ab66436b252ec7b8b48d4756dd9e7f42 (MD5) Previous issue date: 1997 / Resumo: Os constantes avanços tecnológicos em eletrônica e informática tem tornado os sistemas eletrônicos cada vez mais compactos, aumentando-se a quantidade de calor a ser removida dos componentes e placas de circuito impresso. Por este motivo, atualmente são exigidos sistemas de dissipação de calor altamente eficientes. Este estudo analisa teórica e experimentalmente a transferência de calor em canais verticais formados por placas de circuito impresso dispostas paralelamente, resfriadas por convecção natural e propõe uma modelagem, baseada em relações existentes na literatura, que busca prever a distribuição de temperaturas em pontos significativos nos canais e placas em função da potência dissipada e da distância entre as placas. Este estudo visa também analisar os efeitos do aquecimento não-uniforme das placas que formam o canal. Na simulação teórica, devido à pequena espessura da placa o gradiente de temperatura ao longo da espessura da mesma foi desprezado e resolveu-se numericamente a equação de transferência de calor em coordenadas cartesianas bidimensionais e em regime permanente. Equacionou-se balanços de energia para os componentes e para o ar no canal e o problema foi resolvido numericamente através de um programa computacional. As placas de circuito impresso utilizadas nos testes experimentais, concebidas exclusivamente para fins de estudos térmicos, possuem uma base de epóxi com 25 resistores discretamente distribuídos sobre sua superfície de 200x164mm. Realizou-se testes com aquecimento uniforme e não-uniforme, variando-se a potência por componentes nas placas. Variou-se também as potências por placas e as distâncias entre as mesmas. Testou-se as potências de 2, 4,6 e 8 W e as distâncias entre placas de 12,24, e 48mm. Verificou-se boa concordância entre os resultados numéricos e experimentais, principalmente para a menor distância entre placas, 12 mm, onde a diferença entre os resultados teóricos e experimentais foi muito pequena / Abstract: The constant technological advances in electronics and computations have made the electronic system increasingly more compact, thus increasing the amount of heat to be removed ITomthe components and printed circuit boards. For this reason, highly efficient system of heat removal are presently required. This study analyses both theoretically and experimentallyheat transfer in an array of vertical parallel printed circuit boards, cooled off by natural convection and proposes a modeling, based on correlation found in literature which tries to predict temperature distribution in significant places in the channels and boards as regards dissipated power and distance among boards. This study also aims at analyzing nonuniform heating effets of the channel made boards. In the theoritical simulation, due to the board' s small thickness, the temperature gradient across the board has been neglected, and the equation of heat transfer in two-dimensional Cartesian was numericallysolved, and on a steady state. Energy balances for the componentes were formulated, and the problem was numerically solved by a computer programo The printed circuit boards used in the experimental tests, manufactured speciallyfor heat trasnfer studies have an epoxy basis with 25 resistors discretely distributed on 200 x 164 mm. Uniform and non-uniform heating tests were performed, thus a variation of power and distance among them had a variation. The 2, 4, 6 and 8 W power and distance among 12, 24 and 48 mm boards were tested. Good agreements between numerical and experimentalresults were observed, mainlyfor the smaller distance among boards, 12 mm, the differencesbetween the theoretical and experimentalresults were small / Mestrado / Termica e Fluidos / Mestre em Engenharia Mecânica

Page generated in 0.1331 seconds