• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 14
  • 11
  • 11
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Naturfaserverstärkter Polymerbeton Entwicklung, Eigenschaften und Anwendung

Gallenmüller, Meike January 2005 (has links)
Zugl.: München, Univ. der Bundeswehr, Diss., 2005
2

Naturfaserverstärkter Polymerbeton : Entwicklung, Eigenschaften und Anwendung /

Gallenmüller, Meike. January 2006 (has links)
Universiẗat der Bundeswehr, Diss., 2005--München.
3

Entwicklung und Generierung von faserverstärkten Formmassen auf der Basis eines neuartigen Melaminetherharzes

Sommer, Maria-Kristin, January 2008 (has links)
Stuttgart, Univ., Diss., 2008. / Druckausgabe bei Shaker, Aachen erschienen.
4

Technologieentwicklung zur Herstellung von naturfaserverstärkten Bauteilen in Leichtbauweise unter Einsatz von Ganzpflanzenrohstoffen

Rinberg, Roman 13 May 2013 (has links) (PDF)
Die Verwendung von „klassischen“ Naturfasern als Verstärkungskomponente in Kunststoffbauteilen ist durch ihr besonderes Eigenschaftsspektrum in Kombination mit wirtschaftlichen und ökologischen Vorteilen im gesamten Lebenszyklus begründet. Die Technologien zur Verarbeitung von Naturfasern zu Bauteilen wurden in den vergangenen Jahren kontinuierlich weiterentwickelt, wobei das Hauptaugenmerk auf der Optimierung von Material- und Verfahrensparametern bekannter Technologielösungen lag. Komplexe Anwendungen im Automobilbau erfordern allerdings eine ganzheitliche Betrachtung der gesamten Wertschöpfungskette von der Rohstoffbereitstellung über die Halbzeugfertigung bis hin zur Bauteilentwicklung und -herstellung. In diesem Zusammenhang weisen neuartige Faserverstärkungen aus Ganzpflanzenrohstoffen (GPR) gegenüber den konventionell aufgeschlossenen Naturfasern ein Potenzial für deutlich höhere Material- und Kosteneffizienz auf. Ziel dieser Arbeit ist die Bereitstellung einer werkstoffgerechten Auslegungsstrategie für eine neue durchgängige Prozesskette zur Herstellung von naturfaserverstärkten Bauteilen unter Einsatz von Ganzpflanzenrohstoffen. Am Beispiel der Flachspflanze werden dabei die verketteten Prozessstufen und die zugehörigen Schnittstellen entwickelt, charakterisiert und validiert. Darüber hinaus wird zur Umsetzung von Leichtbauanforderungen der Ansatz verfolgt, funktionale Zusammenhänge zwischen mechanischen Werkstoffkennwerten und lokaler Bauteildichte für eine belastungsgerechte Bauteilauslegung in Leichtbauweise zu erfassen. / The use of „classical“ natural fibres as reinforcing part for plastic components is caused by their particular property range in combination with economical and ecological advantages in the total life cycle. In recent years, technologies for the processing of natural fibres to components were continuously developed, focused on optimising material and process parameters of existing technology solutions. Certainly, complex applications in the automobile industry require an integrated consideration of the total value added chain from material supply to manufacturing of semi-finished products up to component development and production. In this regard novel fibre reinforcements made from whole plant materials possess potential for considerably higher material and cost efficiency compared to conventional natural fibres. The Intention of this work is to provide a material-specific dimensioning strategy for a new integrated process chain to produce natural fibre reinforced components by using raw materials made of the whole plant. Linked process steps and related interfaces were developed, characterised and validated by using the example of a flax plant. Moreover, the approach of realizing lightweight construction requirements is necessary in order to measure functional relations between material parameters and local density for the load-bearing part dimensioning in lightweight structure.
5

Natural Fiber Reinforced Thermoplastics / Naturfaserverstärkte Thermoplaste

Siengchin, Suchart 06 June 2017 (has links) (PDF)
Biocomposites made from biodegradable polymer as matrix and natural fiber as reinforcement are certainly environmentally friendly materials. Both constituent materials are fully biodegradable and do not leave any noxious components on Earth. The natural fibers have been used as reinforcement due to their advantages compared to glass fibers such as low cost, high specific strength and modulus, low density, renewability and biodegradability. Major aims of this work were to produce natural fibers and/or nanoparticles with polyethylene (PE), polypropylene (PP) and polylactide (PLA), poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) matrices and determine their structure-property relationships. Following abstracts of the present research work are manifold: BINARY COMPOSITES Polylactide (PLA)/flax mat composites The polylactide (PLA)/flax mat and modified PLA/flax mat composites were produced by hot press technique. Two additives of non-regulated wax/ethylene acrylate copolymer/butyl acrylate and acrylic were used as modifier for PLA. The dispersion of the flax mat in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical and thermal properties of the composites were determined in tensile test, thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the PLA based composites increased the impact resistance. The tensile strength value of modified PLA/flax mat composite decreased slightly compared to the PLA. The elongation at break data indicated that an improvement in ductility of modified PLA and its composites. Moreover, addition of thermal modifier enhanced thermal resistance below processing temperature of PLA and had a marginal effect on the glass transition temperature of PLA. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. The principle of linear viscoelastic material was fairly applicable to convert from the modulus to the creep compliance for all systems studied. Polylactide (PLA)/woven flax textiles composites The polylactide (PLA)/woven flax textiles 2x2 twill and 4x4 hopsack composites were produced by interval hot press technique. Two weave styles of flax used to reinforce in PLA. The dispersion of the flax composite structures in the composites was inspected in scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical properties (tensile, stiffness and strength) of the composites were determined in tensile and dynamic-mechanical thermal analysis (DMTA) tests, respectively. SEM observed that the interfacial gaps around pulled-out fibers were improved when produced by the interval hot press. It was also found that the both styles of flax composites increased the impact resistance compared to the neat PLA. The tensile strength and stiffness value of PLA/flax composites were markedly higher than that of the neat PLA and reflect the effects of composite structures. The calculated storage creep compliance was constructed by applying the time-temperature superposition (TTS) principle. The calculated creep response of these flax composites was much lower than that of the neat PLA. Polyethylene and polypropylene/nano-silicon dioxide/flax composites Composites composed of polylactide (PLA), modified PLA and woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) were produced by hot press technique. Two structurally different additives used to modify PLA. The dispersion of the flax composite structures in the composites was studied by scanning electron microscopy (SEM) and computed microtomography system (µCT). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The thermomechanical and creep properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA)and short-time creep tests, respectively. It was found that the modified PLA and its composite increased the impact resistance compared to the unmodified PLA. Incorporation of flax decreased resistance to thermal degradation and increased water uptake. The impact energy and stiffness value of PLA/flax composites was markedly higher than that of PLA but reflect the effects of composite structures and flax content. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. From the master curve data, the effect of modified PLA on the storage modulus was more pronounced in the low frequencies range. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites The textile biocomposites made from woven and non-woven flax fibre reinforced poly(butylene adipate-co-terephthalate) (PBAT) were prepared by compression moulding using film stacking method. The mechanical properties (such as tensile strength and stiffness, flexural strength and modulus, and impact strength) of textile biocomposites were determined in tensile, flexural and impact tests, respectively. The PBAT-based composites were subjected to water absorption. The comparison of the mechanical properties was made between pure PBAT and textile composites. The influence of flax weave styles on the mechanical properties was also evaluated. The results showed that the strength of the textile biocomposites was increased according to weave types of fibers, especially in the stiffness was significantly increased with the higher densification of the fibers. The 4x4-plain woven fibers (4-yard-wrap and 4-yard-weft weave direction) reinforced biocomposite indicated the highest strength and stiffness compared to the other textile biocomposites and pure PBAT. This was considered to be as the result of the character of weave style of 4x4-plain woven fibers. The aminopropyltriethoxysilane affected the mechanical properties and water absorption of the resulting composites laminates due to the surface compatibility between flax fiber and PBAT. HYBRID COMPOSITES Polyethylene/nanoparticle, natural and animal composites Binary and ternary composites composed of high-density polyethylene (HDPE), boehmite alumina (BA) and different kinds of natural-, animal fibers, like flax, sponge gourd (SG), palm and pig hair (PH) were produced by hot press technique. Aqueous BA suspensions were sprayed on the HDPE/flax mat to prepare nanoparticle/natural fiber reinforced ternary polymer composites followed by drying. The dispersion of the natural-, animal fibers and BA particles in the composites was studied by scanning electron microscopy (SEM) and discussed. The thermomechanical and stress relaxation properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and short-time stress relaxation tests (performed at various temperatures), respectively. The HDPE based composites were subjected to water absorption and instrumented falling weight impact tests. It was found that the all composites systems increased the stiffness, stress relaxation and reduced the impact toughness. The stress relaxation modulus of natural-, animal fiber composites were higher compared to that of the neat HDPE. This modulus increased greatly with in corporation of BA. The relaxation master curves were constructed by applying the time-temperature superposition (TTS) principle. The inverse of Findley power law could fairly applicable to describe the relaxation modulus vs. time traces for all systems studied. Incorporation of BA particles enhanced the thermal resistance which started to degrade at higher temperature compared to the HDPE/flax mat composite. The HDPE/flax mat/BA composite could reduce the water uptake. Polyethylene/Flax/SiO2 Composites Composites composed of high-density polyethylene (HDPE), woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) and silicon dioxide (SiO2) were produced by hot press with nano spraying technique. The SiO2 slurries were sprayed by a hand onto the both surface of the woven flax fiber. The HDPE /woven flax fibers composites with and without used nano-spraying technique were produced by hot pressing in a laboratory press. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related HDPE based composites were subjected to instrumented falling weight impact test. The thermal resistance, stiffness and tensile strength properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and tensile tests, respectively. It was found that the impact energy and stiffness value of HDPE/flax composites was markedly higher than that of HDPE but reflect the effects of composite structures and flax content. Incorporation of SiO2 particles enhanced resistance to thermal degradation. It was established that the linear viscoelastic material principle are fairly applicable to convert from the modulus to the creep compliance results. Un- and Modified Polylactide (PLA) /woven Flax Fiber composites Hybrid composites composed of polypropylene (PP) or high-density polyethylene (HDPE), different flax fibers (unidirectional-, biaxial and twill2x2) and silicon dioxide (SiO2) were produced by hot press technique. The ternary polymer composite was effectively fabricated by spraying SiO2 solvents onto the surface of flax fiber. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related PP and HDPE based composites were subjected to instrumented falling weight impact test. The thermal and mechanical properties of the composites were determined by thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA), creep and stress relaxation tests, respectively. It was found that thermal decomposition temperature of the PP or HDPE/flax composites increased by the addition of SiO2 particles. The impact energy, stiffness, creep resistance and relaxation modulus value of all flax composites increased markedly compared to the PP and HDPE matrix. Time–temperature superposition (TTS) was applied to estimate the creep and relaxation modulus of the composites as a function of time in the form of a master curve. The activation energies for the all PP and HDPE composites systems studied were also calculated by using the Arrhenius equation. The generalized Maxwell model was fairly applicable to the stress relaxation results. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites Composites composed of polylactide (PLA), woven flax fiber textiles (weave style of 2x2 twill and 4x4 hopsack) and boehmite alumina (BA) were produced by hot press. The spraying technique served for the pre-dispersion of the alumina nanoparticles. The aqueous alumina slurry was produced by mixing the water with water dispersible alumina. The dispersion of the flax structures and alumina particles in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The creep and thermomechanical properties of the composites were determined in short-time creep tests (performed at various temperatures), thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the incorporation of alumina particles reduced the water uptake compared to the PLA/flax blends. The impact energy and stiffness value of PLA/flax blends was markedly higher than that of PLA but reflected the effects of composite structures. Incorporation of alumina particles enhanced storage modulus and the creep resistance compared to the PLA/flax blends but slightly incremented thermal resistance at high temperature. No clear trend in the flax weave style- effect was found in the thermal behaviour. The creep master curves were constructed by applying the time-temperature superposition (TTS) principle. The Findley power law could satisfactorily describe the creep compliance vs. time traces for all systems studied. Poly(hydroxybutyrate-co-hydroxyvalerate)/sisal natural fiber/clay composites Poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) biocomposites different sisal containing with the fiber length of 0.25 and 5 mm, and addition of clay particles were prepared by hot compression technique. Silane (Bis(triethoxysilylpropyl)tetrasulfide) treatment has been used to modify in order to enhance the properties of related hybrid composites. The all composites were subject to water absorption test. The mechanical properties of hybrid composites such as tensile stiffness and strength, toughness and hardness determined in tensile, impact and hardness tests, respectively. It was found that tensile strength, stiffness and impact strength of long sisal fiber improved with increasing fiber content. Hardness of short sisal fiber improved with increasing fiber content. Treated Silane of long fibers at 20 wt.% loading was found to enhance the tensile strength fiber by 10% and impact strength by 750% as compared to the neat PHBV. Note that this feature was also confirmed by the appearance of a scanning electron microscopy. Moreover, the hardness and water resistance of the PHBV/sisal composites increased by the addition of clay particles. The diffusion coefficient for the PHBV and hybrid composites systems studied were also calculated. / Bioverbundwerkstoffe aus biologisch abbaubarem Polymer als Matrix und Naturfasern als Verstärkung sind ohne weiteres umweltfreundliche Materialien. Beide Bestandsmaterialien sind vollständig biologisch abbaubar und hinterlassen keine schädlichen Bestandteile auf der Erde zurück. Die als Verstärkung verwendeten Naturfasern wurden aufgrund ihrer Vorteile gegenüber Glasfasern, wie z.B. geringe Kosten, hohe spezifische Festigkeit und Steifigkeit, geringe Dichte, Erneuerbarkeit und Kompostierbarkeit ausgesucht. Der Hauptfokus dieser Arbeit lag darin Naturfasern und/oder Nanopartikel mit Polyethylen (PE), Polypropylen (PP) und Polylactid (PLA) herzustellen, sowie Poly-Hydroxybutyrat-Co-Hydroxyvalerat (PHBV) Matrizen und deren Struktur-Eigenschaft-Verhältnis zu bestimmen. Die folgenden Kurzfassungen der vorliegenden Forschungsarbeit sind vielfältig: BINÄRE VERBUNDWERKSTOFFE Polylactid (PLA)/ Flachsmatten-Verbundwerkstoffe Die Polylactid (PLA)/Flachsmatte und modifizierte PLA/Flachsmatten-Verbundwerkstoffe wurden im Pressverfahren hergestellt. Als Modifikator für das PLA wurden zwei nicht regulierte Wachs/Ethylen-Acrylat-Copolymer/Butyl-Acrylat und Acryl Additive verwendet. Die Verteilung der Flachsmatte in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen und thermischen Eigenschaften der Verbundwerkstoffe wurden im Zugversuch, der thermogravimetrische Analyse (TGA) und der dynamisch mechanischen Thermoanalyse (DMTA) jeweils bestimmt. Es zeigte sich, dass die PLA/Flachsmatten-basierten Verbundwerkstoffe eine erhöhte Schlagzähigkeit aufwiesen. Die Zähigkeitswerte der modifizierten PLA/Flachsmatten-Verbundwerkstoffe waren leicht verringert im Vergleich zum PLA. Die Bruchdehnungswerte zeigten eine Verbesserung der Verformbarkeit des modifizierten PLAs und dessen Verbundwerkstoffe. Nach Zugabe eines Wärme-Modifikators verbesserte sich der Wärmewiderstand auf unter Verarbeitungstemperatur des PLA und hatte nur einen unwesentlichen Einfluss auf die Glasübergangstemperatur des PLA. Die Hauptkurve des Speichermoduls wurde mit der Zeit-Temperatur-Überlagerung (TTS) aufgestellt. Auf alle untersuchten Systeme konnte das dafür gut geeignete Prinzip der linear viskoelastischen Werkstoffe angewendet werden um die Steifigkeit in die Kriechneigung umzuwandeln. Polylactid (PLA)/Flachstextilgewebe-Verbundwerkstoffe Die Polylactid (PLA)/Flachstextilgewebe 2x2 Körper und 4x4 Gewebe mit Leinwandbindung-Verbundwerkstoffe wurden im Intervall-Pressverfahren hergestellt. Das PLA wurde mit zwei Flachsgewebeformen verstärkt. Die Verteilung der Flachs-Verbundwerkstoffstrukturen in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen Eigenschaften (Zugfestigkeit, Steifigkeit und Festigkeit) der jeweiligen Verbundwerkstoffe wurden in Zugversuchen und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Das Rasterelektronenmikroskop zeigte auf, das der Grenzflächenzwischenraum von rausgezogenen Fasern sich durch das Herstellen im Intervall-Pressverfahren verbessert hat. Auch zeigte sich, dass beide Arten der Flachs-Verbundwerkstoffe die Schlagzähigkeit der Verbundwerkstoffe erhöht im Vergleich zum puren PLA. Die Zugfestigkeit- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe waren deutlich höher als die der puren PLA und spiegeln die Effekte von Verbundwerkstoffstrukturen wieder. Die berechnete Kriechneigung im Speichermodul wurde durch die Anwendung des Zeit-Temperatur-Überlagerung (TTS) Prinzips aufgestellt. Die errechnete Kriechgeschwindigkeit der Flachs-Verbundwerkstoffe war wesentlich geringer als im puren PLA. Polyethylen und Polypropylen/Nanosilikon Dioxid/Flachs-Verbundwerkstoffe Verbundwerkstoffe hergestellt aus Polylactid (PLA), modifiziertem PLA und Flachsfasertextilgewebe (Flachsgewebeform von 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) wurden im Pressverfahren hergestellt. Zwei strukturell unterschiedliche Additive wurden verwendet um das PLA zu modifizieren. Die Verteilung der Flachs-Verbundwerkstoffstruktur wurde unter dem Rasterelektronenmikroskop (SEM) und dem computergestütztes Computer-Tomography-System (µCT) untersucht. Die PLA Verbundwerkstoffe wurden dem Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die Kriech- und thermomechanischen Eigenschaften der respektiven Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Kriechversuch bestimmt. Das modifizierte PLA und dessen Verbundwerkstoffe zeigten eine Erhöhung der Schlagzähigkeit im Vergleich zum unmodifizierten PLA. Die Einbindung von Flachs verringerte den Widerstand gegenüber thermischer Degradierung und erhöhte die Wasseraufnahme. Die Schlagenergie- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe war deutlich höher als die der PLA aber spiegelt die Effekte von Verbundwerkstoffstrukturen mit Flachsinhalt wieder. Die Hauptkurve des Speichermoduls wurde mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Datenmaterial der Hauptkurve zeigte den Effekt des modifizierten PLAs auf dem Speichermodul deutlich ausgeprägter im Bereich der Niederfrequenz. Polylactide (PLA)/Flachfasertextilgewebe/Böhmit Aluminumoxid (BA)-Verbundwerkstoffe Die textilen Bioverbundwerkstoffe wurden aus flachsfaserverstärkten Poly(Butylen Adipat-Co-Terephtalat) (PBAT) Gewebe und Vlies im Formpressverfahren mit der Folien-Stapelmethode hergestellt. Die mechanischen Eigenschaften (wie Zugfestigkeit und Steifigkeit, Biegefestigkeit, Steifigkeit und Schlagzähigkeit) der jeweiligen textilen Bioverbundwerkstoffe wurde in Zug-, Biege-, und Schlagtests ermittelt. Die PBAT basierten Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Der Vergleich der mechanischen Eigenschaften wurde zwischen reinem PBAT und textilen Verbundwerkstoffen durchgeführt. Der Einfluss der Flachsgewebeformen auf die mechanischen Eigenschaften wurde ebenfalls untersucht. Die Ergebnisse zeigten das die Festigkeit der textilen Bioverbundwerkstoffe mit der Webart der Fasern anstieg, signifikant in Bezug auf die Steifigkeit bei einer erhöhten Verdichtung der Fasern. Die 4x4 flachfasergewebten (4-Schussfaden-Windung und 4-Kettfaden-Windung) verstärkten Bioverbundwerkstoffe zeigten die höchste Festigkeit und Steifigkeit im Vergleich zu den anderen textilen Bioverbundwerkstoffen und dem puren PBAT. Dieses Resultat wurde der Beschaffenheit der 4x4-flachfasergewebten Webart zugewiesen. Das Aminopropyltriethoxysilan beeinträchtigte die mechanischen Eigenschaften und Wasseraufnahme der entstandenen Verbundlaminate durch Oberflächenkompatibilität zwischen der Flachsfaser und dem PBAT. HYBRIDE VERBUNDWERKSTOFFE Polyethylen/Nanopartikel, natürliche und tierische Verbundwerkstoffe Binäre und ternäre Verbundwerkstoffe, bestehend aus hoch dichtem Polyethylen (HDPE), Böhmit Aluminumoxid (BA) und verschiedenen natürlichen und tierischen Fasern wie Flachs, Schwammgurke (SG), Palmfaser und Schweinehaar (PH), wurden im Pressverfahren hergestellt. Vorbereitend wurden wasserhaltige BA-Suspensionen auf die HDPE/Flachsmatte gesprüht um nanopartikel/naturfaserverstärkte ternäre Polymer-Verbundwerkstoffe nach dem Trocknen zu erhalten. Die Verteilung der Natur-,Tierfasern und der BA-Partikel in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop untersucht und diskutiert. Die thermomechanischen und Spannungsrelaxation-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Stressrelaxationstest (bei unterschiedlichen Temperaturen durchgeführt) bestimmt. Die HDPE-basierten Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Es wurde festgestellt, dass alle Verbundwerkstoffsysteme eine Erhöhung der Steifigkeit und Spannungsrelaxation und eine Verminderung der Kerbschlagzähigkeit aufzeigten. Die Spannungsrelaxations-Steifigkeit von Naturfaser-, Tierfaserverbundwerkstoffen war größer im Vergleich zu reinem HDPE. Diese Steifigkeit steig deutlich an mit der Einbindung von BA. Die Hauptkurven der Relaxation wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Die Umkehrung des Findley Potenzgesetzes konnte gut für die Beschreibung der Relaxations-Steifigkeit vs. Zeitüberwachung in allen untersuchten Systemen angewendet werden. Die Einbindung der BA-Partikel erhöhte den Wärmewiderstand, welcher bei höherer Temperatur zu sinken begann im Vergleich zu HDPE/Flachsmatten-Verbundwerkstoff. Der HDPE/Flachsmatte/BA-Verbundwerkstoff konnte die Wasseraufnahme verringern. Polyethylen/Flachs/SiO Verbundwerkstoffe Verbundwerkstoffe bestehend aus hoch dichtem Polyethylen (HDPE), Flachsfasertextilgewebe (Flachsgewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Siliziumdioxid (SiO2) wurden im Pressverfahren mit Nanospritztechnik hergestellt. Die SiO2 Schlämme wurden auf beide Oberflächen des Flachsfasergewebes per Hand gesprüht. Die HDPE/ Flachsfasergewebe-Verbundwerkstoffe wurden in einer Laborpresse im Pressverfahren mit und ohne Nanospritztechnik hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Der Wärmewiderstand, Steifigkeit- und Zugfestigkeit-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA) und Zugversuchen bestimmt. Es zeigte sich, dass die Aufprallenergie und Steifigkeitswerte der HDPE/Flachs-Verbundwerkstoffe deutlich höher als die des HDPE waren aber die Effekte von Verbundwerkstoffen mit Flachsinhalt widerspiegeln. Die Einbindung von SiO2-Partikeln erhöhte den Widerstand von thermischer Degradierung. Es wurde bestimmt, das das Prinzip der linear viskoelastischen Werkstoffe gut anwendbar auf die Umwandlung der Steifigkeit zu Kriechneigungsergebnissen ist. Modifizierte und nicht modifizierte Polylactid (PLA)/Flachsfasergewebe-Verbundwerkstoffe Hybride Verbundwerkstoffe aus Polypropylen (PP) oder hoch-dichtem Polyethylen (HDPE), verschiedenen Flachsfasern (unidirektional, biaxial und 2x2 Körper) und Siliziumdioxid (SiO2) wurden im Pressverfahren hergestellt. Der ternäre Polymer-Verbundwerkstoff wurde wirkungsvoll durch das Aufbringen von SiO2 Lösemitteln auf die Oberfläche der Flachsfaser hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen PP- und HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die thermischen und mechanischen Eigenschaften der respektiven Verbundwerkstoffe wurde in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA), Kriech- und Spannungsrelaxations-Tests bestimmt. Es zeigte sich, dass die thermische Zersetzungstemperatur der PP oder HDPE/Flachs-Verbundwerkstoffe durch das Auftragen der SiO2-Partikel ansteigt. Die Aufprallenergie-, Steifigkeit-, Kriechbeständigkeit- und Relaxation-Steifigkeitn-Werte aller Flachs-Verbundwerkstoffe stiegen deutlich an im Vergleich zur PP und HDPE Matrix. Die Zeit-Temperatur-Überlagerung (TTS) wurde angewandt um die Kriech- und Relaxation-Steifigkeit für die Verbundwerkstoffe als Funktion der Zeit in Form einer Hauptkurve zu schätzen. Die Aktivierungsenergien aller untersuchten PP und HDPE-Verbundwerkstoffsysteme wurden mit der Arrhenius Gleichung errechnet. Das generalisierte Maxwell Model war gut auf die Spannungsrelaxationsergebnisse anwendbar. Polylactide (PLA)/Flachsfasertextilgewebe/Böhmit Aluminiumoxid (BA)-Verbundwerkstoffe Verbundwerkstoffe bestehend aus Polylactid (PLA), Flachfasertextilgewebe (Gewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Böhmit Aluminium (BA) wurden im Pressverfahren hergestellt. Für die Vordispergierung der Aluminiumoxid-Nanopartikel wurde die Spritztechnik angewendet. Die wasserhaltigen Aluminiumoxid-Schlämme wurden durch das Vermischen von Wasser mit wasserdispergierbarem Aluminiumoxid hergestellt. Die Verteilung der Flachsstrukturen und Aluminiumoxid-Partikeln in den Verbundwerkstoffen wurde mit einem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Die Kriech- und thermomechanischen Eigenschaften der jeweiligen Verbundwerkstoffe wurden in Kurzzeit-Kriechversuchen (bei unterschiedlichen Temperaturen durchgeführt), thermogravimetrischen Analysen (TGA) und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Es zeigte sich, dass das Einbringen der Aluminiumoxid-Partikel die Wasseraufnahme im Vergleich zu PLA/Flachs-Gemischen reduziert. Die Aufprallenergie- und Steifigkeitswerte der PLA/Flachs-Gemische waren signifikant höher als die des PLA aber spiegelten die Effekte von Verbundwerkstoffstrukturen wieder. Das Einbringen von Aluminiumoxid-Partikeln verbesserte die Lagerungs-Steifigkeit und die Kriechbeständigkeit im Vergleich zu PLA/Flachs-Gemischen, erhöhte allerdings leicht den Wärmewiderstand bei hohen Temperaturen. Kein klarer Trend in der Flachswebart konnte dem Temperaturverhalten zugeordnet werden. Die Kriech-Hauptkurven wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Findley Potenzgesetz konnte zufriedenstellend die Kriechneigung vs. Zeitüberwachung für alle untersuchten Systeme beschreiben. Poly(Hydroxybutyrat-Co-Hydroxyvalerat)/Natursisalfaser/Ton-Verbundwerkstoffe Poly(Hydroxybutyrat-Co-Hydroxyvalerat) (PHBV) Bioverbundwerkstoffe die Sisalfasern in Längen von 0,25 und 5 mm und Ton-Partikeln enthalten wurden im Heißpressverfahren hergestellt. Die Silan (Bis(Trithoxysilylpropyl)Tetrasulfide) Behandlung wurde für die Modifizierung verwendet um die Eigenschaften von ähnlichen hybriden Verbundwerkstoffen zu verbessern. Alle Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Die mechanischen Eigenschaften der jeweiligen hybriden Verbundwerkstoffe wie Zugsteifigkeit und Festigkeit, Zähigkeit und Härte wurden in Zugversuchen, Schlagtests und Härteprüfungen bestimmt. Es zeigte sich, dass die Zugfestigkeit, Steifigkeit und Schlagzähigkeit von langen Sisalfasern sich mit der Erhöhung des Fasergehalts verbessert. Behandeltes Silan von langen Fasern mit 20 wt.% Belastung zeigte eine Verbesserung der Faser-Zugfestigkeit um 10% und Schlagzähigkeit von 750% im Vergleich zu reinem PHBV. Diese Besonderheit wurde auch von einem Rasterelektronenmikroskop bestätigt. Weiterhin ist die Härte und Wasserbeständigkeit in PHBV/Sisal-Verbundwerkstoffen durch das Einbringen von Ton-Partikeln angestiegen. Die Diffusionskoeffizienten für die untersuchten PHBV- und hybriden Verbundwerkstoffsysteme wurden auch errechnet.
6

Beitrag zur Charakterisierung naturfaserverstärkter Verbundwerkstoffe mit hochpolymerer Matrix

Lampke, Thomas 23 October 2001 (has links) (PDF)
Die Zielstellung dieser Dissertation besteht darin, einen Beitrag zur Charakterisierung sowohl der Ausgangsmaterialien (Naturfasern, Polymere) als auch ihrer Verbundeigenschaften zu leisten. Morphologische Unterschiede der Fasern, im wesentlichen bedingt durch Erntezeitpunkt, Röstdauer und Verarbeitungsbedingungen, haben Einfluss auf die mechanischen Kennwerte als auch auf das Faser/Matrix-Interface des Verbundwerkstoffs. Durch unterschiedliche Verfahren (Thermoanalyse, Ubbelohde-Viskosimetrie, NMR-Spektroskopie, Einzelfaserzugversuch) werden sowohl das Degradationsverhalten als auch die Prozessgrenzen bestimmt. Zur Einschätzung des Grenzflächenzustands werden oberflächensensitive Verfahren (BET-Verfahren, Zeta-Potentialbestimmung, IR-Spektroskopie, Rasterelektronen-mikroskopie) angewendet. Die Charakterisierung der durch Compoundieren und Spritzgießen, bzw. durch Konsolidieren von Hybridvliesen hergestellten Verbunde erfolgt mittels quasi-statischer bzw. dynamisch-mechanischer Methoden (DMA). Fraktographische rasterelektronenmikroskopische und IR-spektroskopische Untersuchungen belegen die Veränderung des Interfaces durch geeignete Faserbehandlung, Prozessparameter und Haftvermittlung. Die vorliegende Arbeit weist die effektive Verstärkungswirkung der Naturfasern Flachs bzw. Hanf in hochpolymeren Matrices zuverlässig nach. / The objectives of this dissertation are the characterization of the components (natural fibers, polymers) and the resulting properties of the composites. Due to differences in fiber morphology, mainly caused by the date of harvest, retting and fiber separation procedures, the mechanical properties and the fiber/matrix interface are effected. The degradation and the limits of the process are characterized by means of thermal analysis, Ubbelohde viscosimetry, NMR spectroscopy and single fiber tensile test. Surface sensitive methods (BET measurements, zeta potential measurements, IR-spectroscopy) were applied to evaluate the fiber/matrix interface. The composites were first manufactured by compounding and injection molding as well as by consolidation of hybrid nonwovens and characterized by means of quasi statical and dynamic-mechanical methods. The effect of adequate fiber treatements, process parameters and coupling agents becomes obvious applying fractographic SEM and IR spectroscopic measurements. The gained results indicate the strengthening effect of natural fibers like flax and hemp on the performance of high polymers.
7

Neue Einsatzpotentiale naturfaserbasierter Materialien in der Konsumgüterproduktion durch die technologische Entwicklung des Ziehverfahrens am Beispiel der Verpackung / New application potential of biofibre-based materials in the production of consumer goods by technological development of the deep drawing process on the example of packaging

Hauptmann, Marek 11 July 2017 (has links)
Die Produktion verschiedener Arten von Gütern ist im globalen Kontext gesellschaftlicher Entwicklung fortwährend an die Verfügbarkeit von Ressourcen gebunden und durch diese zunehmend begrenzt. In den bis heute entstandenen Wertschöpfungsketten basiert die verlustarme und effiziente Verteilung von Produkten, Zwischenprodukten, Halbzeugen sowie auch Rohstoffen auf den spezifisch auf die jeweiligen Erfordernisse eingestellten Funktionen ihrer Verpackungen. Als Bindeglied in nahezu allen Teilen der Produktion werden die Verpackung und ihre Herstellung innerhalb des mit Abstand größten Teils ihrer Anwendung, den Konsumgüterverpackungen als Beispiel für die Diskussion von Einsatzpotentialen naturfaserbasierter Materialien verwendet. Die Habilitationsschrift stellt die Ausgangssituation in der weltweiten Konsumgüterproduktion und Ressourcenverfügbarkeit dar und ordnet die Position naturfaserbasierter Packmittel in diese ein. Es werden Technologien zur Formgebung naturfaserbasierter Materialien zu Packmitteln zusammenfassend dargestellt. Die Ziehtechnik wird im Speziellen in Form eines Leitfadens in ihren Wirkmechanismen und Prozessvarianten sowie in Bezug auf ihre technische Umsetzung dargestellt. Es werden Beispiele konkreter Anwendungsmöglichkeiten diskutiert.
8

Neue Einsatzpotentiale naturfaserbasierter Materialien in der Konsumgüterproduktion durch die technologische Entwicklung des Ziehverfahrens am Beispiel der Verpackung / New application potential of biofibre-based materials in the production of consumer goods by technological development of the deep drawing process on the example of packaging

Hauptmann, Marek 23 August 2017 (has links) (PDF)
Die Produktion verschiedener Arten von Gütern ist im globalen Kontext gesellschaftlicher Entwicklung fortwährend an die Verfügbarkeit von Ressourcen gebunden und durch diese zunehmend begrenzt. In den bis heute entstandenen Wertschöpfungsketten basiert die verlustarme und effiziente Verteilung von Produkten, Zwischenprodukten, Halbzeugen sowie auch Rohstoffen auf den spezifisch auf die jeweiligen Erfordernisse eingestellten Funktionen ihrer Verpackungen. Als Bindeglied in nahezu allen Teilen der Produktion werden die Verpackung und ihre Herstellung innerhalb des mit Abstand größten Teils ihrer Anwendung, den Konsumgüterverpackungen als Beispiel für die Diskussion von Einsatzpotentialen naturfaserbasierter Materialien verwendet. Die Habilitationsschrift stellt die Ausgangssituation in der weltweiten Konsumgüterproduktion und Ressourcenverfügbarkeit dar und ordnet die Position naturfaserbasierter Packmittel in diese ein. Es werden Technologien zur Formgebung naturfaserbasierter Materialien zu Packmitteln zusammenfassend dargestellt. Die Ziehtechnik wird im Speziellen in Form eines Leitfadens in ihren Wirkmechanismen und Prozessvarianten sowie in Bezug auf ihre technische Umsetzung dargestellt. Es werden Beispiele konkreter Anwendungsmöglichkeiten diskutiert.
9

Technologieentwicklung zur Herstellung von naturfaserverstärkten Bauteilen in Leichtbauweise unter Einsatz von Ganzpflanzenrohstoffen

Rinberg, Roman 22 December 2011 (has links)
Die Verwendung von „klassischen“ Naturfasern als Verstärkungskomponente in Kunststoffbauteilen ist durch ihr besonderes Eigenschaftsspektrum in Kombination mit wirtschaftlichen und ökologischen Vorteilen im gesamten Lebenszyklus begründet. Die Technologien zur Verarbeitung von Naturfasern zu Bauteilen wurden in den vergangenen Jahren kontinuierlich weiterentwickelt, wobei das Hauptaugenmerk auf der Optimierung von Material- und Verfahrensparametern bekannter Technologielösungen lag. Komplexe Anwendungen im Automobilbau erfordern allerdings eine ganzheitliche Betrachtung der gesamten Wertschöpfungskette von der Rohstoffbereitstellung über die Halbzeugfertigung bis hin zur Bauteilentwicklung und -herstellung. In diesem Zusammenhang weisen neuartige Faserverstärkungen aus Ganzpflanzenrohstoffen (GPR) gegenüber den konventionell aufgeschlossenen Naturfasern ein Potenzial für deutlich höhere Material- und Kosteneffizienz auf. Ziel dieser Arbeit ist die Bereitstellung einer werkstoffgerechten Auslegungsstrategie für eine neue durchgängige Prozesskette zur Herstellung von naturfaserverstärkten Bauteilen unter Einsatz von Ganzpflanzenrohstoffen. Am Beispiel der Flachspflanze werden dabei die verketteten Prozessstufen und die zugehörigen Schnittstellen entwickelt, charakterisiert und validiert. Darüber hinaus wird zur Umsetzung von Leichtbauanforderungen der Ansatz verfolgt, funktionale Zusammenhänge zwischen mechanischen Werkstoffkennwerten und lokaler Bauteildichte für eine belastungsgerechte Bauteilauslegung in Leichtbauweise zu erfassen. / The use of „classical“ natural fibres as reinforcing part for plastic components is caused by their particular property range in combination with economical and ecological advantages in the total life cycle. In recent years, technologies for the processing of natural fibres to components were continuously developed, focused on optimising material and process parameters of existing technology solutions. Certainly, complex applications in the automobile industry require an integrated consideration of the total value added chain from material supply to manufacturing of semi-finished products up to component development and production. In this regard novel fibre reinforcements made from whole plant materials possess potential for considerably higher material and cost efficiency compared to conventional natural fibres. The Intention of this work is to provide a material-specific dimensioning strategy for a new integrated process chain to produce natural fibre reinforced components by using raw materials made of the whole plant. Linked process steps and related interfaces were developed, characterised and validated by using the example of a flax plant. Moreover, the approach of realizing lightweight construction requirements is necessary in order to measure functional relations between material parameters and local density for the load-bearing part dimensioning in lightweight structure.
10

Natural Fiber Reinforced Thermoplastics

Siengchin, Suchart 21 October 2016 (has links)
Biocomposites made from biodegradable polymer as matrix and natural fiber as reinforcement are certainly environmentally friendly materials. Both constituent materials are fully biodegradable and do not leave any noxious components on Earth. The natural fibers have been used as reinforcement due to their advantages compared to glass fibers such as low cost, high specific strength and modulus, low density, renewability and biodegradability. Major aims of this work were to produce natural fibers and/or nanoparticles with polyethylene (PE), polypropylene (PP) and polylactide (PLA), poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) matrices and determine their structure-property relationships. Following abstracts of the present research work are manifold: BINARY COMPOSITES Polylactide (PLA)/flax mat composites The polylactide (PLA)/flax mat and modified PLA/flax mat composites were produced by hot press technique. Two additives of non-regulated wax/ethylene acrylate copolymer/butyl acrylate and acrylic were used as modifier for PLA. The dispersion of the flax mat in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical and thermal properties of the composites were determined in tensile test, thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the PLA based composites increased the impact resistance. The tensile strength value of modified PLA/flax mat composite decreased slightly compared to the PLA. The elongation at break data indicated that an improvement in ductility of modified PLA and its composites. Moreover, addition of thermal modifier enhanced thermal resistance below processing temperature of PLA and had a marginal effect on the glass transition temperature of PLA. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. The principle of linear viscoelastic material was fairly applicable to convert from the modulus to the creep compliance for all systems studied. Polylactide (PLA)/woven flax textiles composites The polylactide (PLA)/woven flax textiles 2x2 twill and 4x4 hopsack composites were produced by interval hot press technique. Two weave styles of flax used to reinforce in PLA. The dispersion of the flax composite structures in the composites was inspected in scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical properties (tensile, stiffness and strength) of the composites were determined in tensile and dynamic-mechanical thermal analysis (DMTA) tests, respectively. SEM observed that the interfacial gaps around pulled-out fibers were improved when produced by the interval hot press. It was also found that the both styles of flax composites increased the impact resistance compared to the neat PLA. The tensile strength and stiffness value of PLA/flax composites were markedly higher than that of the neat PLA and reflect the effects of composite structures. The calculated storage creep compliance was constructed by applying the time-temperature superposition (TTS) principle. The calculated creep response of these flax composites was much lower than that of the neat PLA. Polyethylene and polypropylene/nano-silicon dioxide/flax composites Composites composed of polylactide (PLA), modified PLA and woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) were produced by hot press technique. Two structurally different additives used to modify PLA. The dispersion of the flax composite structures in the composites was studied by scanning electron microscopy (SEM) and computed microtomography system (µCT). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The thermomechanical and creep properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA)and short-time creep tests, respectively. It was found that the modified PLA and its composite increased the impact resistance compared to the unmodified PLA. Incorporation of flax decreased resistance to thermal degradation and increased water uptake. The impact energy and stiffness value of PLA/flax composites was markedly higher than that of PLA but reflect the effects of composite structures and flax content. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. From the master curve data, the effect of modified PLA on the storage modulus was more pronounced in the low frequencies range. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites The textile biocomposites made from woven and non-woven flax fibre reinforced poly(butylene adipate-co-terephthalate) (PBAT) were prepared by compression moulding using film stacking method. The mechanical properties (such as tensile strength and stiffness, flexural strength and modulus, and impact strength) of textile biocomposites were determined in tensile, flexural and impact tests, respectively. The PBAT-based composites were subjected to water absorption. The comparison of the mechanical properties was made between pure PBAT and textile composites. The influence of flax weave styles on the mechanical properties was also evaluated. The results showed that the strength of the textile biocomposites was increased according to weave types of fibers, especially in the stiffness was significantly increased with the higher densification of the fibers. The 4x4-plain woven fibers (4-yard-wrap and 4-yard-weft weave direction) reinforced biocomposite indicated the highest strength and stiffness compared to the other textile biocomposites and pure PBAT. This was considered to be as the result of the character of weave style of 4x4-plain woven fibers. The aminopropyltriethoxysilane affected the mechanical properties and water absorption of the resulting composites laminates due to the surface compatibility between flax fiber and PBAT. HYBRID COMPOSITES Polyethylene/nanoparticle, natural and animal composites Binary and ternary composites composed of high-density polyethylene (HDPE), boehmite alumina (BA) and different kinds of natural-, animal fibers, like flax, sponge gourd (SG), palm and pig hair (PH) were produced by hot press technique. Aqueous BA suspensions were sprayed on the HDPE/flax mat to prepare nanoparticle/natural fiber reinforced ternary polymer composites followed by drying. The dispersion of the natural-, animal fibers and BA particles in the composites was studied by scanning electron microscopy (SEM) and discussed. The thermomechanical and stress relaxation properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and short-time stress relaxation tests (performed at various temperatures), respectively. The HDPE based composites were subjected to water absorption and instrumented falling weight impact tests. It was found that the all composites systems increased the stiffness, stress relaxation and reduced the impact toughness. The stress relaxation modulus of natural-, animal fiber composites were higher compared to that of the neat HDPE. This modulus increased greatly with in corporation of BA. The relaxation master curves were constructed by applying the time-temperature superposition (TTS) principle. The inverse of Findley power law could fairly applicable to describe the relaxation modulus vs. time traces for all systems studied. Incorporation of BA particles enhanced the thermal resistance which started to degrade at higher temperature compared to the HDPE/flax mat composite. The HDPE/flax mat/BA composite could reduce the water uptake. Polyethylene/Flax/SiO2 Composites Composites composed of high-density polyethylene (HDPE), woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) and silicon dioxide (SiO2) were produced by hot press with nano spraying technique. The SiO2 slurries were sprayed by a hand onto the both surface of the woven flax fiber. The HDPE /woven flax fibers composites with and without used nano-spraying technique were produced by hot pressing in a laboratory press. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related HDPE based composites were subjected to instrumented falling weight impact test. The thermal resistance, stiffness and tensile strength properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and tensile tests, respectively. It was found that the impact energy and stiffness value of HDPE/flax composites was markedly higher than that of HDPE but reflect the effects of composite structures and flax content. Incorporation of SiO2 particles enhanced resistance to thermal degradation. It was established that the linear viscoelastic material principle are fairly applicable to convert from the modulus to the creep compliance results. Un- and Modified Polylactide (PLA) /woven Flax Fiber composites Hybrid composites composed of polypropylene (PP) or high-density polyethylene (HDPE), different flax fibers (unidirectional-, biaxial and twill2x2) and silicon dioxide (SiO2) were produced by hot press technique. The ternary polymer composite was effectively fabricated by spraying SiO2 solvents onto the surface of flax fiber. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related PP and HDPE based composites were subjected to instrumented falling weight impact test. The thermal and mechanical properties of the composites were determined by thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA), creep and stress relaxation tests, respectively. It was found that thermal decomposition temperature of the PP or HDPE/flax composites increased by the addition of SiO2 particles. The impact energy, stiffness, creep resistance and relaxation modulus value of all flax composites increased markedly compared to the PP and HDPE matrix. Time–temperature superposition (TTS) was applied to estimate the creep and relaxation modulus of the composites as a function of time in the form of a master curve. The activation energies for the all PP and HDPE composites systems studied were also calculated by using the Arrhenius equation. The generalized Maxwell model was fairly applicable to the stress relaxation results. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites Composites composed of polylactide (PLA), woven flax fiber textiles (weave style of 2x2 twill and 4x4 hopsack) and boehmite alumina (BA) were produced by hot press. The spraying technique served for the pre-dispersion of the alumina nanoparticles. The aqueous alumina slurry was produced by mixing the water with water dispersible alumina. The dispersion of the flax structures and alumina particles in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The creep and thermomechanical properties of the composites were determined in short-time creep tests (performed at various temperatures), thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the incorporation of alumina particles reduced the water uptake compared to the PLA/flax blends. The impact energy and stiffness value of PLA/flax blends was markedly higher than that of PLA but reflected the effects of composite structures. Incorporation of alumina particles enhanced storage modulus and the creep resistance compared to the PLA/flax blends but slightly incremented thermal resistance at high temperature. No clear trend in the flax weave style- effect was found in the thermal behaviour. The creep master curves were constructed by applying the time-temperature superposition (TTS) principle. The Findley power law could satisfactorily describe the creep compliance vs. time traces for all systems studied. Poly(hydroxybutyrate-co-hydroxyvalerate)/sisal natural fiber/clay composites Poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) biocomposites different sisal containing with the fiber length of 0.25 and 5 mm, and addition of clay particles were prepared by hot compression technique. Silane (Bis(triethoxysilylpropyl)tetrasulfide) treatment has been used to modify in order to enhance the properties of related hybrid composites. The all composites were subject to water absorption test. The mechanical properties of hybrid composites such as tensile stiffness and strength, toughness and hardness determined in tensile, impact and hardness tests, respectively. It was found that tensile strength, stiffness and impact strength of long sisal fiber improved with increasing fiber content. Hardness of short sisal fiber improved with increasing fiber content. Treated Silane of long fibers at 20 wt.% loading was found to enhance the tensile strength fiber by 10% and impact strength by 750% as compared to the neat PHBV. Note that this feature was also confirmed by the appearance of a scanning electron microscopy. Moreover, the hardness and water resistance of the PHBV/sisal composites increased by the addition of clay particles. The diffusion coefficient for the PHBV and hybrid composites systems studied were also calculated. / Bioverbundwerkstoffe aus biologisch abbaubarem Polymer als Matrix und Naturfasern als Verstärkung sind ohne weiteres umweltfreundliche Materialien. Beide Bestandsmaterialien sind vollständig biologisch abbaubar und hinterlassen keine schädlichen Bestandteile auf der Erde zurück. Die als Verstärkung verwendeten Naturfasern wurden aufgrund ihrer Vorteile gegenüber Glasfasern, wie z.B. geringe Kosten, hohe spezifische Festigkeit und Steifigkeit, geringe Dichte, Erneuerbarkeit und Kompostierbarkeit ausgesucht. Der Hauptfokus dieser Arbeit lag darin Naturfasern und/oder Nanopartikel mit Polyethylen (PE), Polypropylen (PP) und Polylactid (PLA) herzustellen, sowie Poly-Hydroxybutyrat-Co-Hydroxyvalerat (PHBV) Matrizen und deren Struktur-Eigenschaft-Verhältnis zu bestimmen. Die folgenden Kurzfassungen der vorliegenden Forschungsarbeit sind vielfältig: BINÄRE VERBUNDWERKSTOFFE Polylactid (PLA)/ Flachsmatten-Verbundwerkstoffe Die Polylactid (PLA)/Flachsmatte und modifizierte PLA/Flachsmatten-Verbundwerkstoffe wurden im Pressverfahren hergestellt. Als Modifikator für das PLA wurden zwei nicht regulierte Wachs/Ethylen-Acrylat-Copolymer/Butyl-Acrylat und Acryl Additive verwendet. Die Verteilung der Flachsmatte in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen und thermischen Eigenschaften der Verbundwerkstoffe wurden im Zugversuch, der thermogravimetrische Analyse (TGA) und der dynamisch mechanischen Thermoanalyse (DMTA) jeweils bestimmt. Es zeigte sich, dass die PLA/Flachsmatten-basierten Verbundwerkstoffe eine erhöhte Schlagzähigkeit aufwiesen. Die Zähigkeitswerte der modifizierten PLA/Flachsmatten-Verbundwerkstoffe waren leicht verringert im Vergleich zum PLA. Die Bruchdehnungswerte zeigten eine Verbesserung der Verformbarkeit des modifizierten PLAs und dessen Verbundwerkstoffe. Nach Zugabe eines Wärme-Modifikators verbesserte sich der Wärmewiderstand auf unter Verarbeitungstemperatur des PLA und hatte nur einen unwesentlichen Einfluss auf die Glasübergangstemperatur des PLA. Die Hauptkurve des Speichermoduls wurde mit der Zeit-Temperatur-Überlagerung (TTS) aufgestellt. Auf alle untersuchten Systeme konnte das dafür gut geeignete Prinzip der linear viskoelastischen Werkstoffe angewendet werden um die Steifigkeit in die Kriechneigung umzuwandeln. Polylactid (PLA)/Flachstextilgewebe-Verbundwerkstoffe Die Polylactid (PLA)/Flachstextilgewebe 2x2 Körper und 4x4 Gewebe mit Leinwandbindung-Verbundwerkstoffe wurden im Intervall-Pressverfahren hergestellt. Das PLA wurde mit zwei Flachsgewebeformen verstärkt. Die Verteilung der Flachs-Verbundwerkstoffstrukturen in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen Eigenschaften (Zugfestigkeit, Steifigkeit und Festigkeit) der jeweiligen Verbundwerkstoffe wurden in Zugversuchen und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Das Rasterelektronenmikroskop zeigte auf, das der Grenzflächenzwischenraum von rausgezogenen Fasern sich durch das Herstellen im Intervall-Pressverfahren verbessert hat. Auch zeigte sich, dass beide Arten der Flachs-Verbundwerkstoffe die Schlagzähigkeit der Verbundwerkstoffe erhöht im Vergleich zum puren PLA. Die Zugfestigkeit- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe waren deutlich höher als die der puren PLA und spiegeln die Effekte von Verbundwerkstoffstrukturen wieder. Die berechnete Kriechneigung im Speichermodul wurde durch die Anwendung des Zeit-Temperatur-Überlagerung (TTS) Prinzips aufgestellt. Die errechnete Kriechgeschwindigkeit der Flachs-Verbundwerkstoffe war wesentlich geringer als im puren PLA. Polyethylen und Polypropylen/Nanosilikon Dioxid/Flachs-Verbundwerkstoffe Verbundwerkstoffe hergestellt aus Polylactid (PLA), modifiziertem PLA und Flachsfasertextilgewebe (Flachsgewebeform von 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) wurden im Pressverfahren hergestellt. Zwei strukturell unterschiedliche Additive wurden verwendet um das PLA zu modifizieren. Die Verteilung der Flachs-Verbundwerkstoffstruktur wurde unter dem Rasterelektronenmikroskop (SEM) und dem computergestütztes Computer-Tomography-System (µCT) untersucht. Die PLA Verbundwerkstoffe wurden dem Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die Kriech- und thermomechanischen Eigenschaften der respektiven Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Kriechversuch bestimmt. Das modifizierte PLA und dessen Verbundwerkstoffe zeigten eine Erhöhung der Schlagzähigkeit im Vergleich zum unmodifizierten PLA. Die Einbindung von Flachs verringerte den Widerstand gegenüber thermischer Degradierung und erhöhte die Wasseraufnahme. Die Schlagenergie- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe war deutlich höher als die der PLA aber spiegelt die Effekte von Verbundwerkstoffstrukturen mit Flachsinhalt wieder. Die Hauptkurve des Speichermoduls wurde mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Datenmaterial der Hauptkurve zeigte den Effekt des modifizierten PLAs auf dem Speichermodul deutlich ausgeprägter im Bereich der Niederfrequenz. Polylactide (PLA)/Flachfasertextilgewebe/Böhmit Aluminumoxid (BA)-Verbundwerkstoffe Die textilen Bioverbundwerkstoffe wurden aus flachsfaserverstärkten Poly(Butylen Adipat-Co-Terephtalat) (PBAT) Gewebe und Vlies im Formpressverfahren mit der Folien-Stapelmethode hergestellt. Die mechanischen Eigenschaften (wie Zugfestigkeit und Steifigkeit, Biegefestigkeit, Steifigkeit und Schlagzähigkeit) der jeweiligen textilen Bioverbundwerkstoffe wurde in Zug-, Biege-, und Schlagtests ermittelt. Die PBAT basierten Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Der Vergleich der mechanischen Eigenschaften wurde zwischen reinem PBAT und textilen Verbundwerkstoffen durchgeführt. Der Einfluss der Flachsgewebeformen auf die mechanischen Eigenschaften wurde ebenfalls untersucht. Die Ergebnisse zeigten das die Festigkeit der textilen Bioverbundwerkstoffe mit der Webart der Fasern anstieg, signifikant in Bezug auf die Steifigkeit bei einer erhöhten Verdichtung der Fasern. Die 4x4 flachfasergewebten (4-Schussfaden-Windung und 4-Kettfaden-Windung) verstärkten Bioverbundwerkstoffe zeigten die höchste Festigkeit und Steifigkeit im Vergleich zu den anderen textilen Bioverbundwerkstoffen und dem puren PBAT. Dieses Resultat wurde der Beschaffenheit der 4x4-flachfasergewebten Webart zugewiesen. Das Aminopropyltriethoxysilan beeinträchtigte die mechanischen Eigenschaften und Wasseraufnahme der entstandenen Verbundlaminate durch Oberflächenkompatibilität zwischen der Flachsfaser und dem PBAT. HYBRIDE VERBUNDWERKSTOFFE Polyethylen/Nanopartikel, natürliche und tierische Verbundwerkstoffe Binäre und ternäre Verbundwerkstoffe, bestehend aus hoch dichtem Polyethylen (HDPE), Böhmit Aluminumoxid (BA) und verschiedenen natürlichen und tierischen Fasern wie Flachs, Schwammgurke (SG), Palmfaser und Schweinehaar (PH), wurden im Pressverfahren hergestellt. Vorbereitend wurden wasserhaltige BA-Suspensionen auf die HDPE/Flachsmatte gesprüht um nanopartikel/naturfaserverstärkte ternäre Polymer-Verbundwerkstoffe nach dem Trocknen zu erhalten. Die Verteilung der Natur-,Tierfasern und der BA-Partikel in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop untersucht und diskutiert. Die thermomechanischen und Spannungsrelaxation-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Stressrelaxationstest (bei unterschiedlichen Temperaturen durchgeführt) bestimmt. Die HDPE-basierten Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Es wurde festgestellt, dass alle Verbundwerkstoffsysteme eine Erhöhung der Steifigkeit und Spannungsrelaxation und eine Verminderung der Kerbschlagzähigkeit aufzeigten. Die Spannungsrelaxations-Steifigkeit von Naturfaser-, Tierfaserverbundwerkstoffen war größer im Vergleich zu reinem HDPE. Diese Steifigkeit steig deutlich an mit der Einbindung von BA. Die Hauptkurven der Relaxation wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Die Umkehrung des Findley Potenzgesetzes konnte gut für die Beschreibung der Relaxations-Steifigkeit vs. Zeitüberwachung in allen untersuchten Systemen angewendet werden. Die Einbindung der BA-Partikel erhöhte den Wärmewiderstand, welcher bei höherer Temperatur zu sinken begann im Vergleich zu HDPE/Flachsmatten-Verbundwerkstoff. Der HDPE/Flachsmatte/BA-Verbundwerkstoff konnte die Wasseraufnahme verringern. Polyethylen/Flachs/SiO Verbundwerkstoffe Verbundwerkstoffe bestehend aus hoch dichtem Polyethylen (HDPE), Flachsfasertextilgewebe (Flachsgewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Siliziumdioxid (SiO2) wurden im Pressverfahren mit Nanospritztechnik hergestellt. Die SiO2 Schlämme wurden auf beide Oberflächen des Flachsfasergewebes per Hand gesprüht. Die HDPE/ Flachsfasergewebe-Verbundwerkstoffe wurden in einer Laborpresse im Pressverfahren mit und ohne Nanospritztechnik hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Der Wärmewiderstand, Steifigkeit- und Zugfestigkeit-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA) und Zugversuchen bestimmt. Es zeigte sich, dass die Aufprallenergie und Steifigkeitswerte der HDPE/Flachs-Verbundwerkstoffe deutlich höher als die des HDPE waren aber die Effekte von Verbundwerkstoffen mit Flachsinhalt widerspiegeln. Die Einbindung von SiO2-Partikeln erhöhte den Widerstand von thermischer Degradierung. Es wurde bestimmt, das das Prinzip der linear viskoelastischen Werkstoffe gut anwendbar auf die Umwandlung der Steifigkeit zu Kriechneigungsergebnissen ist. Modifizierte und nicht modifizierte Polylactid (PLA)/Flachsfasergewebe-Verbundwerkstoffe Hybride Verbundwerkstoffe aus Polypropylen (PP) oder hoch-dichtem Polyethylen (HDPE), verschiedenen Flachsfasern (unidirektional, biaxial und 2x2 Körper) und Siliziumdioxid (SiO2) wurden im Pressverfahren hergestellt. Der ternäre Polymer-Verbundwerkstoff wurde wirkungsvoll durch das Aufbringen von SiO2 Lösemitteln auf die Oberfläche der Flachsfaser hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen PP- und HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die thermischen und mechanischen Eigenschaften der respektiven Verbundwerkstoffe wurde in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA), Kriech- und Spannungsrelaxations-Tests bestimmt. Es zeigte sich, dass die thermische Zersetzungstemperatur der PP oder HDPE/Flachs-Verbundwerkstoffe durch das Auftragen der SiO2-Partikel ansteigt. Die Aufprallenergie-, Steifigkeit-, Kriechbeständigkeit- und Relaxation-Steifigkeitn-Werte aller Flachs-Verbundwerkstoffe stiegen deutlich an im Vergleich zur PP und HDPE Matrix. Die Zeit-Temperatur-Überlagerung (TTS) wurde angewandt um die Kriech- und Relaxation-Steifigkeit für die Verbundwerkstoffe als Funktion der Zeit in Form einer Hauptkurve zu schätzen. Die Aktivierungsenergien aller untersuchten PP und HDPE-Verbundwerkstoffsysteme wurden mit der Arrhenius Gleichung errechnet. Das generalisierte Maxwell Model war gut auf die Spannungsrelaxationsergebnisse anwendbar. Polylactide (PLA)/Flachsfasertextilgewebe/Böhmit Aluminiumoxid (BA)-Verbundwerkstoffe Verbundwerkstoffe bestehend aus Polylactid (PLA), Flachfasertextilgewebe (Gewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Böhmit Aluminium (BA) wurden im Pressverfahren hergestellt. Für die Vordispergierung der Aluminiumoxid-Nanopartikel wurde die Spritztechnik angewendet. Die wasserhaltigen Aluminiumoxid-Schlämme wurden durch das Vermischen von Wasser mit wasserdispergierbarem Aluminiumoxid hergestellt. Die Verteilung der Flachsstrukturen und Aluminiumoxid-Partikeln in den Verbundwerkstoffen wurde mit einem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Die Kriech- und thermomechanischen Eigenschaften der jeweiligen Verbundwerkstoffe wurden in Kurzzeit-Kriechversuchen (bei unterschiedlichen Temperaturen durchgeführt), thermogravimetrischen Analysen (TGA) und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Es zeigte sich, dass das Einbringen der Aluminiumoxid-Partikel die Wasseraufnahme im Vergleich zu PLA/Flachs-Gemischen reduziert. Die Aufprallenergie- und Steifigkeitswerte der PLA/Flachs-Gemische waren signifikant höher als die des PLA aber spiegelten die Effekte von Verbundwerkstoffstrukturen wieder. Das Einbringen von Aluminiumoxid-Partikeln verbesserte die Lagerungs-Steifigkeit und die Kriechbeständigkeit im Vergleich zu PLA/Flachs-Gemischen, erhöhte allerdings leicht den Wärmewiderstand bei hohen Temperaturen. Kein klarer Trend in der Flachswebart konnte dem Temperaturverhalten zugeordnet werden. Die Kriech-Hauptkurven wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Findley Potenzgesetz konnte zufriedenstellend die Kriechneigung vs. Zeitüberwachung für alle untersuchten Systeme beschreiben. Poly(Hydroxybutyrat-Co-Hydroxyvalerat)/Natursisalfaser/Ton-Verbundwerkstoffe Poly(Hydroxybutyrat-Co-Hydroxyvalerat) (PHBV) Bioverbundwerkstoffe die Sisalfasern in Längen von 0,25 und 5 mm und Ton-Partikeln enthalten wurden im Heißpressverfahren hergestellt. Die Silan (Bis(Trithoxysilylpropyl)Tetrasulfide) Behandlung wurde für die Modifizierung verwendet um die Eigenschaften von ähnlichen hybriden Verbundwerkstoffen zu verbessern. Alle Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Die mechanischen Eigenschaften der jeweiligen hybriden Verbundwerkstoffe wie Zugsteifigkeit und Festigkeit, Zähigkeit und Härte wurden in Zugversuchen, Schlagtests und Härteprüfungen bestimmt. Es zeigte sich, dass die Zugfestigkeit, Steifigkeit und Schlagzähigkeit von langen Sisalfasern sich mit der Erhöhung des Fasergehalts verbessert. Behandeltes Silan von langen Fasern mit 20 wt.% Belastung zeigte eine Verbesserung der Faser-Zugfestigkeit um 10% und Schlagzähigkeit von 750% im Vergleich zu reinem PHBV. Diese Besonderheit wurde auch von einem Rasterelektronenmikroskop bestätigt. Weiterhin ist die Härte und Wasserbeständigkeit in PHBV/Sisal-Verbundwerkstoffen durch das Einbringen von Ton-Partikeln angestiegen. Die Diffusionskoeffizienten für die untersuchten PHBV- und hybriden Verbundwerkstoffsysteme wurden auch errechnet.

Page generated in 0.0539 seconds