• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • Tagged with
  • 19
  • 19
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Adaptive rules in emergent logistics (ARIEL): an agent-based analysis environment to study adaptive route-finding in changing road-networks

Orichel,Thomas 06 1900 (has links)
Approved for public release, distribution is unlimited / The delivery of supply in combat operations is very important and often results in success or failure of a mission. This activity, as well as other transportation problems, has traditionally been modeled using global optimization techniques, such as linear programming. However, the goal of this thesis is to examine the feasibility of an agent-based solution to study the movement of material through a road network. The requirement is to build an agent-based system that finds the optimal route through a given road network and is capable of adapting to disruptions introduced to the network and then find alternative routes through the network. The agents act from a local perspective, and can represent more realistically the decisions being made throughout the delivery process. This thesis implements an analysis environment for road networks and develops an agent-based model to build truck-driver agents that are capable of delivering supplies through a changing road network. / Captain, German Army
12

On the use of network coding and multicast for enhancing performance in wired networks / Sur l'utilisation du codage réseau et du multicast pour améliorer la performance dans les réseaux filaires

Wang, Yuhui 17 May 2013 (has links)
La popularité de la grande variété de l'utilisation d'Internet entraîne une croissance significative du trafic de données dans les réseaux de télécommunications. L'efficacité de la transmission de données sera contestée en vertu du principe de la capacité actuelle du réseau et des mécanismes de contrôle de flux de données. En plus d'augmenter l'investissement financier pour étendre la capacité du réseau, améliorer les techniques existantes est plus rationnel et éconmique.Diverses recherches de pointe pour faire face aux besoins en évolution des réseaux ont vu le jour, et l'une d'elles est appelée codage de réseau. Comme une extension naturelle dans la théorie du codage, il permet le mélange de différents flux réseau sur les noeuds intermédiaires, ce qui modifie la façon d'éviter les collisions de flux de données. Il a été appliqué pour obtenir un meilleur débit, fiabilité, sécurité et robustesse dans différents environnements et applications réseau. Cette thèse porte sur l'utilisation du réseau de codage pour le multicast dans les réseaux maillés fixes et systèmes de stockage distribués. Nous avons d'abord des modèles de différentes stratégies de routage multicast dans un cadre d'optimisation, y compris de multicast à base d'arbres et de codage de réseau; nous résolvons les modèles avec des algorithmes efficaces et comparons l'avantage de codage, en termes de gain de débit de taille moyenne graphique généré aléatoirement. Basé sur l'analyse numérique obtenue à partir des expériences précédentes, nous proposons un cadre révisé de routage multicast, appelé codage de réseau stratégique, qui combine transmission muticast standard et fonctions de codage de réseau afin d'obtenir le maximum de bénéfice de codage réseau au moindre coût lorsque ces coûts dépendent à la fois sur le nombre de noeuds à exécuter un codage et le volume de trafic qui est codé. Enfin, nous étudions le problème révisé de transport qui est capable de calculer un système de routage statique entre les serveurs et les clients dans les systèmes de stockage distribués où nous appliquons le codage pour soutenir le stockage de contenu. Nous étendons l'application à un problème d'optimisation général, nommé problème de transport avec des contraintes de degré, qui peut être largement utilisé dans divers domaines industriels, y compris les télécommunications, mais n'a pas été étudié très souvent. Pour ce problème, nous obtenons quelques résultats théoriques préliminaires et nous proposons une approche de décomposition Lagrange raisonnable / The popularity of the great variety of Internet usage brings about a significant growth of the data traffic in telecommunication network. Data transmission efficiency will be challenged under the premise of current network capacity and data flow control mechanisms. In addition to increasing financial investment to expand the network capacity, improving the existing techniques are more rational and economical. Various cutting-edge researches to cope with future network requirement have emerged, and one of them is called network coding. As a natural extension in coding theory, it allows mixing different network flows on the intermediate nodes, which changes the way of avoiding collisions of data flows. It has been applied to achieve better throughput and reliability, security, and robustness in various network environments and applications. This dissertation focuses on the use of network coding for multicast in fixed mesh networks and distributed storage systems. We first model various multicast routing strategies within an optimization framework, including tree-based multicast and network coding; we solve the models with efficient algorithms, and compare the coding advantage, in terms of throughput gain in medium size randomly generated graphs. Based on the numerical analysis obtained from previous experiments, we propose a revised multicast routing framework, called strategic network coding, which combines standard multicast forwarding and network coding features in order to obtain the most benefit from network coding at lowest cost where such costs depend both on the number of nodes performing coding and the volume of traffic that is coded. Finally, we investigate a revised transportation problem which is capable of calculating a static routing scheme between servers and clients in distributed storage systems where we apply coding to support the storage of contents. We extend the application to a general optimization problem, named transportation problem with degree constraints, which can be widely used in different industrial fields, including telecommunication, but has not been studied very often. For this problem, we derive some preliminary theoretical results and propose a reasonable Lagrangian decomposition approach
13

Design, Implementation and Analysis of Wireless Ad Hoc Messenger

Cho, Jin-Hee 12 August 2004 (has links)
Popularity of mobile devices along with the presence of ad hoc networks requiring no infrastructure has contributed to recent advances in the field of mobile computing in ad hoc networks. Mobile ad hoc networks have been mostly utilized in military environments. The recent advances in ad hoc network technology now introduce a new class of applications. In this thesis, we design, implement and analyze a multi-hop ad hoc messenger application using Pocket PCs and Microsoft .Net Compact Framework. Pocket PCs communicate wirelessly with each other using the IEEE 802.11b technology without the use of an infrastructure. The main protocol implemented in this application is based on Dynamic Source Routing (DSR), which consists of two important mechanisms, Route Discovery and Route Maintenance. We adopt DSR since DSR operates solely based on source routing and "on-demand" process, so each packet does not have to transmit any periodic advertisement packets or routing information. These characteristics are desirable for the ad hoc messenger application for which a conversation is source-initiated on-demand. To test our application easily, we have developed a testing strategy by which a mobility configuration file is pre-generated describing the mobility pattern of each node generated based on the random waypoint mobility model. A mobility configuration file thus defines topology changes at runtime and is used by all nodes to know whether they can communicate with others in a single-hop or multi-hops during an experimental run. We use five standard metrics to test the performance of the wireless ad hoc messenger application implemented based on DSR, namely, (1) average latency to find a new route, (2) average latency to deliver a data packet, (3) delivery ratio of data packets, (4) normalized control overhead, and (5) throughput. These metrics test the correctness and efficiency of the wireless ad hoc messenger application using the DSR protocol in an 802.11 ad hoc network that imposes limitations on bandwidth and resources of each mobile device. We test the effectiveness of certain design alternatives for implementing the ad hoc messenger application with these five metrics under various topology change conditions by manipulating the speed and pause-time parameters in the random waypoint model. The design alternatives evaluated include (1) Sliding Window Size (SWS) for end-to-end reliable communication control; (2) the use of per-hop acknowledgement packets (called receipt packets) deigned for rapid detection of route errors by intermediate nodes; and (3) the use of cache for path look-up during route discovery and maintenance. Our analysis results indicate that as the node speed increases, the system performance deteriorates because a higher node speed causes the network topology to change more frequently under the random waypoint mobility model, causing routes to be broken. On the other hand, as the pause time increases, the system performance improves due to a more stable network topology. For the design alternatives evaluated in our wireless ad hoc messenger, we discover that as SWS increases, the system performance also increases until it reaches an optimal SWS value that maximizes the performance due to a balance of a higher level of data parallelism introduced and a higher level of medium contention in 802.11 because of more packets being transmitted simultaneously as SWS increases. Beyond the optimal SWS, the system performance deteriorates as SWS increases because the heavy medium contention effect outweighs the benefit due to data parallelism. We also discover that the use of receipt packets is helpful in a rapidly changing network but is not beneficial in a stable network. There is a break-even point in the frequency of topology changes beyond which the use of receipt packets helps quickly detect route errors in a dynamic network and would improve the system performance. Lastly, the use of cache is rather harmful in a frequently changing network because stale information stored in the cache of a source node may adversely cause more route errors and generate a higher delay for the route discovery process. There exists a break-even point beyond which the use of cache is not beneficial. Our wireless ad hoc messenger application can be used in a real chatting setting allowing Pocket PC users to chat instantly in 802.11 environments. The design and development of the dynamic topology simulation tool to model movements of nodes and the automatic testing and data collection tool to facilitate input data selection and output data analysis using XML are also a major contribution. The experimental results obtained indicate that there exists an optimal operational setting in the use of SWS, receipt packets and cache, suggesting that the wireless ad hoc messenger should be implemented in an adaptive manner to fine-tune these design parameters based on the current network condition and performance data monitored to maximize the system performance. / Master of Science
14

On the use of network coding and multicast for enhancing performance in wired networks

Wang, Yuhui 17 May 2013 (has links) (PDF)
The popularity of the great variety of Internet usage brings about a significant growth of the data traffic in telecommunication network. Data transmission efficiency will be challenged under the premise of current network capacity and data flow control mechanisms. In addition to increasing financial investment to expand the network capacity, improving the existing techniques are more rational and economical. Various cutting-edge researches to cope with future network requirement have emerged, and one of them is called network coding. As a natural extension in coding theory, it allows mixing different network flows on the intermediate nodes, which changes the way of avoiding collisions of data flows. It has been applied to achieve better throughput and reliability, security, and robustness in various network environments and applications. This dissertation focuses on the use of network coding for multicast in fixed mesh networks and distributed storage systems. We first model various multicast routing strategies within an optimization framework, including tree-based multicast and network coding; we solve the models with efficient algorithms, and compare the coding advantage, in terms of throughput gain in medium size randomly generated graphs. Based on the numerical analysis obtained from previous experiments, we propose a revised multicast routing framework, called strategic network coding, which combines standard multicast forwarding and network coding features in order to obtain the most benefit from network coding at lowest cost where such costs depend both on the number of nodes performing coding and the volume of traffic that is coded. Finally, we investigate a revised transportation problem which is capable of calculating a static routing scheme between servers and clients in distributed storage systems where we apply coding to support the storage of contents. We extend the application to a general optimization problem, named transportation problem with degree constraints, which can be widely used in different industrial fields, including telecommunication, but has not been studied very often. For this problem, we derive some preliminary theoretical results and propose a reasonable Lagrangian decomposition approach
15

Exploration architecturale et étude des performances des réseaux sur puce 3D partiellement connectés verticalement / Architectural exploration and performance analysis of Vertically-Partially-Connected Mesh-based 3D-NoC

Bahmani, Maryam 09 December 2013 (has links)
L'utilisation de la troisième dimension peut entraîner une réduction significative de la puissance et de la latence moyenne du trafic dans les réseaux sur puce (Network-on-Chip). La technologie des vias à travers le substrat (ou Through-Silicon Via) est la technologie la plus prometteuse pour l'intégration 3D, car elle offre des liens verticaux courts qui remédient au problème des longs fils dans les NoCs-2D. Les TSVs sont cependant énormes et les processus de fabrication sont immatures, ce qui réduit le rendement des systèmes sur puce à base de NoC-3D. Par conséquent, l'idée de réseaux sur puce 3D partiellement connectés verticalement a été introduite pour bénéficier de la technologie 3D tout en conservant un haut rendement. En outre, de tels réseaux sont flexibles, car le nombre, l'emplacement et l'affectation des liens verticaux dans chaque couche peuvent être décidés en fonction des exigences de l'application. Cependant, ce type de réseaux pose un certain nombre de défis : Le routage est le problème majeur, car l'élimination de certains liens verticaux fait que l'on ne peut utiliser les algorithmes classiques qui suivent l'ordre des dimensions. Pour répondre à cette question nous expliquons et évaluons un algorithme de routage déterministe appelé “Elevator First”, qui garanti d'une part que si un chemin existe, alors on le trouve, et que d'autre part il n'y aura pas d'interblocages. Fondamentalement, la performance du NoC est affecté par a) la micro architecture des routeurs et b) l'architecture d'interconnexion. L'architecture du routeur a un effet significatif sur la performance du NoC, à cause de la latence qu'il induit. Nous présentons la conception et la mise en œuvre de la micro-architecture d'un routeur à faible latence implantant​​l'algorithme de routage Elevator First, qui consomme une quantité raisonnable de surface et de puissance. Du point de vue de l'architecture, le nombre et le placement des liens verticaux ont un rôle important dans la performance des réseaux 3D partiellement connectés verticalement, car ils affectent le nombre moyen de sauts et le taux d'utilisation des FIFOs dans le réseau. En outre, l'affectation des liens verticaux vers les routeurs qui n'ont pas de ports vers le haut ou/et le bas est une question importante qui influe fortement sur les performances. Par conséquent, l'exploration architecturale des réseaux sur puce 3D partiellement connectés verticalement est importante. Nous définissons, étudions et évaluons des paramètres qui décrivent le comportement du réseau, de manière à déterminer le placement et l'affectation des liens verticaux dans les couches de manière simple et efficace. Nous proposons une méthode d'estimation quadratique visantà anticiper le seuil de saturation basée sur ces paramètres. / Utilization of the third dimension can lead to a significant reduction in power and average hop-count in Networks- on-Chip (NoC). TSV technology, as the most promising technology in 3D integration, offers short and fast vertical links which copes with the long wire problem in 2D NoCs. Nonetheless, TSVs are huge and their manufacturing process is still immature, which reduces the yield of 3D NoC based SoC. Therefore, Vertically-Partially-Connected 3D-NoC has been introduced to benefit from both 3D technology and high yield. Moreover, Vertically-Partially-Connected 3D-NoC is flexible, due to the fact that the number, placement, and assignment of the vertical links in each layer can be decided based on the limitations and requirements of the design. However, there are challenges to present a feasible and high-performance Vertically-Partially-Connected Mesh-based 3D-NoC due to the removed vertical links between the layers. This thesis addresses the challenges of Vertically-Partially-Connected Mesh-based 3D-NoC: Routing is the major problem of the Vertically-Partially-Connected 3D-NoC. Since some vertical links are removed, some of the routers do not have up or/and down ports. Therefore, there should be a path to send a packet to upper or lower layer which obviously has to be determined by a routing algorithm. The suggested paths should not cause deadlock through the network. To cope with this problem we explain and evaluate a deadlock- and livelock-free routing algorithm called Elevator First. Fundamentally, the NoC performance is affected by both 1) micro-architecture of routers and 2) architecture of interconnection. The router architecture has a significant effect on the performance of NoC, as it is a part of transportation delay. Therefore, the simplicity and efficiency of the design of NoC router micro architecture are the critical issues, especially in Vertically-Partially-Connected 3D-NoC which has already suffered from high average latency due to some removed vertical links. Therefore, we present the design and implementation the micro-architecture of a router which not only exactly and quickly transfers the packets based on the Elevator First routing algorithm, but it also consumes a reasonable amount of area and power. From the architecture point of view, the number and placement of vertical links have a key role in the performance of the Vertically-Partially-Connected Mesh-based 3D-NoC, since they affect the average hop-count and link and buffer utilization in the network. Furthermore, the assignment of the vertical links to the routers which do not have up or/and down port(s) is an important issue which influences the performance of the 3D routers. Therefore, the architectural exploration of Vertically-Partially-Connected Mesh-based 3D-NoC is both important and non-trivial. We define, study, and evaluate the parameters which describe the behavior of the network. The parameters can be helpful to place and assign the vertical links in the layers effectively. Finally, we propose a quadratic-based estimation method to anticipate the saturation threshold of the network's average latency.
16

Management počítačové sítě / Network Management

Hrnčíř, Jan January 2015 (has links)
Thesis deals with the assessment of the current state of computer network management and information security for a particular company. Analyzes will be foundation for possible change proposals and enhancements to the requirements and economic opportunities of the specific company.
17

A Hybrid Topological-Stochastic Partitioning Method for Scaling QoS Routing Algorithms

Woodward, Mike E., Gao, Feng January 2007 (has links)
No / This paper presents a new partitioning strategy with the objective of increasing scalability by reducing computational effort of routing in networks. The original network is partitioned into blocks (subnetworks) so that there is a bi-directional link between any two blocks. When there is a connection request between a pair of nodes, if the nodes are in the same block, we only use the small single block to derive routings. Otherwise we combine the two blocks where the two nodes locate and in this way the whole network will never be used. The strategy is generic in that it can be used in any underlying routing algorithms in the network layer and can be applied to any networks with fixed topology such as fixed wired subnetworks of the Internet. The performance of this strategy has been investigated by building a simulator in Java and a comparison with existing stochastic partitioning techniques is shown to give superior performance in terms of trade-off in blocking probability (the probability of failure to find a path between source and destination satisfying QoS constraints) and reduction of computational effort.
18

Multihoming with ILNP in FreeBSD

Simpson, Bruce January 2016 (has links)
Multihoming allows nodes to be multiply connected to the network. It forms the basis of features which can improve network responsiveness and robustness; e.g. load balancing and fail-over, which can be considered as a choice between network locations. However, IP today assumes that IP addresses specify both network location and node identity. Therefore, these features must be implemented at routers. This dissertation considers an alternative based on the multihoming approach of the Identifier Locator Network Protocol (ILNP). ILNP is one of many proposals for a split between network location and node identity. However, unlike other proposals, ILNP removes the use of IP addresses as they are used today. To date, ILNP has not been implemented within an operating system stack. I produce the first implementation of ILNP in FreeBSD, based on a superset of IPv6 – ILNPv6 – and demonstrate a key feature of ILNP: multihoming as a first class function of the operating system, rather than being implemented as a routing function as it is today. To evaluate the multihoming capability, I demonstrate one important application of multihoming – load distribution – at three levels of network hierarchy including individual hosts, a singleton Site Border Router (SBR), and a novel, dynamically instantiated, distributed SBR (dSBR). For each level, I present empirical results from a hardware testbed; metrics include latency, throughput, loss and reordering. I compare performance with unmodified IPv6 and NPTv6. Finally, I evaluate the feasibility of dSBR-ILNPv6 as an alternative to existing multihoming approaches, based on measurements of the dSBR's responsiveness to changes in site connectivity. We find that multihoming can be implemented by individual hosts and/or SBRs, without requiring additional routing state as is the case today, and without any significant additional load or overhead compared to unicast IPv6.
19

Optimalizace řízení aktivního síťového prvku / Optimization of Active Network Element Control

Přecechtěl, Roman January 2009 (has links)
The thesis deals with the use of neuronal networks for the control of telecommunication network elements. The aim of the thesis is to create a simulation model of network element with switching array with memory, in which the optimization kontrol switching array is solved by means of the neural network. All source code is created in integrated environment MATLAB. To training are used feed-forward backpropagation network. Miss achieve satisfactory result mistakes. Work apposite decision procedure given to problem and it is possible on ni tie up in an effort to find optimum solving.

Page generated in 0.0494 seconds