Spelling suggestions: "subject:"bnetwork comparison"" "subject:"conetwork comparison""
1 |
Statistical Methodology for Multiple NetworksSmith, Anna Lantz 01 September 2017 (has links)
No description available.
|
2 |
Uma abordagem visual para análise comparativa de redes biomoleculares com apoio de diagramas de Venn / A visual approach to comparative analysis of biomolecular networks with support of Venn diagramsHeberle, Henry 16 September 2014 (has links)
Sistemas biológicos podem ser representados por redes que armazenam não apenas informações de conectividade, mas também informações de características de seus nós. No contexto biomolecular, esses nós podem representar proteínas, metabólitos, entre outros tipos de moléculas. Cada molécula possui características anotadas e armazenadas em bases de dados como o Gene Ontology. A comparação visual dessas redes depende de ferramentas que permitam o usuário identificar diferenças e semelhanças entre as anotações feitas sobre as moléculas (atributos) e também sobre as interações conhecidas (conexões). Neste trabalho de mestrado, buscou-se desenvolver técnicas que facilitem a comparação desses atributos sobre as moléculas, tentando manter no processo a visualização das redes em que essas moléculas estão inseridas. Como resultado, obteve-se a ferramenta VisPipeline-MultiNetwork, que permite comparar até seis redes, utilizando operações de conjuntos sobre as redes e sobre seus atributos. Dessa forma, diferentemente da maioria das ferramentas conhecidas para a visualização de redes biológicas, o VisPipeline-MultiNetwork permite a criação de redes cujos atributos são derivados das redes originais por meio de operações de união, intersecção e valores exclusivos. A comparação visual das redes é feita pela visualização do resultado dessas operações de conjuntos sobre as redes, por meio de um método de comparação lado-a-lado. Já a comparação dos atributos armazenados nos nós das redes é feita por meio de diagramas de Venn. Para auxiliar este tipo de comparação, a técnica InteractiVenn foi desenvolvida, em que o usuário pode interagir com um diagrama de Venn efetuando operações de união entre conjuntos. Essas operações de união aplicadas sobre os conjuntos são também aplicadas sobre as respectivas formas no diagrama. Esta característica da técnica a diferencia das outras ferramentas de criação de diagramas de Venn. Integrando essas funcionalidades, o usuário é capaz de comparar redes sob diversas perspectivas. Para exemplificar a utilização do VisPipeline-MultiNetwork, dois casos no contexto biomolecular foram estudados. Adicionalmente, uma ferramenta web para a comparação de listas de cadeias de caracteres por meio de diagramas de Venn foi desenvolvida. Ela também implementa a técnica InteractiVenn e foi denominada InteractiVenn website. / Biological systems can be represented by networks that store not only connectivity information, but also node feature information. In the context of molecular biology, these nodes may represent proteins, metabolites, and other types of molecules. Each molecule has features annotated and stored in databases such as Gene Ontology. A visual comparison of networks requires tools that allow the user to identify differences and similarities between nodes attributes as well as known interactions between nodes (connections). In this dissertation, we sought to develop a technique that would facilitate the comparison of these biological networks, striving to maintain in the process the visualization of the network connectivities. As a result, we have developed the VisPipeline-MultiNetwork tool, which allows comparison of up to six networks, using sets of operations on networks and on their attributes. Unlike most known tools for visualizing biological networks, VisPipeline-MultiNetwork allows the creation of networks whose attributes are derived from the original networks through operations of union, intersection and unique values. A visual comparison of the networks is achieved by visualizing the outcome of such joint operations through a all-in-one comparison method. The comparison of nodes attributes is performed using Venn diagrams. To assist this type of comparison, the InteractiVenn technique was developed, in which the user can interact with a Venn diagram, performing union operations between sets and their corresponding diagrams. This diagram union feature differs from other tools available for creating Venn diagrams. With these tools, users manage to compare networks from different perspectives. To exemplify the use of VisPipeline-MultiNetwork, two case studies were carried out in the biomolecular context. Additionally, a web tool for comparing lists of strings by means of Venn diagrams was made available. It also implements the InteractiVenn technique and its site has been named InteractiVenn.
|
3 |
Uma abordagem visual para análise comparativa de redes biomoleculares com apoio de diagramas de Venn / A visual approach to comparative analysis of biomolecular networks with support of Venn diagramsHenry Heberle 16 September 2014 (has links)
Sistemas biológicos podem ser representados por redes que armazenam não apenas informações de conectividade, mas também informações de características de seus nós. No contexto biomolecular, esses nós podem representar proteínas, metabólitos, entre outros tipos de moléculas. Cada molécula possui características anotadas e armazenadas em bases de dados como o Gene Ontology. A comparação visual dessas redes depende de ferramentas que permitam o usuário identificar diferenças e semelhanças entre as anotações feitas sobre as moléculas (atributos) e também sobre as interações conhecidas (conexões). Neste trabalho de mestrado, buscou-se desenvolver técnicas que facilitem a comparação desses atributos sobre as moléculas, tentando manter no processo a visualização das redes em que essas moléculas estão inseridas. Como resultado, obteve-se a ferramenta VisPipeline-MultiNetwork, que permite comparar até seis redes, utilizando operações de conjuntos sobre as redes e sobre seus atributos. Dessa forma, diferentemente da maioria das ferramentas conhecidas para a visualização de redes biológicas, o VisPipeline-MultiNetwork permite a criação de redes cujos atributos são derivados das redes originais por meio de operações de união, intersecção e valores exclusivos. A comparação visual das redes é feita pela visualização do resultado dessas operações de conjuntos sobre as redes, por meio de um método de comparação lado-a-lado. Já a comparação dos atributos armazenados nos nós das redes é feita por meio de diagramas de Venn. Para auxiliar este tipo de comparação, a técnica InteractiVenn foi desenvolvida, em que o usuário pode interagir com um diagrama de Venn efetuando operações de união entre conjuntos. Essas operações de união aplicadas sobre os conjuntos são também aplicadas sobre as respectivas formas no diagrama. Esta característica da técnica a diferencia das outras ferramentas de criação de diagramas de Venn. Integrando essas funcionalidades, o usuário é capaz de comparar redes sob diversas perspectivas. Para exemplificar a utilização do VisPipeline-MultiNetwork, dois casos no contexto biomolecular foram estudados. Adicionalmente, uma ferramenta web para a comparação de listas de cadeias de caracteres por meio de diagramas de Venn foi desenvolvida. Ela também implementa a técnica InteractiVenn e foi denominada InteractiVenn website. / Biological systems can be represented by networks that store not only connectivity information, but also node feature information. In the context of molecular biology, these nodes may represent proteins, metabolites, and other types of molecules. Each molecule has features annotated and stored in databases such as Gene Ontology. A visual comparison of networks requires tools that allow the user to identify differences and similarities between nodes attributes as well as known interactions between nodes (connections). In this dissertation, we sought to develop a technique that would facilitate the comparison of these biological networks, striving to maintain in the process the visualization of the network connectivities. As a result, we have developed the VisPipeline-MultiNetwork tool, which allows comparison of up to six networks, using sets of operations on networks and on their attributes. Unlike most known tools for visualizing biological networks, VisPipeline-MultiNetwork allows the creation of networks whose attributes are derived from the original networks through operations of union, intersection and unique values. A visual comparison of the networks is achieved by visualizing the outcome of such joint operations through a all-in-one comparison method. The comparison of nodes attributes is performed using Venn diagrams. To assist this type of comparison, the InteractiVenn technique was developed, in which the user can interact with a Venn diagram, performing union operations between sets and their corresponding diagrams. This diagram union feature differs from other tools available for creating Venn diagrams. With these tools, users manage to compare networks from different perspectives. To exemplify the use of VisPipeline-MultiNetwork, two case studies were carried out in the biomolecular context. Additionally, a web tool for comparing lists of strings by means of Venn diagrams was made available. It also implements the InteractiVenn technique and its site has been named InteractiVenn.
|
4 |
Modelling and comparing protein interaction networks using subgraph countsChegancas Rito, Tiago Miguel January 2012 (has links)
The astonishing progress of molecular biology, engineering and computer science has resulted in mature technologies capable of examining multiple cellular components at a genome-wide scale. Protein-protein interactions are one example of such growing data. These data are often organised as networks with proteins as nodes and interactions as edges. Albeit still incomplete, there is now a substantial amount of data available and there is a need for biologically meaningful methods to analyse and interpret these interactions. In this thesis we focus on how to compare protein interaction networks (PINs) and on the rela- tionship between network architecture and the biological characteristics of proteins. The underlying theme throughout the dissertation is the use of small subgraphs – small interaction patterns between 2-5 proteins. We start by examining two popular scores that are used to compare PINs and network models. When comparing networks of the same model type we find that the typical scores are highly unstable and depend on the number of nodes and edges in the networks. This is unsatisfactory and we propose a method based on non-parametric statistics to make more meaningful comparisons. We also employ principal component analysis to judge model fit according to subgraph counts. From these analyses we show that no current model fits to the PINs; this may well reflect our lack of knowledge on the evolution of protein interactions. Thus, we use explanatory variables such as protein age and protein structural class to find patterns in the interactions and subgraphs we observe. We discover that the yeast PIN is highly heterogeneous and therefore no single model is likely to fit the network. Instead, we focus on ego-networks containing an initial protein plus its interacting partners and their interaction partners. In the final chapter we propose a new, alignment-free method for network comparison based on such ego-networks. The method compares subgraph counts in neighbourhoods within PINs in an averaging, many-to-many fashion. It clusters networks of the same model type and is able to successfully reconstruct species phylogenies solely based on PIN data providing exciting new directions for future research.
|
5 |
On the evaluation of regional climate model simulations over South AmericaLange, Stefan 28 October 2015 (has links)
Diese Dissertation beschäftigt sich mit regionaler Klimamodellierung über Südamerika, der Analyse von Modellsensitivitäten bezüglich Wolkenparametrisierungen und der Entwicklung neuer Methoden zur Modellevaluierung mithilfe von Klimanetzwerken. Im ersten Teil untersuchen wir Simulationen mit dem COnsortium for Small scale MOdeling model in CLimate Mode (COSMO-CLM) und stellen die erste umfassende Evaluierung dieses dynamischen regionalen Klimamodells über Südamerika vor. Dabei untersuchen wir insbesondere die Abhängigkeit simulierter tropischer Niederschläge von Parametrisierungen subgitterskaliger cumuliformer und stratiformer Wolken und finden starke Sensitivitäten bezüglich beider Wolkenparametrisierungen über Land. Durch einen simultanen Austausch der entsprechenden Schemata gelingt uns eine beträchtliche Reduzierung von Fehlern in klimatologischen Niederschlags- und Strahlungsmitteln, die das COSMO-CLM über tropischen Regionen für lange Zeit charakterisierten. Im zweiten Teil führen wir neue Metriken für die Evaluierung von Klimamodellen bezüglich räumlicher Kovariabilitäten ein. Im Kern bestehen diese Metriken aus Unähnlichkeitsmaßen für den Vergleich von simulierten mit beobachteten Klimanetzwerken. Wir entwickeln lokale und globale Unähnlichkeitsmaße zum Zwecke der Darstellung lokaler Unähnlichkeiten in Form von Fehlerkarten sowie der Rangordnung von Modellen durch Zusammenfassung lokaler zu globalen Unähnlichkeiten. Die neuen Maße werden dann für eine vergleichende Evaluierung regionaler Klimasimulationen mit COSMO-CLM und dem Statistical Analogue Resampling Scheme über Südamerika verwendet. Dabei vergleichen wir die sich ergebenden Modellrangfolgen mit solchen basierend auf mittleren quadratischen Abweichungen klimatologischer Mittelwerte und Varianzen und untersuchen die Abhängigkeit dieser Rangfolgen von der betrachteten Jahreszeit, Variable, dem verwendeten Referenzdatensatz und Klimanetzwerktyp. / This dissertation is about regional climate modeling over South America, the analysis of model sensitivities to cloud parameterizations, and the development of novel model evaluation techniques based on climate networks. In the first part we examine simulations with the COnsortium for Small scale MOdeling weather prediction model in CLimate Mode (COSMO-CLM) and provide the first thorough evaluation of this dynamical regional climate model over South America. We focus our analysis on the sensitivity of simulated tropical precipitation to the parameterizations of subgrid-scale cumuliform and stratiform clouds. It is shown that COSMO-CLM is strongly sensitive to both cloud parameterizations over tropical land. Using nondefault cumulus and stratus parameterization schemes we are able to considerably reduce long-standing precipitation and radiation biases that have plagued COSMO-CLM across tropical domains. In the second part we introduce new performance metrics for climate model evaluation with respect to spatial covariabilities. In essence, these metrics consist of dissimilarity measures for climate networks constructed from simulations and observations. We develop both local and global dissimilarity measures to facilitate the depiction of local dissimilarities in the form of bias maps as well as the aggregation of those local to global dissimilarities for the purposes of climate model intercomparison and ranking. The new measures are then applied for a comparative evaluation of regional climate simulations with COSMO-CLM and the STatistical Analogue Resampling Scheme (STARS) over South America. We compare model rankings obtained with our new performance metrics to those obtained with conventional root-mean-square errors of climatological mean values and variances, and analyze how these rankings depend on season, variable, reference data set, and climate network type.
|
Page generated in 0.0681 seconds