Spelling suggestions: "subject:"bnetwork medicine"" "subject:"conetwork medicine""
1 |
Uma abordagem de integração de dados de redes PPI e expressão gênica para priorizar genes relacionados a doenças complexas / An integrative approach combining PPI networks and gene expression to prioritize genes related to complex diseasesSimões, Sérgio Nery 30 June 2015 (has links)
Doenças complexas são caracterizadas por serem poligênicas e multifatoriais, o que representa um desafio em relação à busca de genes relacionados a elas. Com o advento das tecnologias de sequenciamento em larga escala do genoma e das medições de expressão gênica (transcritoma), bem como o conhecimento de interações proteína-proteína, doenças complexas têm sido sistematicamente investigadas. Particularmente, baseando-se no paradigma Network Medicine, as redes de interação proteína-proteína (PPI -- Protein-Protein Interaction) têm sido utilizadas para priorizar genes relacionados às doenças complexas segundo suas características topológicas. Entretanto, as redes PPI são afetadas pelo viés da literatura, em que as proteínas mais estudadas tendem a ter mais conexões, degradando a qualidade dos resultados. Adicionalmente, métodos que utilizam somente redes PPI fornecem apenas resultados estáticos e não-específicos, uma vez que as topologias destas redes não são específicas de uma determinada doença. Neste trabalho, desenvolvemos uma metodologia para priorizar genes e vias biológicas relacionados à uma dada doença complexa, através de uma abordagem integrativa de dados de redes PPI, transcritômica e genômica, visando aumentar a replicabilidade dos diferentes estudos e a descoberta de novos genes associados à doença. Após a integração das redes PPI com dados de expressão gênica, aplicamos as hipóteses da Network Medicine à rede resultante para conectar genes sementes (relacionados à doença, definidos a partir de estudos de associação) através de caminhos mínimos que possuam maior co-expressão entre seus genes. Dados de expressão em duas condições (controle e doença) são usados separadamente para obter duas redes, em que cada nó (gene) dessas redes é pontuado segundo fatores topológicos e de co-expressão. Baseado nesta pontuação, desenvolvemos dois escores de ranqueamento: um que prioriza genes com maior alteração entre suas pontuações em cada condição, e outro que privilegia genes com a maior soma destas pontuações. A aplicação do método a três estudos envolvendo dados de expressão de esquizofrenia recuperou com sucesso genes diferencialmente co-expressos em duas condições, e ao mesmo tempo evitou o viés da literatura. Além disso, houve uma melhoria substancial na replicação dos resultados pelo método aplicado aos três estudos, que por métodos convencionais não alcançavam replicabilidade satisfatória. / Complex diseases are characterized as being poligenic and multifactorial, so this poses a challenge regarding the search for genes related to them. With the advent of high-throughput technologies for genome sequencing and gene expression measurements (transcriptome), as well as the knowledge of protein-protein interactions, complex diseases have been sistematically investigated. Particularly, Protein-Protein Interaction (PPI) networks have been used to prioritize genes related to complex diseases according to its topological features. However, PPI networks are affected by ascertainment bias, in which the most studied proteins tend to have more connections, degrading the quality of the results. Additionally, methods using only PPI networks can provide just static and non-specific results, since the topologies of these networks are not specific of a given disease. In this work, we developed a methodology to prioritize genes and biological pathways related to a given complex disease, through an approach that integrates data from PPI networks, transcriptomics and genomics, aiming to increase replicability of different studies and to discover new genes associated to the disease. The methodology integrates PPI network and gene expression data, and then applies the Network Medicine Hypotheses to the resulting network in order to connect seed genes (obtained from association studies) through shortest paths possessing larger coexpression among their genes. Gene expression data in two conditions (control and disease) are used to obtain two networks, where each node (gene) in these networks is rated according to topological and coexpression aspects. Based on this rating, we developed two ranking scores: one that prioritizes genes with the largest alteration between their ratings in each condition, and another that favors genes with the greatest sum of these scores. The application of this method to three studies involving schizophrenia expression data successfully recovered differentially co-expressed gene in two conditions, while avoiding the ascertainment bias. Furthermore, when applied to the three studies, the method achieved a substantial improvement in replication of results, while other conventional methods did not reach a satisfactory replicability.
|
2 |
Uma abordagem de integração de dados de redes PPI e expressão gênica para priorizar genes relacionados a doenças complexas / An integrative approach combining PPI networks and gene expression to prioritize genes related to complex diseasesSérgio Nery Simões 30 June 2015 (has links)
Doenças complexas são caracterizadas por serem poligênicas e multifatoriais, o que representa um desafio em relação à busca de genes relacionados a elas. Com o advento das tecnologias de sequenciamento em larga escala do genoma e das medições de expressão gênica (transcritoma), bem como o conhecimento de interações proteína-proteína, doenças complexas têm sido sistematicamente investigadas. Particularmente, baseando-se no paradigma Network Medicine, as redes de interação proteína-proteína (PPI -- Protein-Protein Interaction) têm sido utilizadas para priorizar genes relacionados às doenças complexas segundo suas características topológicas. Entretanto, as redes PPI são afetadas pelo viés da literatura, em que as proteínas mais estudadas tendem a ter mais conexões, degradando a qualidade dos resultados. Adicionalmente, métodos que utilizam somente redes PPI fornecem apenas resultados estáticos e não-específicos, uma vez que as topologias destas redes não são específicas de uma determinada doença. Neste trabalho, desenvolvemos uma metodologia para priorizar genes e vias biológicas relacionados à uma dada doença complexa, através de uma abordagem integrativa de dados de redes PPI, transcritômica e genômica, visando aumentar a replicabilidade dos diferentes estudos e a descoberta de novos genes associados à doença. Após a integração das redes PPI com dados de expressão gênica, aplicamos as hipóteses da Network Medicine à rede resultante para conectar genes sementes (relacionados à doença, definidos a partir de estudos de associação) através de caminhos mínimos que possuam maior co-expressão entre seus genes. Dados de expressão em duas condições (controle e doença) são usados separadamente para obter duas redes, em que cada nó (gene) dessas redes é pontuado segundo fatores topológicos e de co-expressão. Baseado nesta pontuação, desenvolvemos dois escores de ranqueamento: um que prioriza genes com maior alteração entre suas pontuações em cada condição, e outro que privilegia genes com a maior soma destas pontuações. A aplicação do método a três estudos envolvendo dados de expressão de esquizofrenia recuperou com sucesso genes diferencialmente co-expressos em duas condições, e ao mesmo tempo evitou o viés da literatura. Além disso, houve uma melhoria substancial na replicação dos resultados pelo método aplicado aos três estudos, que por métodos convencionais não alcançavam replicabilidade satisfatória. / Complex diseases are characterized as being poligenic and multifactorial, so this poses a challenge regarding the search for genes related to them. With the advent of high-throughput technologies for genome sequencing and gene expression measurements (transcriptome), as well as the knowledge of protein-protein interactions, complex diseases have been sistematically investigated. Particularly, Protein-Protein Interaction (PPI) networks have been used to prioritize genes related to complex diseases according to its topological features. However, PPI networks are affected by ascertainment bias, in which the most studied proteins tend to have more connections, degrading the quality of the results. Additionally, methods using only PPI networks can provide just static and non-specific results, since the topologies of these networks are not specific of a given disease. In this work, we developed a methodology to prioritize genes and biological pathways related to a given complex disease, through an approach that integrates data from PPI networks, transcriptomics and genomics, aiming to increase replicability of different studies and to discover new genes associated to the disease. The methodology integrates PPI network and gene expression data, and then applies the Network Medicine Hypotheses to the resulting network in order to connect seed genes (obtained from association studies) through shortest paths possessing larger coexpression among their genes. Gene expression data in two conditions (control and disease) are used to obtain two networks, where each node (gene) in these networks is rated according to topological and coexpression aspects. Based on this rating, we developed two ranking scores: one that prioritizes genes with the largest alteration between their ratings in each condition, and another that favors genes with the greatest sum of these scores. The application of this method to three studies involving schizophrenia expression data successfully recovered differentially co-expressed gene in two conditions, while avoiding the ascertainment bias. Furthermore, when applied to the three studies, the method achieved a substantial improvement in replication of results, while other conventional methods did not reach a satisfactory replicability.
|
3 |
Evaluating the biological relevance of disease consensus modules : An in silico study of IBD pathology using a bioinformatics approachStröbaek, Joel January 2019 (has links)
Inflammatory bowel disease encompasses a variety of heterogeneous chronic inflammatory diseases that affect the gastrointestinal tract, where Crohn’s disease and ulcerative colitis are the principal examples. The etiology of these, and many other complex human diseases, remain largely unknown and therefore pose relevant targets for novel research strategies. One such strategy is the in silico application of network theory derived methods to data sourced from publicly available repositories of e.g. gene expression data. Specifically, methods generating graphs of interconnected elements enriched by differentially expressed genes—disease modules—were inferred with data available through the Gene Expression Omnibus. Based on a previous method, the current project aimed to evaluate disease modules, combined from stand-alone inferential methods, in disease consensus modules: representing pathophenotypical motifs for the diseases of interest. The modules found to be significantly enriched by genome-wide association study inferred single-nucleotide polymorphisms, as validated using the Pathway Scoring Algorithm, were subsequently subjects for further analysis using Kyoto Encyclopedia of Genes and Genomes-pathway enrichment, and literature searches. The results of this study adheres to previous findings relating to the employed method, but lack any novelty pertaining the diseases of interest. However, the results substantiate the preceding methods’ conclusion by including parameters that increase statistical validity. In addition, the study contributed to peripheral results concerning both the methodology of consensus module methods, and the elucidation of inflammatory bowel disease etiology and disease subtype differentiation, that pose interesting subjects for future investigation.
|
4 |
Network-Based Multi-Omics Approaches for Precision Cardio-Oncology: Pathobiology, Drug Repurposing and Functional TestingLal, Jessica Castrillon 26 May 2023 (has links)
No description available.
|
5 |
Y a-t-il une théorie génétique de la maladie ? / Is there a genetic theory of disease ?Darrason, Marie 02 July 2014 (has links)
Alors qu’il n’existe pas de définition consensuelle du concept de maladie génétique, ce concept s’est progressivement élargi pour désigner des maladies communes, non héréditaires, non mendéliennes et polygéniques, aboutissant à une généticisation des maladies. Pour résoudre ce paradoxe de la génétique médicale contemporaine, les philosophes réfutent généralement cette généticisation comme une extension génocentriste abusive du concept de maladie génétique et cherchent à redéfinir un concept plus strict de maladie génétique. Nous montrons que cette stratégie échoue et proposons au contraire d’abandonner le concept de maladie génétique et de supposer que la généticisation révèle l’élaboration d’une explication du rôle commun des gènes dans toutes les maladies, que nous appelons une « théorie génétique de la maladie ». Nous définissons les conditions de possibilité et les critères nécessaires d’une théorie génétique a minima et aboutissons à un spectre des théories génétiques possibles. Nous proposons alors de tester si la généticisation des maladies révèle plutôt une théorie génétique des maladies, c’est-à-dire un ensemble de théories génétiques spécifiques à chaque classe de maladie, ou une théorie génétique de la maladie, reposant sur une définition générale de la maladie qui unifie le rôle commun des gènes dans toutes les maladies. Pour ce faire, nous analysons deux exemples de théories génétiques contemporaines : la théorie génétique des maladies infectieuses et la théorie génétique de la médecine des réseaux. Nous concluons à la coexistence nécessaire de plusieurs formes de théories génétiques dans la littérature biomédicale contemporaine. / While there is no consensual definition of the concept of genetic disease, this concept has gradually extended to designate common, non-hereditary, non-Mendelian, polygenic diseases, leading to the geneticization of diseases. In order to solve this paradox of the contemporary medical genetics, philosophers usually discard geneticization as an inappropriate genocentrist extension of the concept of genetic disease and attempt to define a stricter concept of genetic disease. We demonstrate the failure of this strategy and argue on the contrary that we should give up the concept of genetic disease and understand geneticization as the elaboration of an explanation of the common role of genes in diseases, what we call “a genetic theory of disease”. We define the conditions of possibility and the necessary criteria for a genetic theory a minima and end up with describing the spectrum of potential genetic theories. We then suggest to test whether geneticization of diseases reveals rather a genetic theory of diseases, that is, a set of genetic theories specific to each class of disease, or a genetic theory of disease, that is, a general definition of disease unifying the common role of genes in disease explanations. In order to do so, we analyse two examples of contemporary genetic theories: the genetic theory of infectious diseases and the genetic theory of network medicine. We conclude that several forms of genetic theories coexist in the contemporary biomedical literature and that this coexistence is necessary.
|
6 |
Intersecting Graph Representation Learning and Cell Profiling : A Novel Approach to Analyzing Complex Biomedical DataChamyani, Nima January 2023 (has links)
In recent biomedical research, graph representation learning and cell profiling techniques have emerged as transformative tools for analyzing high-dimensional biological data. The integration of these methods, as investigated in this study, has facilitated an enhanced understanding of complex biological systems, consequently improving drug discovery. The research aimed to decipher connections between chemical structures and cellular phenotypes while incorporating other biological information like proteins and pathways into the workflow. To achieve this, machine learning models' efficacy was examined for classification and regression tasks. The newly proposed graph-level and bio-graph integrative predictors were compared with traditional models. Results demonstrated their potential, particularly in classification tasks. Moreover, the topology of the COVID-19 BioGraph was analyzed, revealing the complex interconnections between chemicals, proteins, and biological pathways. By combining network analysis, graph representation learning, and statistical methods, the study was able to predict active chemical combinations within inactive compounds, thereby exhibiting significant potential for further investigations. Graph-based generative models were also used for molecule generation opening up further research avenues in finding lead compounds. In conclusion, this study underlines the potential of combining graph representation learning and cell profiling techniques in advancing biomedical research in drug repurposing and drug combination. This integration provides a better understanding of complex biological systems, assists in identifying therapeutic targets, and contributes to optimizing molecule generation for drug discovery. Future investigations should optimize these models and validate the drug combination discovery approach. As these techniques continue to evolve, they hold the potential to significantly impact the future of drug screening, drug repurposing, and drug combinations.
|
Page generated in 0.0776 seconds