Spelling suggestions: "subject:"beural crest"" "subject:"aneural crest""
161 |
Modélisation des néoplasies endocriniennes multiples de type II par les cellules souches pluripotentes induites porteuses de mutations germinales du gène RET / Modelling Multiple Endocrine Neoplasia Type 2 with RET Mutated Induced Pluripotent Stem CellsHadoux, Julien 23 November 2016 (has links)
Les cellules souches pluripotentes induites (CSPi) permettent la modélisation de processus avec, en oncologie, un intérêt potentiel pour la modélisation de syndromes de prédisposition au cancer liés à des mutations germinales d’oncogènes. Nous avons généré des lignées de CSPi à partir de patients atteints de néoplasies endocriniennes multiples de type 2 (NEM2), porteurs de mutations germinales du gène RET : RETC620R, RETC634Y et RETM918T. Nous avons généré une CSPi RETY634C, contrôle isogénique, par correction de la mutation RETC634Y via CRSPR/Cas9. Ces CSPi présentent tous les critères de pluripotence avec un caryotype normal et expriment Ret. L’étude histologique approfondie des tératomes a mis en évidence le développement de cellules C en leur sein et également de cellules neuroendocrines exprimant la Chromogranine A mais sans aspect d’hyperplasie des cellules C ou de carcinome médullaire de la thyroïde ni de tumeur neuroendocrine réminiscente du phénotype des NEM2. L’analyse comparative de l’expression des gènes de ces CSPi a mis en évidence, dès le stade de pluripotence, une activation du réseau transcriptionnel du gène EGR1 qui pourrait constituer un des mécanismes moléculaires responsables de la mise en place du phénotype des NEM2. La différenciation en cellules souches de la crête neurale (CSCN), cellules d’origine cibles des tumeurs développées dans le cadre des NEM2, en particulier le phéochromocytome, était efficace et reproductible pour toutes nos lignées. Nous avons mis en évidence l’activation d’un programme commun invasif au niveau des CSCN avec mutation RETC634Y et RETM918T ainsi qu’une forte dérégulation du réseau des intégrines entraînant une forte dérégulation de l’adhésion cellulaire. Ceci était confirmé par une augmentation des capacités de migration CSCN avec mutation de RET par rapport aux CSCN témoins. Ainsi, la génération de CSPi avec mutation de RET a permis d’identifier des voies de signalisation potentiellement impliquées dans la physiopathologie des NEM2 et constitue une première étape vers la modélisation des NEM2 in vitro. / Induced pluripotent stem cell (iPSC) offer major perspectives in disease modelling and, in the oncology field, can be used for modelling cancer predisposition syndromes. We generated IPSC lines from somatic cells of patients with multiple endocrine neoplasia type 2 (MEN2) who harboured germline mutations in the RET gene: RETC620R, RETC634Y et RETM918T. We have also generated an isogenic RETY634C iPSC control line by genome engineering using CRSPR/Cas9-mediated method to "correct” C634Y mutation. All iPSC lines exhibited all markers of pluripotency with a normal karyotype and expressed Ret. A thorough histological study of teratomas from these iPSC highlighted the development of C cells and Chromogranin A-expressing neuroendocrine cells within them but without C-cell hyperplasia, medullary thyroid carcinoma or neuroendocrine tumours reminiscent of MEN2 phenotype. Comparative gene expression analysis revealed an activation of the EGR1 transcriptional network, at the pluripotent stem cell stage which could be one of the molecular effector of the phenotype. Neural crest stem cell (NCSC), the cell of origin of some of the tumoral features of MEN2, could be differentiated in vitro from all our RET-mutated iPSC lines effectively. Gene expression analysis revealed an activation of cell invasion program in RETC634Y and RETM918T–mutated NCSC and a deregulation of integrin network causing a strong deregulation of cell adhesion which was confirmed with increased migration capabilities in vitro. Thus, the generation of the first RET-mutated iPSCs allowed the identification of signalling pathways potentially implicated in the pathophysiology of MEN2 and constitute a first step in modelling these tumours in vitro.
|
162 |
Influence of Microbial Products on the Developmental Programming of the Enteric Nervous SystemPopov, Jelena January 2018 (has links)
Bacterial colonization of the gastrointestinal (GI) tract takes place during the perinatal period, thus coinciding with a critical window of enteric nervous system (ENS) development. Previous work has found that the myenteric plexus of germ free (GF) mice exhibits structural and functional aberrancies in the early postnatal period as compared to specific pathogen free (SPF) and altered Schaedler flora (ASF) mice. These early life disruptions in ENS development in GF mice compared to SPF mice, and more specifically ASF mice, support the notion that a simple intestinal flora is sufficient for directing perinatal ENS development.
It has previously been believed that the intrauterine environment during fetal development is sterile. Recent evidence showing successful isolation of microbial communities from embryonic cord blood and newborn meconium that are not of maternal origin suggests that the intrauterine environment is not sterile and is unique to the fetus. Coinciding with this timeline of fetal microbial colonization is the development of the ENS through a population of precursors known as enteric neural crest derived cells (ENCDCs). The prenatal period is characterized by rapid expansion and differentiation of ENCDCs into the many enteric neuron subtypes that comprise the ENS. Terminal differentiation of ENCDCs continues into the early postnatal period.
In the current study, we tested the hypothesis that ENCDCs interact directly with microbial products during ENS development. Further, these ENCDC-bacterial product interactions influence the proliferation, apoptosis, and chemical coding of enteric neuron precursors. These objectives were carried out in an in vitro model of ENCDCs isolated from the prenatal period that was established for the first time in our lab using immunoselection. Further, this model was characterized at key timepoints for proliferation, apoptosis, and differentiation.
Our results are suggestive of direct ENCDC interactions with lipopolysaccharide (LPS), a TLR4 ligand, and flagellin, a TLR5 ligand, in stimulating ENCDC proliferation and differentiation into early born neurons of nitrergic and serotonergic subtypes. Peptidoglycan derivatives, muramyl dipeptide (MDP) and ƴ-D-Glu-mDAP (iE-DAP), ligands for NOD2 and NOD1 respectively, appear to mainly stimulate differentiation into nitrergic neurons, and possibly serotonergic neurons. The lack of apoptosis in all conditions is consistent with the notion that apoptosis is not an important characteristic of ENCDC maturation and ENS development. Finally, the lack of significance for differentiation into dopaminergic neurons could be further evidence of their late born nature, which has previously been reported to be stimulated by serotonin after the emergence of serotonergic neurons. / Thesis / Master of Science (MSc)
|
163 |
Genetische Analyse entwicklungsbiologischer Funktionen des Neuregulin-1/ErbB SignalsystemsBritsch, Stefan 10 November 2004 (has links)
Neureguline (NDF, Heregulin, GGF ARIA, oder SMDF) sind EGF-ähnliche, extrazelluläre Signalmoleküle, die mit transmembranären Tyrosinkinaserezeptoren der ErbB-Familie interagieren. Neuregulin-1/ErbB Signale steuern während der Embryonalentwicklung und im adulten Organismus vielfältige zelluläre Prozesse, wie z. B. Proliferation, Migration und Differenzierung. In der vorliegenden Arbeit wurde die Rolle des Neuregulin-1/ErbB Signalsystems in der Entwicklung von Neuralleistenzellen und sich daraus entwickelnden Komponenten des peripheren Nervensystems (sympathisches Nervensystem und periphere Glia) untersucht. Neuregulin-1 Signale werden in Neuralleistenzellen und ihren Gliaderivaten durch ErbB2/ErbB3 Rezeptor-Heterodimere übertragen. Mit Hilfe von Mäusen mit gezielter Mutation (knock-out) des Neuregulin-1, ErbB2 oder ErbB3 Gens wurde gezeigt, daß Neuregulin-1/ErbB2/3 Signale die Migration sympathogener Neuralleistenzellen steuern. Mutante Tiere entwickeln daher eine hochgradige Hypoplasie des sympathischen Nervensystems. Neuregulin-1 Signale kontrollieren darüber hinaus die Entwicklung von Schwann Zellen. Die Unterbrechung des Neuregulin-1/ErbB2/3 Signalwegs in mutanten Mäusen führt zum Verlust von Schwann Zellen während der Embryogenese. Es wurde außerdem gezeigt, daß der Transkriptionsfaktor Sox10 die Expression von ErbB3 in Neuralleistenzellen kontrolliert. Sox10 und ErbB3 Mutanten besitzen daher übereinstimmende Defekte in der Neuralleistenzellentwicklung. Neben den ErbB3-abhängigen Funktionen von Sox10 wurde eine ErbB3-unabhängige Schlüsselfunktion von Sox10 bei der Differenzierung von Neuralleistenzellen zu peripherer Glia identifiziert. Das Neuregulin-1/ErbB2/3 Signalsystem und der Transkriptionsfaktor Sox10 besitzen also gemeinsam zentrale Funktionen in der Entwicklung peripherer Glia, steuern diesen Prozess aber über unterschiedliche Mechanismen und während unterschiedlicher Entwicklungsphasen. Sox10, ErbB2 und ErbB3 mutante Mäuse entwickeln neben dem Verlust von Schwann Zellen eine sekundäre Degeneration begleitender sensorischer und motorischer Neurone. Dies zeigt, daß periphere Glia Signale generiert, die essentiell sind für Integrität und Überleben begleitender Neurone. / Neuregulins (NDF, heregulin, GGF ARIA, or SMDF) are EGF-like growth and differentiation factors that signal through tyrosine kinase receptors of the erbB family. The neuregulin-1 proteins and their receptors play essential roles during embryonic development and in the adult. Functions of the neuregulin/erbB signaling system in developing neural crest cells and their derivatives (sympathetic nervous system, peripheral glial cells) were analyzed in mice with targeted mutations in the erbB2, erbB3, or neuregulin-1 genes. All three mutations cause severe hypoplasia of the primary sympathetic ganglion chain, and migration of sympathogenic neural crest cells to their target sites, where they differentiate into sympathetic neurons, depends on neuregulin-1 and its receptors. Neuregulin-1 signals are also essential for the development of Schwann cells. As a consequence, mice with targeted mutations in the neuregulin-1/erbB signaling system completely lack Schwann cells. Moreover, the HMG-box transcription factor sox10 is shown to control expression of erbB3 in neural crest cells. In accordance, sox10 and erbB3 mutant mice share phenotypes in the developing neural crest. Additionally, a novel, erbB3-independent developmental function of sox10 was identified: Sox10 is a key regulator for glial fate determination in undifferentiated neural crest cells. Thus, the transcription factor sox10 and the neuregulin-1/erbB signalling system both serve critical functions during development of peripheral glial cells. However, they act via different cellular mechanisms and during different developmental stages. At later developmental stages lack of peripheral glial cells in sox10, erbB2 and erbB3 mutant mice results in a severe degeneration of sensory and motor neurons. The comparison of the mutant phenotypes demonstrates, that peripheral glial cells generate essential signals for the survival and maintenance of accompanying neurons.
|
164 |
Anteriore Musterbildung im Wirbeltierembryo - Die Induktion von Vorderhirn und Herz / Anterior patterning of the vertebrate embryo - the induction of forebrain and heartWittler, Lars 30 October 2002 (has links)
No description available.
|
165 |
Caractérisation et généralisation de l’implication de la voie NOTCH cytoplasmique au cours des processus de transition épithélio-mésenchymateuse chez l’embryon de poulet / Enforcement of cytoplasmic Notch pathway implication in epithelio-mesenchymal transition and cell differentiation in chicken embryosLebrun, Diane 08 June 2018 (has links)
La transition épithélio-mésenchymateuse (EMT) est un processus incontournable dans de nombreux contextes normaux et pathologiques, tels que gastrulation, organogenèse, fibroses et cancers. Cette transformation de cellule épithéliale en cellule mésenchymateuse est indissociable de l'acquisition de propriétés migratoires et est généralement associée à un changement de destin cellulaire. Différentes voies moléculaires sont impliquées selon le contexte de l'EMT concernée. Récemment, notre laboratoire a mis en évidence que la voie Notch cytoplasmique contrôle l'EMT des cellules de la lèvre dorso-médiale du somite (DML). Les crêtes neurales exprimant DLL1 activent « en passant » le récepteur NOTCH, liberant ainsi le domaine intra-cytoplasmique de NOTCH (NICD). Dans le cytoplasme, NICD inhibe la kinase GSK3ß, conduisant à la stabilisation de SNAIL, un gène maître de la transition épithélio-mésenchymateuse. Il en résulte une libération de la βcaténine des jonctions adhérentes qui, après translocation dans le noyau, active la transcription des gènes de la myogénèse (Myf5). Ainsi, l'activation de la voie Notch cytoplasmique permet une induction concomitante de l'EMT et de la myogénèse. La fonction cytoplasmique de Notch reste controversée et le mécanisme par lequel NICD inhibe GSK3ß reste obscur. Au cours de ma thèse j'ai cherché à élucider le mécanisme par lequel NICD inhibe l'activité kinase de GSK3ß. J'ai confirmé l'interaction de GSK3ß et de NICD en démontrant leur interaction via CoIP. Après avoir démontré l'implication de la sérine-thréonie kinase AKT dans la myogenèse des cellules de la DML, j'ai mis en évidence, via CoIP et électroporation, que l'inhibition GSK3ß par NICD est très certainement médiée par AKT, connue pour être impliquée dans l'EMT et inhiber GSK3ß par phosphorylation. En comparant le NICD1 de poulet et les 4 NICD de souris, j'ai montré que l'expression exogène de ces 5 molécules induit l'EMT et la différenciation myogénique de manière similaire. J'ai aussi montré que parmi des différents domaines de NICD, le domaine RAM, connu pour se lier à l'ADN (via RBPJ), est nécessaire et suffisant à l'inhibition de GSK3ß. Un second axe de ma thèse a été de tester l'implication de la voie Notch cytoplasmique dans d'autres contextes d'EMT. Pour ce faire, j'ai mis en évidence que cette voie est impliquée dans les autres lèvres du dermomyotome mais aussi dans les crêtes neurales qui délaminent du toit du tube neural. J'ai en particulier mis en évidence une co-activation des voies Wnt et Notch, une inhibition de la kinase GSK3ß par NICD cytoplasmique ainsi qu'une inhibition de la différenciation en présence d'une ß-caténine mutée, retenue à la membrane, ou en présence d'une molécule SNAIL2 dominant-négative. Le dernier axe de ma thèse a consisté à élucider le mécanisme de régulation de l'induction de l'EMT et de la myogenèse via l'activation de NICD. Il a été mis en évidence que toutes les cellules de la DML peuvent être activées via DLL1 et que la surexpression massive de NICD dans la DML provoque une différenciation massive et une déplétion du groupe de cellules progénitrices. Afin de déterminer si la régulation de cette initiation se fait avant ou après induction de NICD, j'ai créé un plasmide permettant de répondre à cette question et afin de visualiser son expression in vivo, j'ai initié une collaboration avec une équipe de l'ILM afin de créer un microscope vertical SPIM biphoton permettant l'observation d'embryon de poulets vivants [etc...] / The epithelio-mesenchymal transition (EMT) is a well-known mechanism by which epithelial cells lose their adherent connections and gain migratory properties, associated with a gain of a mesenchymal phenotype. This EMT is required in numerous processes as gastrulation, organogenesis, fibrosis and cancers. Various molecular pathways orchestrate the EMT depending on the EMT biological context. Recently, our laboratory highlighted the implication of the cytoplasmic Notch pathway in the dorso-medial lip (DML) EMT. In the DML tissue, theEMT is synchronized with differentiation pathways, to generate cells forming the primary myotome. Our laboratory showed that neural crests cells expressing DLL1 activate NOTCH receptor of the DML cells, via a “kiss and run” model. This leads to NOTCH cleavage, releasing an activated intra-cytoplasmic NOTCH domain (NICD). In the cytoplasm, NICD inhibits the GSK3ß kinase, leading to the stabilization of SNAIL and the free cytoplasmic ßcatenin. These molecules translocate into the nucleus and lead to the activation of MRF as Myf5 (ß-catenin) and to the repression of adherent genes (SNAIL). Therefore, Notch cytoplasmic pathway allows a synergized induction of both, the EMT and myogenic programs. This pathway remains controversial and the precise mechanism how NICD inhibits GSK3ß needs to be elucidated. Therefore, the aim of my thesis project was to clarify how NICD inhibits GSK3ß activity. First, I confirmed that NICD and GSK3ß physically interact by CoIP. Moreover, I demonstrated that the serin-threonin kinase AKT, known to inhibit GSK3ß by phosphorylation and also to mediate EMT in cancer, can physically interact with NICD in the cytoplasm. I have also shown that AKT mediates the induction of the myogenic program through the inhibitory phosphorylation of GSK3ß and that SNAIL is downstream of AKT. Together, these experiments indicate that AKT mediates, through phosphorylation, the cytoplasmic NICD inhibition of GSK3ß leading to myogenesis. A comparison of the chicken NICD1 and the 4 isoforms of mouse NICD highlighted that these 5 proteins induce EMT and myogenesis similarly. The dissection of the different conserved domains in the 5 different NICD proteins demonstrated that the RAM domain, known to activate transcription by binding to RBPJ, is necessary and sufficient for GSK3ß inhibition. A second axis of the thesis has been to test the involvment of the cytoplasmic Notch pathway in other EMT contexts. First, I highlighted that this pathway induces myogenesis, showing that NICD inhibits GSK3ß activity in the ventro-lateral lip. I further demonstrated that the cytoplasmic Notch pathway is implicated in the EMT and differentiation of the neural crests cells delaminating from the dorsal neural tube. Particularly, I have shown a co-activation of the Wnt and Notch pathway in premigratory and migratory neural crests. Moreover, I demonstrated a cytoplasmic inhibition of the kinase activity of GSK3ß by NICD, as well as the induction of the differentiation by cytoplasmic ß-catenin or SNAIL2. In a third axis of my thesis, I tried to clarify the regulatory mechanism involved in Notch activation. Previously it has been demonstrated that in all the DML cells Notch can be activated by an overexpression of DLL1 and that an ectopic expression of NICD in the DML cells induce a massive differentiation and depletion of the progenitor pool. To determine if the regulation of this initiation of the myogenic program occurs before or after Notch activation, I designed a plasmid to visualize Notch activation in vivo. In order to be able to follow the DLM cells and Notch activation in vivo, I initiated a collaboration with an ILM team to create a vertical SPIM biphoton microscope. In the future, this microscope will allow us to follow cells in living chicken embryos [etc...]
|
166 |
Shp2 deletion in post-migratory neural crest cells results in impaired cardiac sympathetic innervationLajiness, Jacquelyn D. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Autonomic innervation of the heart begins in utero and continues during the neonatal phase of life. A balance between the sympathetic and parasympathetic arms of the autonomic nervous system is required to regulate heart rate as well as the force of each contraction. Our lab studies the development of sympathetic innervation of the early postnatal heart in a conditional knockout (cKO) of Src homology protein tyrosine phosphatase 2 (Shp2). Shp2 is a ubiquitously expressed non-receptor phosphatase involved in a variety of cellular functions including survival, proliferation, and differentiation. We targeted Shp2 in post-migratory neural crest (NC) lineages using our novel Periostin-Cre. This resulted in a fully penetrant mouse model of diminished cardiac sympathetic innervation and concomitant bradycardia that progressively worsen.
Shp2 is thought to mediate its basic cellular functions through a plethora of signaling cascades including extracellular signal-regulated kinases (ERK) 1 and 2. We hypothesize that abrogation of downstream ERK1/2 signaling in NC lineages is primarily responsible for the failed sympathetic innervation phenotype observed in our mouse model. Shp2 cKOs are indistinguishable from control littermates at birth and exhibit no gross structural cardiac anomalies; however, in vivo electrocardiogram (ECG) characterization revealed sinus bradycardia that develops as the Shp2 cKO ages. Significantly, 100% of Shp2 cKOs die within 3 weeks after birth. Characterization of the expression pattern of the sympathetic nerve marker tyrosine hydroxylase (TH) revealed a loss of functional sympathetic ganglionic neurons and reduction of cardiac sympathetic axon density in Shp2 cKOs. Shp2 cKOs exhibit lineage-specific suppression of activated pERK1/2 signaling, but not of other downstream targets of Shp2 such as pAKT (phosphorylated-Protein kinase B). Interestingly, restoration of pERK signaling via lineage-specific expression of constitutively active MEK1 (Mitogen-activated protein kinase kinase1) rescued TH-positive cardiac innervation as well as heart rate. These data suggest that the diminished sympathetic cardiac innervation and the resulting ECG abnormalities are a result of decreased pERK signaling in post-migratory NC lineages.
|
167 |
Hand2 function within non-cardiomyocytes regulates cardiac morphogenesis and performanceVanDusen, Nathan J. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The heart is a complex organ that is composed of numerous cell types, which must integrate their programs for proper specification, differentiation, and cardiac morphogenesis. During cardiac development the basic helix-loop-helix transcription factor Hand2 is dynamically expressed within the endocardium and extra-cardiac lineages such as the epicardium, cardiac neural crest cells (cNCCs), and NCC derived components of the autonomic nervous system. To investigate Hand2 function within these populations we utilized multiple murine Hand2 Conditional Knockout (H2CKO) genetic models. These studies establish for the first time a functional requirement for Hand2 within the endocardium, as several distinct phenotypes including hypotrabeculation, tricuspid atresia, aberrant septation, and precocious coronary development are observed in endocardial H2CKOs. Molecular analyses reveal that endocardial Hand2 functions within the Notch signaling pathway to regulate expression of Nrg1, which encodes a crucial secreted growth factor. Furthermore, we demonstrate that Notch signaling regulates coronary angiogenesis via Hand2 mediated modulation of Vegf signaling.
Hand2 is strongly expressed within midgestation NCC and endocardium derived cardiac cushion mesenchyme. To ascertain the function of Hand2 within these cells we employed the Periostin Cre (Postn-Cre), which marks cushion mesenchyme, a small subset of the epicardium, and components of the autonomic nervous system, to conditionally ablate Hand2. We find that Postn-Cre H2CKOs die shortly after birth despite a lack of cardiac structural defects. Gene expression analyses demonstrate that Postn-Cre ablates Hand2 from the adrenal medulla, causing downregulation of Dopamine Beta Hydroxylase (Dbh), a gene encoding a crucial catecholaminergic biosynthetic enzyme. Electrocardiograms demonstrate that 3-day postnatal Postn-Cre H2CKO pups exhibit significantly slower heart rates than control littermates. In conjunction with the aforementioned gene expression analyses, these results indicate that loss of Hand2 function within the adrenal medulla results in a catecholamine deficiency and subsequent heart failure.
|
168 |
Genetische Analyse des Tyrosinkinase-Rezeptors ErbB2Woldeyesus, Masresha Tsegaye 14 February 2001 (has links)
ErbB2 gehört zu den Klasse I Rezeptor-Tyrosinkinasen und funktioniert als Ko-rezeptor bei der Vermittlung des Neuregulin-Signals. Während der Embryonal-entwicklung wird ErbB2 im Herzen, in den Neuralleistenzellen, im Muskel und in den Epithelien exprimiert (Kokai et al. 1987). Embryonen mit einer Null-Mutation im ErbB2 Gen sterben am Tag 10,5 der Embryonalentwicklung. Die Mutation bewirkt eine morphogenetische Fehlbildung des Herzens, die durch das Fehlen von ventrikulären Trabekeln gekennzeichnet ist (Lee et al. 1995). Weiterhin zeigen diese Embryonen Defekte in den Kranialganglien und in der primären sympathischen Ganglien-Kette, die von Neuralleistenzellen gebildet werden (Lee et al. 1995; Erickson et al. 1997; Britsch et al. 1998). Die herzspezifische Expression von ErbB2 cDNA ermöglicht ErbB2-/- Tieren, sich bis zur Geburt zu entwickeln. Dies erlaubte mir, spätere Funktionen des Rezeptors zu untersuchen. In den geretteten ErbB2-/- Embryonen erfolgte die Bildung der ventrikulären Trabekel, der fingerähnlichen Ausstülpungen des Myokards, zwischen dem 9. und 10. Tag in der Embryonalentwicklung. In den späteren Phasen der intrauterinen Entwicklung war das Herz der geretteten Tiere normal ausgebildet. In den ErbB2-/-R Embryonen fehlten Schwann'sche Zellen entlang der peripheren Nerven. Die Abwesenheit von Schwann'schen Zellen führte zum massiven Absterben von sensorischen und motorischen Neuronen des Rückenmarkes. Dabei zeigten sensorische Neuronen eine frühe Abhängigkeit von neurotrophen Faktoren, die von Schwann'schen Zellen produziert werden, während Motoneuronen diese Faktoren in einer späteren Phase benötigen. Zusätzlich ist bekannt, daß sensorische Neuronen und Motoneuronen neurotrophe Fakten benötigen, die von den Zielorganen, z.B. den Muskeln, produziert werden. Motoneuronen im thorakalen Rückenmark sind nur minimal betroffen, während die Degeneration von Moto-neuronen in den zervikalen und lumbalen Segmenten stark ausgeprägt ist. Verschiedene Motoneuron-Typen unterscheiden sich also in ihrer Abhängigkeit von neurotrophen Signalen. Weiterhin sind die peripheren Nerven der ErbB2-/-R Tiere defaszikuliert und ungeordnet. Der N. phrenicus, der das Diaphragma innerviert, retrahiert und ist am Tag 17 der Entwicklung vollständig degeneriert. Deshalb können die mutanten Tiere bei der Geburt nicht atmen und sterben infolgedessen. Überraschenderweise erfolgt in den geretteten ErbB2-/-R Embryonen die post-synaptische Expression und Aggregation der Acetylcholin-Rezeptoren. Die Phäno-typen der ErbB2-/-R und ErbB3-/- mutanten Tieren sind sehr ähnlich. Dies zeigt, daß ErbB2 eine essentielle Korezeptor-Funktion für ErbB3 in der Vermittlung der Neuregulin-Signale übernimmt. / ErbB2 belongs to class I of receptor tyrosine kinases and functions as a co-receptor by the transduction of the neuregulin signal. During embryonic development the ErbB2 gene is expressed in the heart, neural crest, in muscle and epithelial cells (Kokai et al. 1987). Embryos with null mutation of the ErbB2 gene die at midgestation. The mutation causes a morphogenetic defect that results in the absence of trabecules (Lee et al. 1995). In addition the mutant embryos show defects in cranial ganglia and in the primary sympathetic ganglia chain (Lee et al. 1995; Erickson et al. 1997; Britsch et al. 1998). The heart specific expression of ErbB2 cDNA allowed the mutant animals to survive till birth. This enabels me to study the late function of the receptor. In rescued ErbB2-/- embryos the ventricular trabecules, which are finger-like extensions of the myocardium, form properly between E9 and E10 of embryonic development. At late stages of intrauteral development the hearts of the rescued animals showed an overall normal growth. ErbB2-/- embryos lack Schwann cells along peripheral nerves. The absence of Schwann cells leads to enormous degeneration of sensory and motoneurons. Whereas sensory neurons show an early dependency on neurotrophic factors produced by Schwann cells, motoneurons revealed requirement of these factors during the late phase of their development. Moreover it is known that sensory and motoneurons require neurotrophic factors which are produced by their target tissues such as muscle. Motoneurons at the thoracic level of the spinal cord are minimaly affected, whereas the degeneration of motoneurons at cervical and lumbar segments of the spinal cord are pronounced. This indicates that different motoneuron types differ in their dependency on neurotrophic signals. Furthermore axons of peripheral nerves in ErbB2-/-R (rescued) animals show defasciculation and desorganization. Nervous phrenicus, that innervates the diaphragm muscle retracts and degenerates entirely at E17 of embryonic development. As a result newborn animals can not breath and die shortly after birth. Surprisingly, the expression and aggregation of AchRs (Acetylcholine Receptors) take place in rescued ErbB2-/-R embryos. The overall phenotype of ErbB2-/-R embryos is very similar to that of ErbB3-/- embryos. This substantiates the essential function of ErbB2 as the functional co-receptor for ErbB3 to transmit the neuregulin signal.
|
Page generated in 0.0707 seconds