Spelling suggestions: "subject:"neuronale"" "subject:"neuronalem""
1 |
On the pertinence of a numerical transmission model for neural information / Sur la pertinence d'un modèle de transmission numérique pour l'information neuronaleTiganj, Zoran 08 November 2011 (has links)
Dans cette thèse, nous utilisons un ensemble d’outils avancés de mathématiques et de méthodes de traitement des signaux pour relever trois problèmes importants en neurosciences: détection de potentiels d’action, tri des potentiels d’action et codage neuronal. A partir d’enregistrements extracellulaires, nous avons tout d’abord abordé la question de la détection de potentiels d’action. Les potentiels d’action sont explicitement présents (comme des irrégularités) dans les dérivées distributionnelles du signal neuronal. Ce phénomène est alors abordé comme un problème de détection de point de changement. Nous utilisons le calcul opérationnel qui permet d’une part d’acquérir une structure pratique pour traiter de telles dérivées distributionnelles, et d’autre part de caractériser la présence d’un point de changement à un moment bien précis. Après avoir développé l’analyse de potentiels d’action, nous abordons le problème de leur tri. Nous avons développé un algorithme simple de tri pour les cas où les enregistrements multi-canaux sont disponibles. L’algorithme utilise alors une application itérative de l’ICA et une technique de déflation au sein de deux boucles imbriquées. Finalement, nous discutons des propriétés du codage neuronal. Nous étudions si la nature du code neuronal est discrète ou continue. Par ailleurs, si elle est discrète, nous cherchons à savoir si les éléments du code sont tirés d’un alphabet fini. Nous abordons particulièrement le schéma de codage de la position des impulsions, faisant ainsi un lien entre la théorie de la communication et le codageneuronal. / In this thesis we bring together advanced mathematical tools and signalprocessing methods to address three very important problems in neuroscience:neural action potential (spike) detection, neural spike sorting and directlyneural coding. Starting from extracellular neural recordings, we first address the question of spike detection. The spike time occurrences appear (as irregularities) explicitly inthe distributional derivatives of the neural signal. The problem is seen as a change point detection problem. Using operational calculus, which provides a convenient framework to handle such distributional derivatives, we characterize the time occurrence of a spike by an explicit formula. After spike detection we address the spike sorting problem. We developed a simple algorithm for a case when multi-channel recordings are available. The algorithm uses an iterative application of ICA and a deflation technique in two nested loops. In each iteration of the external loop, the spiking activity of one neuron is singled out and then deflated from the recordings. The internal loop implements a sequence of ICA and spike detection for removing the noise and all the spikes that are not coming from the targeted neuron. Finally, we discuss on properties of the neural code. We investigate whether the nature of the neural code is discrete or continuous. Moreover, if it is discrete, whether the elements of the code are drawn from a finitealphabet. We particularly address pulse-position coding scheme, making alink between communication theory and neural code.
|
2 |
Mechanisms and consequences of environmentally and behaviorally induced synaptic plasticity in the honey bee brain / Mechanismen und Konsequenzen umwelt- und verhaltensbedingter synaptischer Plastizität im Gehirn der HonigbieneBecker, Nils January 2018 (has links) (PDF)
The brain is the central organ of an animal controlling its behavior. It integrates internal information from the body and external stimuli from the surrounding environment to mediate an appropriate behavioral response. Since the environment is constantly changing, a flexible adjustment of the brain to new conditions is crucial for the animals’ fitness. The ability of the nervous system to adapt to new challenges is defined as plasticity. Over the last few decades great advances have been made in understanding the cellular and molecular mechanisms underlying neuronal plasticity. Plasticity may refer to structural changes physically remodeling the neuronal circuit, or to functional adaptations which are manifested in modified synaptic transmission, and in altered response and firing properties of single neurons. These structural and functional modifications are mediated by a complex interplay of environmental stimuli, intracellular signal transduction cascades, protein modifications, gene translation and transcription, and epigenetic gene regulatory mechanisms. However, especially the molecular mechanisms of environmentally-induced structural neuronal plasticity are still poorly understood.
In this thesis the honey bee was used as an innovative model organism to investigate this issue. The honey bee with its rich behavioral repertoire, highly sophisticated and plastic neuronal system, sequenced genome and full epigenetic machinery is well suited for studying the molecular underpinnings of environmentally-induced neuronal plasticity. Adult honey bees progress through a series of tasks within the dark hive until after about three weeks they start with foraging activities in the external world. The transition from in-hive to outside tasks is associated with remarkable structural neuronal plasticity. Subdivisions of the mushroom body, a brain region related to higher cognitive functions, are increased in volume. The volume expansion is mediated by a remarkable outgrowth of the dendritic network of mushroom body intrinsic neurons, so called Kenyon cells. In parallel, prominent synaptic structures, referred to as microglomeruli, are pruned. Most interestingly for this thesis, the pruning of microglomeruli and the dendritic expansion in Kenyon cells can be induced by a simple light exposure paradigm.
In the first chapter of the present thesis I used this paradigm to induce synaptic plasticity in the mushroom bodies under controlled lab conditions to search for correlating molecular changes which possibly mediate the observed plasticity. I compared the brain transcriptome of light-exposed and dark-kept control bees by whole transcriptome sequencing. This revealed a list of differentially expressed genes (DEGs). The list contains conserved genes which have reported functions in neuronal plasticity, thereby introducing them as candidate genes for plasticity in the honey bee brain. Furthermore, with this transcriptomic approach I discovered many candidate genes with unknown functions or functions so far unrelated to neuronal plasticity suggesting that these novel genes may have yet unrecognized roles in neuronal plasticity. A number of DEGs are known to be methylated or to exert epigenetic modifications on themselves speaking for a strong impact of epigenetic mechanisms in light-induced structural plasticity in the honey bee brain. This notion is supported by a differential methylation pattern of one examined DEG between light-exposed and dark-kept bees as shown in this thesis. Also a plasticity-related microRNA, which is predicted to target genes associated with cytoskeleton formation, was found to be upregulated in light-exposed bees. This speaks for a translation regulatory mechanism in structural plasticity in the honey bee.
Another interesting outcome of this study is the age-dependent expression of DEGs. For some plasticity-related DEGs, the amplitude of light-induced expression differs between one- and seven-day-old bees, and also the basal expression level of many DEGs in naive dark-kept control bees significantly varies between the two age groups. This suggests that the responsiveness of plasticity-related genes to environmental stimuli is also under developmental (age-dependent) control, which may be important for normal maturation and for the regulation of age-related changes in behavior. Indeed, I was able to demonstrate in phototaxis experiments that one- and seven-day-old bees show different behaviors in response to light exposure and thus the correlating age-dependent transcriptional differences may serve as mechanisms promoting age-related changes in behavior.
Together the results of the transcriptomic study demonstrate the successfulness of my approach to identify candidate molecular mechanisms for environmentally-induced structural plasticity in the honey bee brain. Furthermore, the thesis provides seminal evidence for the implication of DNA methylation in this process.
To better understand the role of DNA methylation for neuronal and behavioral plasticity in the honey bee, the second chapter of the thesis aims at characterizing this molecular process under more natural conditions. Therefore, I examined the expression of the DNA methyltransferase 3 (DNMT3) and of Ten-eleven translocation methylcytosine dioxygenase (TET) between in-hive bees and foragers. DNMT3 is responsible for DNA de novo methylation, whereas TET promotes DNA demethylation by converting methylcytosine (5mC) to hydroxymethylcytosine (5hmC). The data suggest that age and experience determine the expression of these two epigenetic key genes. Additionally, in this context, two examined DEGs are shown to be differentially methylated between nurses and foragers. One of these two DEGs, the plasticity related gene bubblegum (bgm), also exhibits an altered DNA methylation pattern in response to light exposure. Hence, these results of my thesis provide additional evidence for the importance of DNA methylation in behavioral and neuronal plasticity.
Results from the second chapter of this thesis also suggest additional functions of DNMT3 and TET to their traditional roles in DNA methylation/demethylation. I show that TET is far more expressed in the honey bee brain than DNMT3. This stands in contrast to the relative scarcity of 5hmC compared to 5mC and points at extra functions of this gene like RNA modifications as reported for Drosophila. Antibody staining against the DNMT3 gene product revealed an unexpected rare localization of the enzyme in the nucleus, but a surprisingly high abundance in the cytoplasm. The role of cytoplasmic DNMT3 is unknown. One possibility for the high abundance in the cytoplasm is a regulatory mechanism for DNA methylation by cytoplasmic-nuclear trafficking, or an additional function of DNMT3 in RNA modification, similar to TET.
Altogether, this thesis points at future research directions for neuronal plasticity by providing promising evidence for the involvement of epigenetic mechanisms and of a number of new candidate genes in environmentally induced structural plasticity in the honey bee brain. Furthermore, I present data suggesting so far unrecognized functions of DNMT3 which certainly need to be experimentally addressed in the future to fully understand the role of this enzyme. / Das Gehirn ist das zentrale Organ zur Steuerung des Verhaltens von Tieren. Es integriert körperinterne Informationen mit Umweltreizen und sorgt somit für eine Anpassung des Verhaltens an die jeweilige Situation. Diese hohe Flexibilität des Gehirns ist ein entscheidender Überlebensfaktor in einer sich ständig wandelnden Umwelt. Die Fähigkeit des Nervensystems, sich an wechselnde Bedingungen anpassen zu können, wird als Plastizität bezeichnet. In den vergangen Jahrzehnten wurden große Fortschritte zur Identifikation von zellulären und molekularen Mechanismen neuronaler Plastizität erzielt. Neuronale Plastizität beinhaltet zum einen physische Veränderung der Struktur neuronaler Netzwerke, und zum anderen funktionale Modifikationen der internen Antworteigenschaften und synaptischen Übertragung eines Neurons. Diese Veränderungen werden durch ein komplexes Zusammenspiel zwischen Umweltreizen, intrazellulären Signalkaskaden, Proteinmodifikationen, Gentranslation und -Transkription, sowie epigenetischer Genregulation gesteuert. Die genauen Mechanismen umweltbedingter struktureller Plastizität sind jedoch immer noch nicht vollständig geklärt.
In der vorliegenden Doktorarbeit bediene ich mich der Honigbiene als innovativen Modellorganismus, um dieses Thema zu untersuchen. Die Honigbiene eignet sich durch ihr vielfältiges und komplexes Verhalten, ihr hochentwickeltes und plastisches Nervensystem, ihr sequenziertes Genom, sowie durch den Besitz einer vollständig epigenetischen Maschinerie besonders gut zur Untersuchung der molekularen Mechanismen umweltbedingter neuronaler Plastizität. Honigbienen führen die ersten drei Wochen ihres Lebens verschiedene Arbeiten innerhalb des dunklen Bienenstocks aus, ehe sie anschließend für den Rest ihres Lebens nach Nahrung außerhalb des Stocks suchen. Der Wechsel vom Innen- zum Außendienst korreliert mit plastischen Veränderungen des Gehirns. Subkompartimente des Pilzkörpers, einer Hirnstruktur, die mit höherer Kognition assoziiert wird, nehmen im Volumen zu. Diese Volumensexpansion lässt sich durch eine wachsende dendritische Verzweigung von Kenyonzellen, welche die intrinsischen Neuronen der Pilzkörper darstellen, erklären. Gleichzeitig findet eine Eliminierung von synaptischen Komplexen, sogenannten Mikroglomeruli, statt. Besonders interessant für diese Doktorarbeit ist die Tatsache, dass die strukturelle Plastizität der Mikroglomeruli und der dendritischen Verzweigungen bereits durch ein einfaches Lichtexponierungsprotokoll induziert werden kann.
In dieser Doktorarbeit löse ich durch das Lichtprotokoll synaptische Plastizität unter standardisierten Laborbedingungen aus, um nach zugrundeliegenden molekularen Veränderungen während dieses Vorgangs zu suchen. Ein Vergleich des Transkriptoms zwischen lichtbehandelten und dunkel gehaltenen Bienen mittels Transkriptom-Sequenzierung beider Gruppen erbrachte mehrere differentiell exprimierte Gene (DEGs). Die Liste der DEGs enthält einige konservierte Gene, denen bereits eine Funktion in neuronaler Plastizität nachgewiesen wurde und daher als Kandidatengene für umweltbedingte synaptische Plastizität in der Honigbiene infrage kommen. Außerdem konnten mehrere DEGs ohne bekannten Bezug zu neuronaler Plastizität, oder mit bisher unbekannter Funktion, identifiziert werden, was die Möglichkeit einer bisher unentdeckten Rolle dieser Gene in neuronaler Plastizität impliziert. Des Weiteren sind einige der DEGs in epigenetische Prozesse involviert und aus anderen Studien ist bekannt, dass weitere DEGs Methylierungen aufweisen. Dies weist auf einen starken Einfluss epigenetischer Prozesse bei lichtinduzierter struktureller Plastizität in der Honigbiene hin. Diese Vermutung wird durch die differentielle Methylierung eines plastizitäts-assoziierten DEGs zwischen lichtexponierten und dunkelgehalten Bienen bekräftigt. Ferner ist eine microRNA in lichtbehandelten Bienen hochreguliert, welche als vorhergesagte Ziele Gene zur Zytoskelettformation hat. Dies spricht für einen translationsregulatorischen Mechanismus im Zusammenhang mit struktureller Plastizität in der Honigbiene.
Ein weiteres interessantes Ergebnis dieser Arbeit ist der starke Alterseinfluss auf die Expression der identifizierten DEGs. Bei einigen DEGs ist die Amplitude der lichtinduzierten Expression bei sieben Tage alten Bienen höher als bei einem Tag alten, und das Grundexpressionsniveau vieler DEGs in den naiven, dunkel gehaltenen Kontrollbienen unterscheidet sich zwischen den beiden Altersklassen. Dies lässt vermuten, dass die Expression von Plastizitätsgenen als Antwort auf Umweltreize ebenfalls durch ein internes Entwicklungsprogramm beeinflusst wird, was wichtig für eine normale Reifung, sowie zur Regulation altersabhängigen Verhaltens sein könnte. Tatsächlich weist diese Arbeit bei Phototaxis-Experimenten Verhaltensunterschiede zwischen einen- und sieben Tage alten Bienen auf, welche mit transkriptionellen Unterschieden zwischen den beiden Altersklassen korrelieren, die somit wiederum als molekularer Mechanismus zur Steuerung des altersabhängigen Verhaltens in Frage kommen.
Zusammengefasst bestätigen die Ergebnisse aus den Transkriptomstudien den Erfolg meines experimentellen Ansatzes zur Identifikation molekularer Kandidatenmechanismen für umweltbedingte strukturelle Plastizität im Honigbienengehirn. Zudem liefern die Ergebnisse der Transkriptions-Sequenzierung einen deutlichen Hinweis auf den Einfluss von DNA-Methylierung auf strukturelle neuronale Plastizität.
Um die Rolle von DNA-Methylierung im Zusammenhang mit neuronaler- und Verhaltensplastizität besser zu verstehen, zielt das zweite Kapitel dieser Arbeit auf eine genauere Charakterisierung dieses epigenetischen Vorgangs in einem natürlicheren Kontext ab. Dazu wurde die Expression der DNA Methyltransferase 3 (DNMT3) und von Ten-eleven translocation Methylcytosine Dioxygenase (TET) zwischen Bienen im Innen- und Außendienst verglichen. DNMT3 ist zuständig für die de novo DNA-Methylierung, wohingegen TET DNA durch die Konvertierung von methylierten Cytosin (5mC) in hydroxymethyliertes Cytosin (5hmC) demethyliert. Die Ergebnisse dieses Versuchs deuten auf eine altersabhängige, aber auch auf eine umweltbedingte Expression dieser beiden epigenetischen Schlüsselgene hin. Zusätzlich sind zwei untersuchte DEGs in diesem Versuchsaufbau differentiell methyliert, wobei eines dieser Gene mit Plastizitätsbezug, bubblegum (bgm), bereits in den Lichtexperimenten als differentiell methyliert charakterisiert wurde. Dadurch wird der Verdacht des Einflusses von DNA-Methylierung bei neuronaler- und Verhaltensplastizität weiter verstärkt.
Resultate der Versuche im zweiten Kapitel lassen weitere Funktionen von DNMT3 und TET über ihre traditionelle Rolle in DNA-Methylierung/Demethylierung hinaus vermuten. In dieser Arbeit ist TET im Honigbienengehirn weit mehr exprimiert als DNMT3. Das steht in starkem Kontrast zu dem relativ geringen Vorkommen von 5hmC im Vergleich zu 5mC und deutet auf zusätzliche Funktionen von TET in der Honigbiene hin, z.B. bei RNA-Modifikationen wie es bei Drosophila nachgewiesen wurde. Eine Antikörperfärbung gegen DNMT3 zeigt eine unerwartet geringe Konzentration dieses Enzyms im Zellkern, dafür aber ein relativ starkes Vorkommen im Zytoplasma. Die Funktion von zytoplasmatischem DNMT3 ist unbekannt, könnte aber einen regulatorischen Mechanismus der DNA-Methylierung durch zytoplasmatisch-nukleare Translokation des Enzyms darstellen, oder aber auf eine zusätzliche Rolle des Proteins bei RNA-Modifikationen, ähnlich wie für TET, hinweisen.
Abschließend lässt sich sagen, dass diese Doktorarbeit, durch die vielversprechende Identifizierung von epigenetischen Mechanismen und von aussichtsreichen Kandidatengenen für strukturelle Plastizität im Honigbienengehirn, auf neue Wege in der zukünftigen Erforschung neuronaler Plastizität weist. Des Weiteren präsentiere ich Daten, welche auf bisher unbekannte Funktionen von DNMT3 hinweisen und eine weitere Erforschung dieses Enzyms nötig machen um seine Rolle vollständig zu verstehen.
|
3 |
Plasticité de l'organisation tonotopique corticale chez le cochléo-lésé en cours de réhabilitation auditiveGabriel, Damien Collet, Lionel January 2005 (has links)
Reproduction de : Thèse de doctorat : Sciences cognitives. Neurosciences : Lyon 2 : 2005. / Titre provenant de l'écran-titre. Bibliogr.
|
4 |
Interactions de la phospho-protéine neuronale Tau avec des protéines partenaires comme cibles thérapeutiques dans la maladie d’Alzheimer / The interactions of neuronal phospho-protein Tau with its protein partners as therapeutic targets in Alzheimer’s diseaseQi, Haoling 20 November 2015 (has links)
Tau est une protéine neuronale qui est observé hyperphosphorylé et agrégée dans les filaments hélicaux appariés (PHFs) dans les cerveaux de la maladie d’Alzheimer. La spectroscopie de résonance magnétique nucléaire a permis une caractérisation analytique de la protéine Tau phosphorylée, également d’étudier les interactions de Tau avec des partenaires moléculaires. Parmi de 16 motifs pS/pT-P présents dans la séquence de Tau, il y a 14 sites phosphorylés par ERK2(Extracellular signal-Regulated Kinase2). Ce profil de phosphorylation est très semblable à celui obtenu avec un extrait de cerveau de rat. En plus, il est montré que la protéine Tau phosphorylée uniquement par ERK2 présente des propriétés d’agrégation semblables à la protéine Tau phosphorylée par les extraits de cerveaux de rat. Nous avons mis en évidence que Tau est un substrat de ERK2 reconnu par des sites multiples d’ancrage. Par ailleurs, des oligonucléotides interagissent avec Tau au niveau des séquences [209-246] et [267-289], et cette interaction est abolie par la phosphorylation de Tau par la kinase ERK. En conclusion, la phosphorylation de Tau par ERK sur les motifs S/T-P, localisés tout le long de sa séquence mais particulièrement dans le domaine régulateur riche en proline, a un impact sur les capacités d’agrégation de la protéine modifiée et sur ses propriétés d’interaction avec un partenaire moléculaire physiologique, l’ADN. Ces résultats concordent avec les études de réalisées dans des contextes cellulaires qui identifient ERK comme une kinase activée dans des conditions de stress du neurone qui pourrait conduire à une phosphorylation pathologique de Tau. / Tau has a central role in neurodegeneration and is implicated in Alzheimer’s disease development. It is found aggregated in neurons affected by the disease, typically in paired helical filaments (PHFs) constituted of hyper-phosphorylated Tau. Nuclear Magnetic resonance Spectroscopy is used to characterize Tau phosphorylation pattern, as well as to study Tau interactions with molecular partners. Analysis of in vitro phosphorylated Tau by activated recombinant ERK2(Extracellular signal-Regulated Kinase2) with NMR spectroscopy revealed phosphorylation of 14 S/T-P sites among 16 such motifs, which has a similar phosphorylation pattern In vitro by rat brain extract, and both of phosphorylated Tau show similar ability to produce pTau filaments. In addition, Tau is ERK2 substrate to present multiple docking sites instead of one high affinity single D-site motif. Additionally, I have investigated the functional consequences of Tau interaction by ERK. Oligonucleotide sequences interact with [209-246] and [267-289] regions. I have shown that this interaction is abolished by Tau phosphorylation by ERK2. This study shows that the ERK2 kinase has the capacity by itself to phosphorylate Tau on many sites and that the resulting phosphorylation pattern increases pTau aggregation propensity. Moreover, ERK2 phosphorylation of Tau can lead to a loss of physiological function, such as its capacity to bind DNA. These results support the hypothesis that ERK activation might have a detrimental effect for Tau function and participate in AD physio-pathology.
|
5 |
Étude de l'expression et des mécanismes de régulation transcriptionnelle tissu-spécifique du gène ST6GAL2 / Study of the expression and the tissue-specific transcriptional regulation mechanisms of the ST6GAL2 geneLehoux, Sylvain 13 November 2009 (has links)
La sialylation est l’une des dernières étapes de la biosynthèse des chaînes glycaniques des glycoprotéines et des glycolipides. La sialylation en a2,6 des structures N-acétyllactosaminiques (Galß1-4GlcNAc) est souvent retrouvée en périphérie des glycannes et est impliquée dans de nombreux mécanismes d’adhésion et de reconnaissance cellule / cellule ou hôte / pathogène. Chez l’Homme, deux sialyltransférases synthétisent ce type d’épitope glycanique : hST6Gal I et hST6Gal II. Elles se distinguent par leur spécificité de substrat accepteur et par leur profil d’expression tissulaire. Alors que le gène ST6GAL1 codant hST6Gal I est exprimé dans la plupart des tissus, ST6GAL2 présente une expression tissulaire plus restreinte, se limitant essentiellement au cerveau embryonnaire et adulte. Par ailleurs, hST6Gal II présente des similitudes en termes de spécificité de substrat et d’expression tissulaire avec la sialyltransférase identifiée chez D. melanogaster et semble avoir conservé certaines propriétés ancestrales essentielles pour le développement du tissu nerveux. Plusieurs études ont montré que l’expression des sialyltransférases est contrôlée au niveau transcriptionnel par l’utilisation de promoteurs tissulaires régulant l’expression de manière tissu-spécifique. Si les données concernant ST6GAL2 sont encore limitées, il apparaît cependant que l’expression de ce gène est finement contrôlée par des mécanismes apparemment conservés au cours de l’évolution. Le projet de thèse que nous avons mené a eu pour but d’identifier les régions 5’-non traduites de ST6GAL2 et de caractériser les régions promotrices associées. A partir d’un modèle cellulaire de neuroblastome en culture, nous avons identifié par 5’ RACE trois types de transcrits qui diffèrent par leur premier exon non traduit. Ces exons, appelés EX, EY et EZ, sont situés à plus de 42 kpb du premier exon commun codant et ne sont séparés que de 124 et 87 pb, respectivement. Par Q-PCR en duplex avec le gène normalisateur HPRT, nous avons montré que les transcrits initiés par l’exon EX et EY étaient prépondérants par rapport aux transcrits contenant EZ, à la fois dans plusieurs lignées cellulaires à caractère neuronal et dans des échantillons de tissu cérébral humain. Nous avons également montré que la protéine hST6Gal II est exprimée dans les différents lobes du cortex cérébral, dans le cervelet et dans l’hippocampe. Nous avons isolé différentes régions génomiques situées en amont et à l’intérieur de la région EX/EY/EZ que nous avons sous cloné en amont du gène de la luciférase pour des tests d’activité. Nous avons défini deux régions promotrices, en amont des exons EX et EY. Des expériences de mutagenèse dirigée couplées à des analyses bioinformatiques nous ont révélé que les facteurs de transcription NF-?B et NRSF sont probablement des répresseurs de la transcription, alors que les facteurs Sox5, SP1, Pura et Olf1 agirait comme des éléments activateurs de la transcription de ST6GAL2. Les facteurs NRSF, Sox5, Pura et Olf1 régulent notamment la transcription de gènes impliqués dans le fonctionnement et le développement neuronal, suggérant un rôle de ST6GAL2 dans les fonctions neuronales. Enfin, nous avons mis en évidence une forte augmentation de l’expression ST6GAL2 au cours de la différentiation en neurones des cellules NT2/D1 sous l’action de l’acide rétinoïque, suggérant un rôle potentiel de cette enzyme au cours de la différentiation neuronale. / Sialylation is one of the last step of the biosynthesis of glycan chains carried by glycoproteins and glycolipids. The a2,6-sialylation of N-acetyllactosaminyl (Galß1-4GlcNAc) structures is commonly found at the end of glycan chains and is involved in numerous cell / cell or host / pathogen adhesion and recognition events. In Human, two sialyltransferases synthesise this glycan epitope, namely hST6Gal I and hST6Gal II. They differ from each other in substrate specificity an in tissue-specific pattern of expression. Whereas the gene encoding hST6Gal I, ST6GAL1, is expressed in almost all tissues, ST6GAL2 shows a narrower pattern of tissue expression essentially limited to fetal and adult brain. In addition, hST6Gal II exhibits similarities in terms of substrate specificity and gene expression pattern with the sialyltransferase identified in D. melanogaster and therefore, seems to have conserved ancestral properties required for brain function and growing nervous tissue. Several studies have shown that the expression of sialyltransferases is controlled at the transcriptional level by the use of specific promoters that regulate their expression in a tissue-specific fashion. Data about ST6GAL2 are rather limited; however, it appears the expression of this gene is finely regulated by mechanisms likely conserved through evolution. The aim of this thesis was to identify the 5’ non translated regions of the ST6GAL2 gene and to characterize the associated promoter regions. From a neuroblastoma cultured cell model, we identified by 5’RACE three types of transcripts which are different only in their first non-coding exon. Those exons, named EX, EY and EZ, are located more then 42 kbp upstream of the first common coding exon and are only separated by 124 and 87 bp, respectively. Using Taqman duplex Q-PCR technology we have shown that the transcripts initiated by EX and EY are predominantly expressed compared to EZ both in several cell lines and in human brain tissue samples. We also demonstrated that the hST6Gal II protein is expressed in the different lobes of the human cerebral cortex, the cerebellum and the hippocampus. We isolated different genomic sequences upstream EX and within EX/EY/EZ region and inserted them in a reporter vector for luciferase assays. We could define two promoter sequences upstream EX and ZY. PCR site-directed mutagenesis experiments along with bioinformatics analysis revealed that transcription factors NF-?B and NRSF are likely to act as transcription inhibitors, whereas the Sox5, SP1, Pura and Olf1 factors would be involved in the transcriptional activation of ST6GAL2. The NRSF, Sox5, Pura and Olf1 transcription factors are notably involved in the transcriptional regulation of genes related to neuronal functions and the neuronal development. Eventually, we have shown evidence of a strong increased ST6GAL2 expression during neuronal differentiation of the NT2/D1 cell line under acid retinoic treatment, suggesting of putative role this enzyme in neuronal differentiation.
|
6 |
Untersuchung des Wachstumsverhaltens neuronaler Zellen auf strukturierten Halbleiteroberflächen als Werkstoff zukünftiger Elektrodenträger auditorischer Implantate / Growth behavior of neuronal cells on structured semiconductor surfaces as a material of future electrode carriers of auditory implantsKohm, Fabian January 2014 (has links) (PDF)
Die Therapie von Patienten mit fortgeschrittener sensorineuraler Schwerhörigkeit oder Taubheit mit auditorischen Implantaten ist heute Standard in der medizinischen Versorgung. Durch direkte elektrische Stimulation der noch vorhanden auditorischen Neurone wird versucht, die physiologische Informationsübertragung entlang der Hörbahn künstlich nachzubilden. Strukturierte Halbleiterelektrodenträger aus Silizium stellen dabei eine mögliche Alternative zu den herkömmlichen Kabelbündel-Elektrodenträgern heutiger Implantate dar. Durch die Möglichkeit der Abstandsverringerung zwischen Stimulationselektroden und Nervenfasern sowie durch die Möglichkeit der Erhöhung der Anzahl an Stimulationselektroden könnte die Leistungsfähigkeit heutiger Implantate verbessert werden.
Ziel der vorliegenden Arbeit war es, das Wachstumsverhalten corticaler neuronaler Vorläuferzellen der Maus auf strukturierten Siliziumhalbleitern zu untersuchen und das Wachstumsverhalten näher zu charakterisieren. Zwei unterschiedliche Oberflä-chenstrukturen wurden durch den Einsatz der Elektronenstrahllithografie auf Silizi-umwafern erzeugt. Zylinder auf der Oberfläche der Halbleiter wurden als Modellstruktur gewählt, um eine erhöhte Anzahl an Elektrodenkontakten zu simulieren und die neuronale Interaktion mit diesen zu untersuchen. Daneben wurden Furchen auf Siliziumoberflächen verwendet, um die Wachstumsrichtung der neuronalen Zellen zu beeinflussen.
Die durchgeführten Untersuchungen konnten zeigen, dass strukturierte Halbleiter-elektrodenträger in zukünftigen auditorischen Implantaten grundsätzlich eine Alternative zu den Kabelbündel-Elektrodenträgern heutiger Implantate sein könnten. Durch den Einsatz der Elektronenstrahllithografie konnten Siliziumwafer mit präziser Oberflächenstrukturierung hergestellt werden und deren Biokompatibilität durch Kultivierung neuronaler Zellen gezeigt werden. Die Geometrie der eingeätzten Oberflächenstruktur hatte dabei entscheidenden Einfluss auf das Wachstumsverhalten der Zellen. Während durch Furchen die Orientierung der Neurone gezielt beeinflusst werden konnte und die Neuritenlängen mit zunehmender Ätztiefe abnahmen, konnten derartige Effekte bei den untersuchten Zylindern nicht beobachtet werden.
Die durchgeführten rasterelektronenmikroskopischen Untersuchungen gaben Auf-schluss über die Interaktion der Neurite mit der Oberflächenstruktur. Auf vertikalen Wachstumsstress reagierten die kortikalen neuronalen Vorläuferzellen unabhängig von der Oberflächenstruktur mit der Ausbildung von neuronalen Brücken. Der Modus der Brückenbildung war bei beiden Strukturen dabei gleich, jedoch wurden unterschiedliche Verankerungspunkte an der Siliziumoberfläche beobachtet. Darüber hinaus konnte durch Echtzeituntersuchungen an lebenden Zellen gezeigt werden, dass diese während des Wachstums ihre Lage verändern konnten und somit nicht dauerhaft mit der Oberfläche verbunden waren.
Die Ergebnisse zeigen, dass die beiden untersuchten Oberflächenstrukturen grundsätzlich für den Einsatz auf zukünftigen Halbleiterelektrodenträgern geeignet sind, jedoch noch weiterführende Untersuchungen nötig sind, um diese weiter zu optimieren. / The treatment of patients with advanced sensorineural hearing loss or deafness with auditory implants is standard in health care today. Structured silicon semiconductors could be an alternative to the conventional wire-bundle-electrodes of today's implants. The possibility of reducing the distance between stimulation electrodes and nerve fibers as well as the possibility of increasing the number of stimulation electrodes could improve the performance of today's implants.
Aim of the present study was to investigate the growth behavior of cortical neuronal precursor cells of the mouse on structured silicon semiconductors and to characterize the growth behavior. Two different surface structures were created on silicon semiconductors through the use of electron beam lithography. Cylinders on the surface of the semiconductors were chosen as model structure for an increased number of electrode contacts. In addition, grooves on Silicon surfaces were used to influence the direction of the axonal outgrowth.
The investigations showed that structured semiconductors basically could be an alternative to the cable-bundle-electrodes of today's implants. The geometry of the surface structure had decisive influence on the growth behavior of cells. While the orientation of the neurons could be influenced by grooves and the axon lengths with etching depth declined, such effects were not observed at the cylinders.
Investigations on the scanning electron microscope showed the interaction of the axons with the surface structure. The neuronal precursor cells responded to vertical growth stress regardless of the surface structure with the formation of neural bridges. The mode of bridging was basically equal on both surfaces, but different anchor points on the silicon surface were observed. In real time studies on living cells the dynamic of neuronal growth was investigated. The Observation shoes, that neurons could change their position during growth and that they were not permanently connected to the surface.
The results shows that the two observed semiconductor surfaces are generally suitable for the use in auditory implants. Further investigations should follow to optimize the surface structures for future implants.
|
7 |
Association de tau avec les membranes Golgiennes : nouvelles avenues dans la pathogenèse de tauPerreault, Sébastien January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
8 |
Cortical functional activations in musical talents and nontalents in visuomotor and auditory tasks: implications of the effect of practice on neuroplasticity / Funktionelle kortikale Aktivierungen bei Musiktalenten und musikalischen Laien in visuomotorischen und auditorischen Aufgaben: Implikationen von Übungseffekten für NeuroplastizitätStojanovic, Jelena January 2010 (has links) (PDF)
Neuroplasticity is a term indicating structural and functional changes in the brain through the lifespan. In the present study, differences in the functional cortical activations between the musical talents and non-talents were investigated after a short-term practice of the visuomotor and auditory tasks. Visuomotor task consisted of the finger tapping sequences, while auditory task consisted of passive listening to the classical music excerpts. Non-talents were divided in two groups: trained non-talents who practiced the task prior to scanning and untrained non-talents who did not practice the task. Functional activations were obtained by the functional magnetic resonance imaging (fMRI) in a 1.5T Scanner. It was hypothesized that talents would exhibit different functional activations from non-talents in both tasks as a result of the long-term music practice, which would account for the brain plasticity. Decreased activation of the same areas in talents in respect to the non-talents as well as the activation of different areas between the talents and non-talents was hypothesized. In addition due to a plethora of previous studies showing increased activations in the primary motor cortex (M1) in musicians, as well as left inferior frontal gyrus (lIFG), increased activation of the M1 and lIFG in talents were hypothesized. Behavioral results did not reveal differences in performance among the three groups of subjects (talents, non-talents who practiced the task, and non-talents who did not practice the task). The main findings from imaging results of the visuomotor task confirmed the hypothesis of the increased activation in the M1 in talents. Region of interest analyses of the lIFG revealed the highest activation in the untrained non-talents, lower activation in talents, and least activation in the trained non-talents. Posthoc imaging analyses revealed higher activations in the cerebella of subjects who practiced the visuomotor task. For the auditory task, the effect of auditory practice was observed in the right inferior frontal gyrus (rIFG). These results should be interpreted with caution due to the absence of behavioral differences among the groups. / Die Erforschung von Neuroplastizität hat Implikationen sowohl für klinische Fragestellungen als auch den Bereich der Lernpsychologie. Plastizität erweitert die Perspektive vom Gehirn als einer festen Struktur hin zu einem veränderbaren, flexiblen Organ. Neuroplastizität wird in verschiedenen Bereichen sichtbar: Sowohl nach Schädel-Hirn-Trauma oder Schlaganfall, als Kompensation von beschädigten Arealen durch angrenzende Bereiche, als auch im gesunden Hirn bei der Verbesserung einer Fähigkeit durch wiederholte Übung. Die vorliegende Arbeit soll einen Beitrag zur Erforschung von Neuroplastizität leisten durch Übertragung der Konzepte von kurz- und langfristigen Übungseffekten auf den Bereich der Musikalität. Vorhergehende Studien konnten sowohl strukturelle als auch funktionelle kortikale Unterschiede zwischen Musiktalenten und musikalischen Laien nachweisen. In anderen Bereichen (z.B. Sprache, motorisches Lernen, abstraktes Material) konnten zumindest temporäre funktionale kortikale Veränderungen durch Übung bei gesunden Probanden gezeigt werden. In der vorliegenden Arbeit werden die Unterschiede zwischen diesen möglichen “temporären” Veränderungen und langanhaltenden Veränderungen untersucht. Die Studie beinhaltete zwei verschiedenen Aufgaben: eine visuomotorische Aufgabe mit visueller Präsentation von Tapping-Sequenzen und eine auditorische Aufgabe bestehend aus der auditorischen Präsentation klassischer Musikstücke aus dem 19. Jahrhundert. Die musikalischen Laien wurden randomisiert einer von zwei Gruppen zugeteilt: Musikalische Laien, die die visuomotorische Aufgabe übten (untrainiert in der auditorischen Aufgabe) und Laien, die die auditorische Aufgabe übten (untrainiert in der visuomotorischen Aufgabe). Die dritte Gruppe bildeten Musiktalente, definiert als Probanden mit einer durchschnittlichen Übungszeit von 130 Minuten am Tag seit mindestens 2 Jahren vor Beginn der Studie. Die Laien hatten 5 Jahre vor Beginn der Studie kein Instrument mehr gespielt. Die Untersuchungsmethode dieser Arbeit ist funktionelle Magnetresonanztomographie (fMRT). Sie basiert auf dem Prinzip der Beobachtung von Veränderungen im Sauerstoffgehalt des Blutes in den Hirngefäßen. Diese Veränderungen werden in Zusammenhang gebracht mit neuronaler Aktivität; daher erlaubt die Beobachtung des Blutsauerstoffgehalts einen Rückschluss auf gesteigerte Aktivität in den beobachteten Arealen. Eine univariate Varianzanalyse fand keine signifikante Interaktion des Gruppenfaktors (untrainierte Laien, trainierte Laien, Musiktalente) mit IQ und akademischer Laufbahn. Ein zusätzlicher Ein-Stichproben-t-Test zeigte keine Leistungsunterschiede zwischen Laien und Talenten. Für die visuomotorische Aufgabe zeigte die Bildgebungsanalyse die folgenden Ergebnisse: Gruppenunterschiede in der Aktivierung (Talente vs. Laien) des bilateralen Precuneus, rechten mittleren temporalen Gyrus und linken mittleren frontalen Gyrus. Eine Region-of-Interest (ROI)- Analyse für den Haupteffekt der Aufgabe zeigte signifikante Aktivierungen im linken primärmotorischen Kortex (M1). Zusätzliche Aktivierungen fanden sich im linken inferior frontalen Gyrus (lIFG) bezüglich des Kontrasts „trainierte Laien vs. untrainierte Laien plus Talente“ bzw. „kurzzeitiger Übungseffekt vs. keine Übung plus langfristiger Übungseffekt“. Für die auditorische Aufgabe zeigten sich signifikante Aktivierungen im rechten inferior frontalen Gyrus (rIFG) für den „Talente plus trainierte Laien vs. Untrainierte Laien“- Kontrast. Die vorliegende Arbeit zeigt, dass die Übung beider Aufgaben zur Verwendung unterschiedlicher kortikaler Areale und damit vermutlich verbundener Strategien führt, es gab jedoch keinen Effekt auf der Verhaltensebene. Aufgrund der fehlenden Verhaltensunterschiede müssen die Ergebnisse der Bildgebung mit Vorsicht interpretiert werden. Zukünftige Studien sollten Talente mit längerer durchschnittlicher Übungszeit berücksichtigen, längere Übungszeit der Aufgaben beinhalten, um Bodeneffekte zu verhindern, und eventuell eine komplexere auditorische Aufgabe zur Vermeidung von Deckeneffekten.
|
9 |
Utilisation des réflexes cutanés pour étudier les mécanismes de la plasticité adaptative locomotrice chez l'hommeBagna, Maimouna 20 April 2018 (has links)
Dans cette thèse, nous nous intéressons à la plasticité des voies réflexes chez l'homme, induite par l’adaptation du contrôle moteur de la marche suite à une perturbation mécanique. Nous formulons l’hypothèse que cette plasticité, induite dans les voies réflexes, peut être étudiée dans le but de mieux comprendre les mécanismes adaptatifs mis en place par le système nerveux central. Cependant, l’étude des modifications des voies neuronales empruntées par les réflexes exige une analyse à la fois sensible et robuste et une description détaillée de ces réponses, ce que ne permettent pas les approches classiques jusqu’ici utilisées. Dans une première étude présentée dans cette thèse, nous avons développé une méthode robuste de traitement de signal pour identifier et extraire les réflexes cutanés de manière précise et systématique. L’approche proposée est basée sur une analyse unitaire des réflexes, qui implique la détection et la caractérisation de chaque réponse individuelle à la stimulation. Dans l’étude 2, nous avons montré que l’adaptation de la marche à un champ de force impliquait des mécanismes de plasticité pré-motoneurale. Pour approfondir l’étude de ces mécanismes impliqués pendant l’adaptation du contrôle moteur à un champ de force, dans la troisième étude, nous avons analysé les changements réflexes obtenus lors de la stimulation de trois nerfs différents convergeant sur le même pool de motoneurones (Tibial Antérieur). Les résultats de cette étude ont montré que les circuits neuronaux empruntés par chacun de ces trois nerfs se réorganisent de façon spécifique et que cette spécificité est potentiellement due à une réorganisation au niveau des interneurones spinaux, suggérant ainsi que ces derniers constitueraient un site important de la plasticité induite par l’adaptation à un champ de force. Pour tendre vers un contexte réel de réadaptation, nous avons également comparé, dans une 4eme étude, les changements dans les réflexes cutanés après la vibration du corps chez des personnes ayant subit une lésion médullaire et des participants en santé. Les résultats de cette étude ont montré que les changements observés dans les voies réflexes diffèrent chez ces deux populations, mais semblent avoir dans les deux cas, un effet fonctionnellement positif sur la marche.
|
10 |
Funktionelle Bedeutung der Neuroplastizität bei Multipler Sklerose / The functional relevance of neuronal plasticity in multiple sclerosisDang, Su-Yin Judith January 2011 (has links) (PDF)
Die Multiple Sklerose ist eine chronische neurologische Erkrankung, welche in der industrialisierten Welt einen der häufigsten Gründe für eine bleibende Behinderung bei jungen Erwachsenen darstellt. Obwohl die ZNS-Schädigung, charakterisiert durch Demyelinisierung und axonale Schädigung im Rahmen entzündlicher Vorgänge, durch verschiedene Reparaturmechanismen reduziert wird, akkumuliert die Läsionslast im zentralen Nervensystem mit der Zeit. T2-gewichtete MRT-Studien zeigen, dass die dargestellten Pathologien nur mäßig mit den motorischen Defiziten korrelieren. Diese Diskrepanz wird unter anderem auf Vorgänge der Neuroplastizität zurückgeführt, als deren Basismechanismen Langzeitpotenzierung (LTP) und -depression (LTD) gelten. In verschiedenen fMRT-Studien haben sich Hinweise ergeben, dass diese adaptiven Veränderungen zur Reorganisation kortikaler Repräsentationmuster führen können, so dass bei MS-Patienten eine ausgedehntere Aktivierung ipsilateraler sensomotorischer Areale bei motorischen Aufgaben zu beobachten ist. Die transkranielle Magnetstimulation (TMS) bietet die Möglichkeit, mittels virtueller Läsionstechniken eine direkte Aussage über die kausale Beziehung zwischen Struktur und Funktion zu liefern. Die funktionelle Rolle ipsilateraler Motorareale wurde an 26 MS-Patienten, in Relation zu ihrer motorischen Beeinträchtigung und ZNS-Schädigung, und an nach Alter, Geschlecht und Händigkeit zugeordneten Kontrollprobanden, untersucht. Die motorische Leistungsfähigkeit wurde durch verschiedene Tests zur Handfunktion erhoben. Die ZNS-Schädigung wurde mittels MR-Spektroskopie als NAA/Cr Quotient sowie durch die CML erhoben. Die Aufgabe zur einfachen Reaktionszeit (SRT) bestand aus einer isometrischen Abduktionsbewegung des rechten Daumens gegen einen Kraftaufnehmer auf ein akustisches Go-Signal. Mit TMS-Einzelreizen wurde mit Hilfe einer Neuronavigation eine reversible virtuelle Läsion über bestimmten Gehirnarealen, kontralateraler M1, ipsilateraler M1 und ipsilateraler PMd, erzeugt. Es wurde eine Kontrollstimulation über MO durchgeführt. Die TMS-Einzelreize wurden 100ms nach dem Go-Signal appliziert. Als SRT wurde der Zeitraum zwischen dem Go-Signal und EMG-Beginn im APB definiert. Die signifikanten SRT-Verlängerungen bei TMS über dem ipsilateralen M1 und dem ipsilateralen PMd zeigen, dass diese Regionen eine Rolle bei der motorischen Funktion bei MS spielen. Die fehlenden Korrelationen zwischen motorischen Funktionstest und NAA/Cr-Verhältnis sowie die inverse Korrelation zur kortikomuskulären Latenz sind durch strukturell von der krankheitsbedingten Pathologie betroffenen kompensierenden Gehirnregionen erklärbar. Bei dem Theta Burst Experiments (TBS) wurde ein virtueller Läsionseffekt durch eine repetitive TMS-Intervention über dem ipsilateralen M1 induziert. Die Ergebnisse zeigen ähnliche Veränderungen der Exzitabilität bei MS-Patienten und gesunden Kontrollprobanden, was schließen lässt, dass die LTD bei mild bis moderat betroffenen MS-Patienten weitestgehend unbeeinträchtigt ist. MS-Patienten zeigen im Vergleich zu den Kontrollen eine ähnliche Minderung der Verhaltensleistung, Trefferquote in ein Kraftfenster, der MS-Patienten im Kontrollvergleich. Die Ergebnisse zeigen, dass ipsilaterale motorische Areale in der Lage sind den primär motorischen Kortex soweit zu kompensieren, jedoch die Fähigkeit zur Kompensation in fortgeschrittenen Krankheitsstadien eingeschränkt ist. Abschließend kann man zusammenfassen, dass die funktionelle Rekrutierung von ipsilateralen Motorarealen eine adaptive Antwort auf chronische Gehirnschädigung bei MS-Patienten sein kann, allerdings mit Einschränkung der Kapazität in fortgeschrittenen Krankheitsstadien. Nachdem die synaptische Plastizität weitestgehend intakt scheint, sollte man besonders Mechanismen der späten Phase der Plastizität fördern, welche auf eine langfristige kortikale Plastizität abzielen. Weitere Studien in diesem Forschungszweig könnten einen Beitrag zur Entwicklung therapeutischer Konzepte der Neurorehabilitation bei Multipler Sklerose leisten. / Multiple Sclerosis is a chronic neurological disease, which is one of the common reasons in the industrial world causing a lasting disablement at young adults. Despite of reduction by several mechanisms the cns injury characterized by demyelinizing and axonal injury in order of inflammatory processes the lesion load of the cns accumulates over the years. T2-weighted MRI studies only show moderate correlations between the represented pathologies and the motoric deficits. This discrepancy is attributed i.a. to procedures of neuroplasticity whose basic mechanisms are considered as Long-term potentiation (LTP) and -depression (LTD). Several fMRI studies suggest a reogranization of cortical representative pattern due to these adaptive changes. Therefore an extended activation of ipilaterale sensomotoric areas is observed in MS patients performing motoric tasks. Transcranial Magnetic Stimulation (TMS) provides via lesional techniques the possibility of a direct conclusion causal link to structure and function. The functional role of ipsilateral motor areas has been examined in 26 MS patients in relation to their motor impairment and cns injury. Healthy controls were matched for age, sex and handedness. The motor performance was assessed by a test battery of hand function. The cns injury was evaluated using magnetic resonance spectroscopy (NAA/Cr Quotient) and TMS (CML). The Simple Reaction Time task (SRT) consisted of a brisk isometric abduction of the right thumb against a force transducer as a respond to an auditorily Go-Signal. With the help of a neuronavigational device a reversible virtual lesion, delivered by TMS single pulses, were applied to specific brain areas, contralateral M1, ipsilateral M1 and ipsilateral PMD. A control stimulation were assessed to MO??. TMS Single pulses were applied 100ms after Go-Signal. SRT were defined as the time between Go-Signal and EMG onset. Significant extention of SRT after TMS to ipsilateral M1 and ipsilateral PMd evidence the role of these regions in motoric function in MS. The missing correlation between motor performance and NAA/Cr Quotient as well as the inverse correlation to CML are explainable by compensation brain regions which are themselves structurally affected by disease pathologies. In the Thetaburs experiments (TBS) a virtual lesion was induced by a repetitive TMS intervention to ipsilateral M1. The results show a similar change of excitability in MS patients and healthy controls which concludes that LTD is not compromised in mild to moderate affected MS patients. MS patients presented in comparison to controlls a similiar discrease of behavioral performance, hit rate in a force range. The results evidence that ipsilateral motor areas have the ability to compensate the primary motor cortex. But the ability for compensation is limited in advanced stages of illness. The concluding summary is that functional recruitment of ipsilateral motor areas are adaptive response to chronic brain injury in MS patients but with limited capacity in advanced stages of illness. As the synaptic plasticity seem intact to the greatest possible extent mechanism of the late stadium of plasticity should be supported which aim at long term cortical plasticity. Further studies in this branch of research could contribute the development of therapeutic concepts of neurorehabilitation in MS.
|
Page generated in 0.0657 seconds