• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 124
  • 56
  • 30
  • 13
  • Tagged with
  • 382
  • 155
  • 120
  • 110
  • 83
  • 74
  • 69
  • 69
  • 55
  • 48
  • 40
  • 38
  • 33
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Slow-wave sleep : generation and propagation of slow waves, role in long-term plasticity and gating

Chauvette, Sylvain 19 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013. / Le sommeil est connu pour réguler plusieurs fonctions importantes pour le cerveau et parmi celles-ci, il y a le blocage de l’information sensorielle par le thalamus et l’amélioration de la consolidation de la mémoire. Le sommeil à ondes lentes, en particulier, est considéré être critique pour ces deux processus. Cependant, leurs mécanismes physiologiques sont inconnus. Aussi, la marque électrophysiologique distinctive du sommeil à ondes lentes est la présence d’ondes lentes de grande amplitude dans le potentiel de champ cortical et l’alternance entre des périodes d’activités synaptiques intenses pendant lesquelles les neurones corticaux sont dépolarisés et déchargent plusieurs potentiels d’action et des périodes silencieuses pendant lesquelles aucune décharge ne survient, les neurones corticaux sont hyperpolarisés et très peu d’activités synaptiques sont observées. Tout d'abord, afin de mieux comprendre les études présentées dans ce manuscrit, une introduction générale couvrant l'architecture du système thalamocortical et ses fonctions est présentée. Celle-ci comprend une description des états de vigilance, suivie d'une description des rythmes présents dans le système thalamocortical au cours du sommeil à ondes lentes, puis par une description des différents mécanismes de plasticité synaptique, et enfin, deux hypothèses sur la façon dont le sommeil peut affecter la consolidation de la mémoire sont présentées. Puis, trois études sont présentées et ont été conçues pour caractériser les propriétés de l'oscillation lente du sommeil à ondes lentes. Dans la première étude (chapitre II), nous avons montré que les périodes d'activité (et de silence) se produisent de façon presque synchrone dans des neurones qui ont jusqu'à 12 mm de distance. Nous avons montré que l'activité était initiée en un point focal et se propageait rapidement à des sites corticaux voisins. Étonnamment, le déclenchement des états silencieux était encore plus synchronisé que le déclenchement des états actifs. L'hypothèse de travail pour la deuxième étude (chapitre III) était que les états actifs sont générés par une sommation de relâches spontanées de médiateurs. Utilisant différents enregistrements à la fois chez des animaux anesthésiés et chez d’autres non-anesthésiés, nous avons montré qu’aucune décharge neuronale ne se produit dans le néocortex pendant les états silencieux du sommeil à ondes lentes, mais certaines activités synaptiques peuvent ii être observées avant le début des états actifs, ce qui était en accord avec notre hypothèse. Nous avons également montré que les neurones de la couche V étaient les premiers à entrer dans l’état actif pour la majorité des cycles, mais ce serait ainsi uniquement pour des raisons probabilistes; ces cellules étant équipées du plus grand nombre de contacts synaptiques parmi les neurones corticaux. Nous avons également montré que le sommeil à ondes lentes et l’anesthésie à la kétamine-xylazine présentent de nombreuses similitudes. Ayant utilisé une combinaison d'enregistrements chez des animaux anesthésiés à la kétamine-xylazine et chez des animaux non-anesthésiés, et parce que l'anesthésie à la kétamine-xylazine est largement utilisée comme un modèle de sommeil à ondes lentes, nous avons effectué des mesures quantitatives des différences entre les deux groupes d'enregistrements (chapitre IV). Nous avons trouvé que l'oscillation lente était beaucoup plus rythmique sous anesthésie et elle était aussi plus cohérente entre des sites d’enregistrements distants en comparaison aux enregistrements de sommeil naturel. Sous anesthésie, les ondes lentes avaient également une amplitude plus grande et une durée plus longue par rapport au sommeil à ondes lentes. Toutefois, les ondes fuseaux (spindles) et gamma étaient également affectées par l'anesthésie. Dans l'étude suivante (Chapitre V), nous avons investigué le rôle du sommeil à ondes lentes dans la formation de la plasticité à long terme dans le système thalamocortical. À l’aide de stimulations pré-thalamiques de la voie somatosensorielle ascendante (fibres du lemnisque médial) chez des animaux non-anesthésiés, nous avons montré que le potentiel évoqué enregistré dans le cortex somatosensoriel était augmenté dans une période d’éveil suivant un épisode de sommeil à ondes lentes par rapport à l’épisode d’éveil précédent et cette augmentation était de longue durée. Nous avons également montré que le sommeil paradoxal ne jouait pas un rôle important dans cette augmentation d'amplitude des réponses évoquées. À l’aide d'enregistrements in vitro en mode cellule-entière, nous avons caractérisé le mécanisme derrière cette augmentation et ce mécanisme est compatible avec la forme classique de potentiation à long terme, car il nécessitait une activation à la fois les récepteurs NMDA et des récepteurs AMPA, ainsi que la présence de calcium dans le neurone post-synaptique. iii La dernière étude incluse dans cette thèse (chapitre VI) a été conçue pour caractériser un possible mécanisme physiologique de blocage sensoriel thalamique survenant pendant le sommeil. Les ondes fuseaux sont caractérisées par la présence de potentiels d’action calcique à seuil bas et le calcium joue un rôle essentiel dans la transmission synaptique. En utilisant plusieurs techniques expérimentales, nous avons vérifié l'hypothèse que ces potentiels d’action calciques pourraient causer un appauvrissement local de calcium dans l'espace extracellulaire ce qui affecterait la transmission synaptique. Nous avons montré que les canaux calciques responsables des potentiels d’action calciques étaient localisés aux synapses et que, de fait, une diminution locale de la concentration extracellulaire de calcium se produit au cours d’un potentiel d’action calcique à seuil bas spontané ou provoqué, ce qui était suffisant pour nuire à la transmission synaptique. Nous concluons que l'oscillation lente est initiée en un point focal et se propage ensuite aux aires corticales voisines de façon presque synchrone, même pour des cellules séparées par jusqu'à 12 mm de distance. Les états actifs de cette oscillation proviennent d’une sommation de relâches spontanées de neuromédiateurs (indépendantes des potentiels d’action) et cette sommation peut survenir dans tous neurones corticaux. Cependant, l’état actif est généré plus souvent dans les neurones pyramidaux de couche V simplement pour des raisons probabilistes. Les deux types d’expériences (kétamine-xylazine et sommeil à ondes lentes) ont montré plusieurs propriétés similaires, mais aussi quelques différences quantitatives. Nous concluons également que l'oscillation lente joue un rôle essentiel dans l'induction de plasticité à long terme qui contribue très probablement à la consolidation de la mémoire. Les ondes fuseaux, un autre type d’ondes présentes pendant le sommeil à ondes lentes, contribuent au blocage thalamique de l'information sensorielle. / Sleep is known to mediate several major functions in the brain and among them are the gating of sensory information during sleep and the sleep-related improvement in memory consolidation. Slow-wave sleep in particular is thought to be critical for both of these processes. However, their physiological mechanisms are unknown. Also, the electrophysiological hallmark of slow-wave sleep is the presence of large amplitude slow waves in the cortical local field potential and the alternation of periods of intense synaptic activity in which cortical neurons are depolarized and fire action potentials and periods of silence in which no firing occurs, cortical neurons are hyperpolarized, and very little synaptic activities are observed. First, in order to better understand the studies presented in this manuscript, a general introduction covering the thalamocortical system architecture and function is presented, which includes a description of the states of vigilance, followed by a description of the rhythms present in the thalamocortical system during slow-wave sleep, then by a description of the mechanisms of synaptic plasticity, and finally two hypotheses about how sleep might affect the consolidation of memory are presented. Then, three studies are presented and were designed to characterize the properties of the sleep slow oscillation. In the first study (Chapter II), we showed that periods of activity (and silence) occur almost synchronously in neurons that are separated by up to 12 mm. The activity was initiated in a focal point and rapidly propagated to neighboring sites. Surprisingly, the onsets of silent states were even more synchronous than onsets of active states. The working hypothesis for the second study (Chapter III) was that active states are generated by a summation of spontaneous mediator releases. Using different recordings in both anesthetized and non-anesthetized animals, we showed that no neuronal firing occurs in the neocortex during silent states of slow-wave sleep but some synaptic activities might be observed prior to the onset of active states, which was in agreement with our hypothesis. We also showed that layer V neurons were leading the onset of active states in most of the cycles but this would be due to probabilistic reasons; these cells being equipped with the most numerous synaptic contacts among cortical neurons. We also showed that slow-wave sleep and ketamine-xylazine shares many similarities. v Having used a combination of recordings in ketamine-xylazine anesthetized and non-anesthetized animals, and because ketamine-xylazine anesthesia is extensively used as a model of slow-wave sleep, we made quantitative measurements of the differences between the two groups of recordings (Chapter IV). We found that the slow oscillation was much more rhythmic under anesthesia and it was also more coherent between distant sites as compared to recordings during slow-wave sleep. Under anesthesia, slow waves were also of larger amplitude and had a longer duration as compared to slow-wave sleep. However, spindles and gamma were also affected by the anesthesia. In the following study (Chapter V), we investigated the role of slow-wave sleep in the formation of long-term plasticity in the thalamocortical system. Using pre-thalamic stimulations of the ascending somatosensory pathway (medial lemniscus fibers) in non-anesthetized animals, we showed that evoked potential recorded in the somatosensory cortex were enhanced in a wake period following a slow-wave sleep episode as compared to the previous wake episode and this enhancement was long-lasting. We also showed that rapid eye movement sleep did not play a significant role in this enhancement of response amplitude. Using whole-cell recordings in vitro, we characterized the mechanism behind this enhancement and it was compatible with the classical form of long-term potentiation, because it required an activation of both NMDA and AMPA receptors as well as the presence of calcium in the postsynaptic neuron. The last study included in this thesis (Chapter VI) was designed to characterise a possible physiological mechanism of thalamic sensory gating occurring during sleep. Spindles are characterized by the presence of low-threshold calcium spikes and calcium plays a critical role in the synaptic transmission. Using several experimental techniques, we verified the hypothesis that these calcium spikes would cause a local depletion of calcium in the extracellular space which would impair synaptic transmission. We showed that calcium channels responsible for calcium spikes were co-localized with synapses and that indeed, local extracellular calcium depletion occurred during spontaneous or induced low-threshold calcium spike, which was sufficient to impair synaptic transmission. We conclude that slow oscillation originate at a focal point and then propagate to neighboring cortical areas being almost synchronous even in cells located up to 12 mm vi apart. Active states of this oscillation originate from a summation of spike-independent mediator releases that might occur in any cortical neurons, but happens more often in layer V pyramidal neurons simply due to probabilistic reasons. Both experiments in ketamine-xylazine anesthesia and non-anesthetized animals showed several similar properties, but also some quantitative differences. We also conclude that slow oscillation plays a critical role in the induction of long-term plasticity, which very likely contributes to memory consolidation. Spindles, another oscillation present in slow-wave sleep, contribute to the thalamic gating of information.
22

Syndrome douloureux régional complexe : apport de la neurostimulation périphérique - Plasticité cérébrale et amélioration cliniques

Allen Demers, Fannie 27 January 2024 (has links)
Malgré des traitements spécialisés et multidisciplinaires, les personnes souffrant du syndrome douloureux régional complexe (SDRC) peuvent conserver de la douleur et des limitations fonctionnelles qui s'expliqueraient par des changements cérébraux persistants, entre autres dans le cortex moteur primaire (M1). Étudier les changements de fonctionnement du M1 permettrait de mieux comprendre comment utiliser la neurostimulation non invasive, comme les stimulations magnétiques répétées en périphérie (rPMS des muscles, connues pour influencer la plasticité cérébrale), pour normaliser la fonction motrice corticale, réduire la douleur et augmenter les gains cliniques. Les objectifs de ce projet de maîtrise étaient donc de mieux comprendre la place dans la littérature de la neurostimulation non invasive en SDRC, de tester le fonctionnement de M1 en parallèle à la fonction sensorimotrice d'adultes avec SDRC au membre supérieur, ainsi que de mesurer l'effet d'une séance rPMS sur ces mesures et les symptômes de douleur de cette même population. Il a été observé que, indépendamment du côté atteint, l'excitabilité du M1 était asymétrique en SDRC avec une association avec la douleur et les troubles du mouvement. Les participants avec SDRC présentaient également une diminution et une latéralisation altérée des mesures de fonction sensorimotrice. Les rPMS ont permis de moduler bilatéralement l'excitabilité des M1 (diminution du débalancement) et, chez les personnes présentant avant la séance rPMS une hyperexcitabilité du M1 controlatéral au membre atteint, de diminuer leur douleur. Les rPMS ont également permis une amélioration de la fonction sensorimotrice et des changements centraux reliés à la plasticité cérébrale ont été mesurés dans l'hémisphère ipsilatéral au membre avec SDRC. Les rPMS seules ou comme adjuvant aux thérapies conventionnelles de réadaptation représentent donc une approche prometteuse pour dépasser les gains cliniques en SDRC. / Despite specialized and multidisciplinary treatments, people suffering from complex regional pain syndrome (CRPS) can present with persistent pain and functional limitations likely due to brain changes such as in the primary motor cortex (M1). Studying the changes of M1 functioning would permit to better understand how to use noninvasive neurostimulation, as repetitive peripheral magnetic stimulation (rPMS of muscles, known to influence brain plasticity) in CRPS to enable the normalization of cortical motor function, the reduction of pain and to go beyond gains already reached. The objectives of this master's project were thus to better understand the place in the literature of the noninvasive neurostimulation in SDRC, to test the functioning of M1 concurrent with the sensorimotor function of adults with CRPS of the upper limb, and to measure the effect of one rPMS session on these measures and pain symptoms of this same population. It has been measured that M1 excitability was asymmetrical in CRPS, regardless of the impaired side, with an association to pain and movement disorders. Participants with CRPS also exhibited a decreased and an altered lateralization of the measures of sensorimotor function. rPMS influenced bilateral M1 excitability (decrease of the imbalance) and, with people presenting before the rPMS session hyperactivity of M1 contralateral to the impaired limb, reduced pain. rPMS also improved sensorimotor function and central changes related to brain plasticity were measured in the hemisphere ipsilateral to the CRPS limb. rPMS alone or as adjuvant to conventional rehabilitation therapies thus represent a promising approach to overcome clinical gains in CRPS.
23

Apprendre de données positives et non étiquetées : application à la segmentation et la détection d'évènements calciques

Leclerc, Gabriel 02 February 2024 (has links)
Deux types de neurotransmission se produisent dans les neurones du cerveau : la transmission évoquée et la transmission spontanée. Contrairement à la transmission évoquée, le rôle de la transmission spontanée sur la plasticité synaptique - un mécanisme utilisé pour doter le cerveau de capacités d'apprentissage et de mémorisation - reste incertain. Les neurotransmissions spontanées sont localisées et se produisent aléatoirement dans les synapses des neurones. Lorsqu'un tel événement spontané se produit, ce que l'on appelle un influx synaptique miniature d'ions calcium (miniature Synaptic Ca²⁺ Transient, mSCT), des ions calcium messagers secondaires pénètrent dans la synapse, activant les voies de signalisation en aval de la plasticité synaptique. L'utilisation de l'imagerie calcique du neurone in vitro permet la visualisation spatiotemporelle de l'entrée des ions calcium. Les vidéos calciques qui en résultent permettent une étude quantitative de l'impact du mSCT sur la plasticité synaptique. Cependant, la localisation des mSCTs dans l'imagerie du calcium est difficile en raison de leur petite taille, de leur faible intensité par rapport au bruit de l'imagerie et de leur caractère aléatoire inhérent. Dans ce mémoire, nous présentons une méthode d'analyse quantitative à grande échelle des vidéos d'imagerie calcique limitant la variabilité induite par les interventions humaines pour obtenir des données probantes, dans le but de caractériser l'impact des mSCTs sur la plasticité synaptique. En nous basant sur un outil semi-automatique de détection à seuil d'intensité (Intensity Thresholded Detection, ITD), nous sommes capables de générer des données pour entraîner un réseau pleinement convolutionnel (Fully Convolutional Network, FCN) afin de détecter rapidement et automatiquement les mSCTs à partir de vidéos calciques. En utilisant les segmentations bruitées de l'ITD comme données d'entraînement, combinées à un schéma d'entraînement positif (P) et non étiqueté (Unlabeled, U), les performances du FCN surpassent ITD. Le FCN détecte des mSCTs de faible intensité non détectés auparavant par ITD et offre une segmentation supérieure à ITD. Nous avons ensuite caractérisé l'impact des paramètres PU tels que le nombre de P et le ratio P:U. Le FCN entraîné est intégré dans une routine tout-en-un pour permettre une analyse à grande échelle des mSCTs. La routine offre la détection, la segmentation, la caractérisation et la visualisation des mSCTs ainsi qu'une solution logicielle pour gérer plusieurs vidéos avec différentes métadonnées. / Two types of neurotransmission occur in brain's neurons: evoked transmission and spontaneous transmission. Unlike the former, the role of spontaneous transmission on synaptic plasticity - a mechanism used to endow the brain learning and memory abilities - remain unclear. Spontaneous neurotransmissions are localized and randomly happening in neuron's synapses. When such spontaneous events happen, so-called miniature synaptic Ca²⁺ transients(mSCT), second messenger calcium ions entered the spine, activating downstream signaling pathways of synaptic plasticity. Using calcium imaging of in vitro neuron enable spatiotemporal visualization of the entry of calcium ions. Resulting calcium videos enable quantitative study of mSCT's impact on synaptic plasticity. However, mSCT localization in calcium imaging can be challenging due to their small size, their low intensity compared with the imaging noise and their inherent randomness. In this master's thesis, we present a method for quantitative high-throughput analysis of calcium imaging videos that limits the variability induced by human interventions to obtain evidence for characterizing the impact of mSCTs on synaptic plasticity. Based on a semi-automatic intensity thresholded detection (ITD) tool, we are able to generate data to train a fully convolutional neural network (FCN) to rapidly and automaticaly detect mSCT from calcium videos. Using ITD noisy segmentations as training data combine with a positive and unlabeled (PU) training schema, we leveraged FCN performances and could even detect previously undetected low instensity mSCTs missed by ITD. The FCN also provide better segmentation than ITD. We then characterized the impact of PU parameters such as the number of P and the ratio P:U. The trained FCN is bundled in a all-in-one pipeline to permit a high-thoughtput analysis of mSCT. The pipeline offers detection, segmentation, characterization and visualization of mSCTs as well as a software solution to manage multiple videos with different metadatas.
24

Rôles des synapses électriques dans la synchronisation neuronale : Une étude théorique

Pfeuty, Benjamin 21 December 2004 (has links) (PDF)
Il existe deux modes principaux d'interaction entre neurones : les synapses chimiques et les synapses électriques qui, bien que minoritaires par rapport aux premières, sont présentes dans de nombreuses régions du cerveau où elles sont impliquées dans la synchronisation de l'activité neuronale. Notre étude théorique, qui combine calculs analytiques et simulations numériques, montre que l'impact des synapses électriques sur la synchronisation neuronale dépend des propriétés d'excitabilité des neurones déterminées par leurs courants ioniques. Ainsi, associées à des synapses inhibitrices, les synapses électriques peuvent donc amplifier ou réduire la synchronisation de manière linéaire. Toutefois, lorsque le couplage inhibiteur est suffisamment fort, des effets non-linéaires apparaissent tels que les synapses électriques renforcent la précision et la robustesse de la synchronisation. Ce travail de thèse révèle ainsi le caractère flexible de la synchronisation par les synapses électriques.
25

Etude anatomique et fonctionnelle du cerveau des souris KO STOP : modèle animal pour l'étude de la schizophrénie

Jany, Marion 22 October 2010 (has links) (PDF)
Mon travail de thèse participe à la caractérisation des bases cellulaires et moléculaires neurodéveloppementales à l'origine de la schizophrénie. A partir d'un modèle animal pour l'étude de la schizophrénie (souris KO STOP), j'ai tenté de déterminer les relations entre la diminution du volume cérébral, la biologie cellulaire des neurones in situ, et les événements cellulaires et moléculaires à l'origine de cette diminution de volume. Ainsi, j'ai démontré, par western blot quantitatif, que la réduction de volume cérébral chez les souris KO STOP était associée à une forte diminution des compartiments myéliniques, axonaux et synaptiques. Une analyse morphométrique a montré ensuite que la surface de plusieurs tracts myélinisés était fortement réduite chez la souris KO STOP. Le résultat majeur de ce travail, confirmé par l'utilisation de traceur lipidique, a été la mise en évidence de l'absence de la partie post-commissurale du fornix, tract reliant l'hippocampe au corps mamillaire et fortement altéré chez les schizophrènes. Le traçage lentiviral de ces axones a montré la désorganisation des fibres du fornix chez les souris KO STOP. J'ai ensuite analysé la neurogenèse adulte hippocampale et démontré que ce processus était spécifiquement et progressivement altéré chez les souris KO STOP. L'architecture dendritique des neurones immatures des souris KO STOP semble anormale, avec un dendrite primaire plus long et un arbre dendritique plus branché. Le traçage rétroviral-GFP des cellules souches neurales de l'hippocampe, a permis de montrer, à 4 semaines post-infection, une réduction du nombre de neurones immatures chez les souris KO STOP suggérant une maturation prématurée des neurones néoformés. Ce travail ouvre des perspectives de recherche sur le développement embryonnaire du fornix et des connectivités neuronales en général. Nous envisageons aussi d'analyser la maturation axonale et synaptique des neurones hippocampaux néoformés, étapes du développement neuronal importantes pour la mise en place des connectivités neuronales.
26

Rôle de la reelin dans la plasticité des structures stratifiées du système nerveux central

Gonzalez Campo, Cecilia 01 December 2009 (has links)
La reelin est une glycoprotéine sécrétée de la matrice extracellulaire essentielle pour le développement embryonnaire des structures laminaires du système nerveux central (SNC): cortex, hippocampe et cervelet. Dans le cerveau postnatal et adulte, la reelin potentialise la plasticité synaptique, exerce une action trophique sur la croissance neuritique dans l’hippocampe et contrôle la maturation des récepteurs NMDA. Le but de ma thèse a été d’étudier les mécanismes cellulaires à l’origine des fonctions de la reelin dans la plasticité postnatale des structures stratifiées du SNC. Nous avons utilisé une stratégie intégrant des approches d’électrophysiologie, d’imagerie calcique, d’immunocytochimie, de biochimie et de pharmacologie, sur des modèles in vitro (culture primaires de neurones d’hippocampe et de cervelet) et ex vivo (tranches aigues de cortex frontal). Dans les neurones d’hippocampe in vitro, nous avons mis en évidence que la reelin est synthétisée et sécrétée par des neurones GABAergiques montrant un marquage reelin intense alors que les neurones cibles de la reelin sont caractérisés par une expression ponctiforme et de faible intensité. En revanche, dans le cervelet in vitro, les 2 fonctions, sécrétion et liaison de la reelin, sont assurées par la quasi totalité des cellules granulaires glutamatergiques. Nous avons finalement examiné les conséquences physiologiques de l’absence ou de la diminution de reelin endogène dans l’hippocampe et dans le cortex frontal. Nous avons mis en évidence que dans l’hippocampe in vitro la sécrétion continue de reelin régule l’homéostasie des récepteurs NMDA. Nous montrons également que dans le cortex frontal ex vivo, la reelin facilite la maturation des fonctions synaptiques glutamatergiques. Nos résultats démontrent donc que la reelin joue un rôle majeur dans la plasticité neuronale du SNC postnatal. / Reelin is an extracellular matrix protein essential for the correct formation of laminated structures during embryonic brain development. In the postnatal and adult brain, reelin promotes hippocampal dendrite development, enhances long term potentiation (LTP) at hippocampal synapses and favors the maturation of glutamatergic transmission. During my thesis, I studied the cellular mechanisms underlying the functions of reelin in laminated structures of the postnatal central nervous system: hippocampus, cerebellum and cortex. By combining immunocytochemical, biochemical and pharmacological approches, we first characterized the expression profile of reelin in primary cultures of hippocampal and cerebellar neurons. Our results showed that in the hippocampus reelin is synthesized and secreted by a population of GABAergic neurons expressing an intense reelin immunoreactivity (IR). We also showed that secreted reelin binds lipoprotein receptors present on a different neuronal population characterized by a punctate and light reelin IR. In contrast, in cerebellar cultures, we observed that reelin is synthesized and secreted by glutamatergic cells expressing a single type of reelin punctate and light staining. Using calcium imaging, we demonstrated that the continuous secretion of reelin is necessary to regulate glutamate receptor homeostasis and maintain the subunit composition of NMDARs in the hippocampus in vitro. We next examined the effect of decreased levels of reelin in the postnatal development of prefrontal cortex (PFC) glutamatergic synapses using electrophysiology on heterozygotes reeler mice (HRM) slices. Our data revealed that reelin facilitates the maturation of glutamatergic synaptic functions in the PFC and plays a central role in neuronal plasticity in the central nervous system.
27

Neuronale Plastizität im Hippocampus der Maus : Die Rolle von Neurotrophine und Cytokinen

Porsche, Christian January 2006 (has links) (PDF)
Neurotrophe Faktoren haben ein breites Aufgabenfeld und spielen eine wichtige Rolle als Überlebensfaktoren embryonaler Neurone, bei Proliferation und Differenzierung im Nervensystem sowie als Modulatoren synaptischer Plastizität. Im ersten Themenkomplex der vorliegenden Arbeit wurden neurotrophe Faktoren als Modulatoren synaptischer Plastizität und ihr Einfluß auf die BDNF-Regulation im Hippocampus untersucht. Dabei wurde zunächst das selbsthergestellte polyclonale BDNF-Immunserum für die Anwendung in der Immunhistochemie und im Western Blot optimiert, doch es konnten bezüglich BDNF keine Veränderungen in Hippocampi CNTF-defizienter Mäuse gegenüber Wildtyp-Tieren festgestellt werden. Die Ergebnisse der Voruntersuchungen, die im Hippocampus CNTF-defizienter Tiere verminderte BDNF-Level gezeigt hatten, konnten somit nicht verifiziert werden. Im Rahmen dieser Arbeit wurde an CNTF-defizienten Mäusen eine eingeschränkte LTP und LTD nachgewiesen. Zum besseren Verständnis der – laut LTP-Untersuchungen – veränderten Situation an der hippocampalen CA1-Synapse bei CNTF-defizienten Tieren wurden elektronenmikroskopische Bilder dieser Region angefertigt, deren Auswertung keine augenscheinlichen Unterschiede ergab. Im Stratum radiatum der CA1-Region war zudem keine spezifische CNTF-Färbung nachweisbar. Zur Klärung der Frage, ob es IGF-vermittelt nach Training zu hippocampaler BDNF-Hochregulation kommt, wurden Laufradexperimente mit wildtypischen und konditionalen IGF1-Rezeptor-knockout Mäusen durchgeführt und die jeweiligen BDNF-Level untersucht. Dabei wurde BDNF durch Laufradtraining in beiden Genotypen in ähnlichem Maße hochreguliert, was für alternative Wege der BDNF-Hochregulation spricht. Der zweite Themenkomplex befasste sich mit dem Einfluß neurotropher Faktoren auf die Proliferation und Differenzierung in Hippocampus und Cortex. BrdU-Inkorporationsexperimenten zeigten in der Körnerzellschicht des Gyrus dentatus gesteigerte Proliferationsraten bei CNTF-defizienten und CNTF&LIF-defizienten Mäusen, wobei LIF-defiziente Tiere keine veränderten Proliferationsraten zeigten. Untersuchungen an Kulturen cortikaler Vorläuferzellen bestätigten die Hypothese, wonach cortikale Vorläuferzellen zunächst Neurone bilden, die einen Faktor sezernieren, der auf die cortikalen Vorläuferzellen wirkt und sie zur Bildung von Astrozyten veranlasst. Es konnte gezeigt werden, dass CT-1 der Hypothese folgend in vitro und in vivo für die Einleitung der Astrozytogenese im Cortex verantwortlich ist. / Neurotrophic factors are central to many facets of CNS function. They act as survival factors during embryonic development, mediate proliferation, differentiation and survival also in the adult nervous system and play an important role for activity-dependent forms of synaptic plasticity. The first part of this work was addressed to neurotrophic factors as modulators of synaptic plasticity and examined their role for BDNF-regulation within the hippocampal formation. Initially our polyclonal BDNF-immune serum was optimized for the use in immunohistochemistry and Western blot-analysis. No differences concering BDNF-protein in hippocampi of CNTF-deficient mice compared with wildtype were found. Previous data, showing decreased hippocampal BDNF-level in CNTF-deficient mice, could therefore not be verified. Interestingly an impaired LTP and LTD was observed in CNTF-deficient mice.To understand the changed situation at hippocampal CA1-synapse in these mice, leading to an impaired LTP, we used electronmicroscopy, but no apparent differences were seen. In Stratum radiatum of CA1 region no specific CNTF-staining was detectable. To address the question, whether IGF mediates the effect of physical training resulting in BDNF-upregulation within the hippocampus, we performed voluntary running experiments with conditional IGF1-receptor-knockout and with wildtype mice and analysed the BDNF-levels. It was shown that BDNF-upregulation after physical training occurred in both genotypes to a similar extent, suggesting alternative ways of BDNF-upregulation. The second part dealt with the influence of neurotrophic factors on proliferation and differentiation in hippocampus and cortex. Via BrdU-incorporation experiments the different proliferation rates in the subgranular zone of the dentate gyrus were analysed. CNTF-deficient mice and CNTF&LIF-deficient mice showed increased proliferation rates compared with wildtype, whereas LIF-deficient mice had normal proliferation rates. Precursor cells of the embryonic cortex sequentially generate neurons and then glial cells, but the mechanisms regulating this neurogenic-to-gliogenic transition were unclear. Using cortical precursor cultures, which temporally mimic this in vivo differentiation pattern, we demonstrated that cortical neurons synthesize and secrete the neurotrophic cytokine CT-1, which is essential for the timed genesis of astrocytes in vitro. Our data indicate that a similar phenomenon also occurs in vivo.
28

Maladaptive Plastizität bei Schreibkrampf-Patienten / Maladaptive Plasticity in patients with focal hand dystonia

Weise, David Thomas January 2006 (has links) (PDF)
Der Schreibkrampf ist eine Form der fokalen Handdystonie, die durch anhaltende, unwillkürliche Verkrampfung der Hand beim Schreiben gekennzeichnet ist und zu unnatürlicher, zum Teil statischer und schmerzhafter Handhaltung führt. Bei prädisponierten Personen kann dieser nach exzessiver Wiederholung von stereotypen Bewegungen auftreten. Bewegungen und sensible Stimulation führen durch Mechanismen neuronaler Plastizität zu dynamischer Modulation sensibler und motorischer kortikaler Repräsentationen. Wird neuronale Plastizität nicht in natürlichen Grenzen gehalten, kann es zu veränderten, entdifferenzierten neuronalen Repräsentationen wie sie bei fokaler Handdystonie gefunden werden, führen. Zelluläre Kandidatenmechanismen für die Bildung neuronaler Engramme sind die Langzeitpotenzierung und –depression (LTP / LTD) neuronaler Synapsen. Wir verwendeten die als ein Modell für assoziative LTP und LTD beim Menschen entwickelte assoziative Paarstimulation (PAS). Mit dieser Methode untersuchten wir die zeitlichen und räumlichen Eigenschaften neuronaler Plastizität des Motorkortex bei Schreibkrampf-Patienten. Eine niederfrequente elektrische Stimulation eines peripheren Nerven (N. medianus (MN) oder N. ulnaris (UN)) wurde wiederholt (0,1Hz, 180 Reizpaare) mit einer transkraniellen Magnetstimulation (TMS) über dem homotopen kontralateralen Motorkortex mit einem Zeitintervall von 21,5ms (MN-PAS21.5; UN-PAS21.5) oder 10ms (MN-PAS10) kombiniert. Bei MN-PAS21.5 und MN-PAS10 wurde die optimale Spulenposition so gewählt, dass das magnetisch evozierte motorische Potential (MEP) im kontralateralen M. abductor pollicis brevis (APB) eine maximale Größe annahm, für UN-PAS21.5 wurde die Spule über dem "Hotspot" des M. abductor digiti minimi (ADM) platziert. Zehn Schreibkrampf-Patienten (Alter 39±9 Jahre; Mittelwert±Standardabweichung) und 10 gesunde bezüglich Alter und Geschlecht angepasste Probanden wurden untersucht. Veränderungen der Exzitabilität wurden mittels TMS bis zu 85 min nach der jeweiligen Intervention gemessen. Nach MN-PAS21.5 oder UN-PAS21.5 stieg die Amplitude der MEPs bei den gesunden Probanden nur in den Muskeln, die homotope externe PAS Stimulation erhalten hatten (APB Zielmuskel für MN; ADM für UN), nicht aber in Muskeln, die nicht homotop stimuliert worden waren. Im Gegensatz dazu stiegen bei Schreibkrampf-Patienten nach MN-PAS21.5 oder UN-PAS21.5 die Amplituden der APB und ADM-MEPs unabhängig von dem Ort der peripheren oder zentralen Stimulation. Bei Schreibkrampf-Patienten war eine frühere, stärkere und längere Zunahme der kortikalen Exzitabilität im Vergleich zu den Kontrollen zu verzeichnen. Qualitativ ähnliche Beobachtungen konnten in umgekehrtem Sinne (frühere und längere Abnahme der Exzitabilität im homo- und heterotopen Muskel) nach MN-PAS10 gemacht werden. LTP- und LTD-ähnliche Plastizität ist bei Schreibkrampf-Patienten demnach gesteigert und die normale strenge topographische Spezifität PAS-induzierter Plastizität aufgehoben. Diese maladaptive Plastizität könnte ein Bindeglied zwischen repetitiven Bewegungen und gestörter sensomotorischer Repräsentation darstellen, damit zu einem besseren Verständnis der Pathophysiologie der Dystonie beitragen und letztendlich mögliche therapeutische Konsequenzen implizieren. / Neuronal plasticity is to be kept within operational limits to serve its purpose as a safe memory system that shapes and focuses sensory and motor representations. Temporal and spatial properties of motor cortical plasticity were assessed in patients with writer's cramp (WC) using a model of long-term potentiation (LTP) and long-term-depression (LTD) of synaptic efficacy. Paired associative stimulation (PAS) combined repetitive electric stimulation of the median or ulnar nerve with subsequent transcranial magnetic stimulation of the contralateral dominant motor cortex at 21.5ms (MN-PAS21.5; UN-PAS21.5) or 10ms (MN-PAS10). Motor evoked potentials were recorded from abductor pollicis brevis (APB) muscle and abductor digiti minimi (ADM) muscles in 10 WC patients and 10 matched healthy control subjects. Following MN-PAS21.5 or UN-PAS21.5 in non-dystonic subjects, motor responses increased if the afferent PAS-component came from a homologous peripheral region and remained stable with a non-homologous input. In contrast, following either MN-PAS21.5 or UN-PAS21.5, both APB- and ADM-amplitudes increased in WC-patients. Compared to controls, this increase started earlier, its magnitude was larger and its duration longer. Following MN-PAS10 in controls, APB-amplitudes decreased, while ADM-amplitudes increased. In WC, the decrease of APB-amplitudes started earlier and lasted longer. Of note, ADM-amplitudes were decreased, too. In WC, LTP-like as well as LTD-like plasticity are abnormal with respect to both gain and spatial organization. Findings may help to develop a pathophysiological model explaining core features of focal dystonia.
29

Neuronal representation and processing of chemosensory communication signals in the ant brain

Zube, Christina January 2008 (has links) (PDF)
Ants heavily rely on olfaction for communication and orientation and ant societies are characterized by caste- and sex-specific division of labor. Olfaction plays a key role in mediating caste-specific behaviours. I investigated whether caste- and sex-specific differences in odor driven behavior are reflected in specific differences and/or adaptations in the ant olfactory system. In particular, I asked the question whether in the carpenter ant, Camponotus floridanus, the olfactory pathway exhibits structural and/or functional adaptations to processing of pheromonal and general odors. To analyze neuroanatomical specializations, the central olfactory pathway in the brain of large (major) workers, small (minor) workers, virgin queens, and males of the carpenter ant C. floridanus was investigated using fluorescent tracing, immunocytochemistry, confocal microscopy and 3D-analyzes. For physiological analyzes of processing of pheromonal and non-pheromonal odors in the first odor processing neuropil , the antennal lobe (AL), calcium imaging of olfactory projection neurons (PNs) was applied. Although different in total glomerular volumes, the numbers of olfactory glomeruli in the ALs were similar across the female worker caste and in virgin queens. Here the AL contains up to ~460 olfactory glomeruli organized in 7 distinct clusters innervated via 7 antennal sensory tracts. The AL is divided into two hemispheres regarding innervations of glomeruli by PNs with axons leaving via a dual output pathway. This pathway consists of the medial (m) and lateral (l) antenno-cerebral tract (ACT) and connects the AL with the higher integration areas in the mushroom bodies (MB) and the lateral horn (LH). M- and l-ACT PNs differ in their target areas in the MB calyx and the LH. Three additional ACTs (mediolateral - ml) project to the lateral protocerebrum only. Males had ~45% fewer glomeruli compared to females and one of the seven sensory tracts was absent. Despite a substantially smaller number of glomeruli, males possess a dual PN output pathway to the MBs. In contrast to females, however, only a small number of glomeruli were innervated by projection neurons of the m-ACT. Whereas all glomeruli in males were densely innervated by serotonergic processes, glomeruli innervated by sensory tract six lacked serotonergic innervations in the female castes. It appears that differences in general glomerular organization are subtle among the female castes, but sex-specific differences in the number, connectivity and neuromodulatory innervations of glomeruli are substantial and likely to promote differences in olfactory behavior. Calcium imaging experiments to monitor pheromonal and non-pheromonal processing in the ant AL revealed that odor responses were reproducible and comparable across individuals. Calcium responses to both odor groups were very sensitive (10-11 dilution), and patterns from both groups were partly overlapping indicating that processing of both odor classes is not spatially segregated within the AL. Intensity response patterns to the pheromone components tested (trail pheromone: nerolic acid; alarm pheromone: n-undecane), in most cases, remained invariant over a wide range of intensities (7-8 log units), whereas patterns in response to general odors (heptanal, octanol) varied across intensities. Durations of calcium responses to stimulation with the trail pheromone component nerolic acid increased with increasing odor concentration indicating that odor quality is maintained by a stable pattern (concentration invariance) and intensity is mainly encoded in the response durations of calcium activities. For n-undecane and both general odors increasing response dynamics were only monitored in very few cases. In summary, this is the first detailed structure-function analyses within the ant’s central olfactory system. The results contribute to a better understanding of important aspects of odor processing and olfactory adaptations in an insect’s central olfactory system. Furthermore, this study serves as an excellent basis for future anatomical and/or physiological experiments. / Für Ameisen spielt die olfaktorische Kommunikation und Orientierung eine zentrale Rolle hinsichtlich der Organisation des Ameisenstaates. Ob sich kasten- und geschlechtsspezifische Verhaltensunterschiede auf neuronaler Ebene und besonders im olfaktorischen System der Ameise widerspiegeln ist die zentrale Frage meiner Arbeit. Im Speziellen stellte ich die Frage, ob sich in der olfaktorischen Bahn der Rossameise Camponotus floridanus strukturelle oder funktionelle Anpassungen an die Verarbeitung von Pheromonen und generellen Düften aufzeigen lassen. Zur Analyse hinsichtlich neuroanatomischer Spezialisierungen wurde die olfaktorische Bahn im Gehirn von großen und kleinen Arbeiterinnen, Jungköniginnen und Männchen der Rossameise C. floridanus mittels Fluoreszenzmassenfärbungen, Immunzytochemie, konfokaler Laserscanningmikroskopie und 3D-Auswertung untersucht. Um die Verarbeitung von Pheromonen und generellen Düften im primären olfaktorischen Neuropil, dem Antennallobus (AL), auf physiologischer Ebene zu charakterisieren wurden olfaktorische Projektionsneurone mittels Calcium Imaging untersucht. Obwohl sich das glomeruläre Gesamtvolumen der ALs zwischen Arbeiterinnenkasten und Jungköniginnen unterscheidet, lag die Gesamtzahl der Glomeruli im AL in einem ähnlichen Bereich. Der AL besteht in allen drei weiblichen Kasten aus bis zu 460 Glomeruli, die in sieben Clustern angeordnet sind und von sieben sensorischen Eingangstrakten innerviert werden. Der AL unterteilt sich in zwei Hemispheren, deren entsprechende Glomeruli von Projektionsneuronen innverviert werden, die vom AL über die Nervenbahn des “dual output pathway” in höhere Hirnregionen projizieren. Diese Nervenbahn besteht aus dem medialen (m) und lateralen (l) Antennocerebraltrakt (ACT) und verbindet den AL mit höheren Integrationszentren wie den Pilzkörpern (MB) und dem lateralen Horn (LH). M- und l-ACT unterscheiden sich in ihren Zielregionen im MB Calyx und dem LH. Drei weitere ACTs (mediolateral – ml) projizieren ausschließlich ins laterale Protocerebrum. Männchen besitzen ca. 45% weniger Glomeruli im Vergleich zur Weibchenkaste. Ihnen fehlt weiterhin einer der sieben sensorischen Eingangstrakte vollständig. Trotz der wesentlich geringeren Anzahl an Glomeruli, besitzen auch Männchen den “dual output pathway”. Im Gegensatz zu den Weibchen ist allerdings nur eine geringe Anzahl an Glomeruli durch m-ACT Projektionsneurone innerviert. Ein weiterer Unterschied im AL von Männchen und Weibchen findet sich in den Glomeruli des sensorische Trakts Nummer sechs, die bei Weibchen keinerlei serotonerge Innervierung aufweisen während beim Männchen der gesamte AL dichte serotonerge Verzweigungen besitzt. Es zeigt sich somit, dass die kastenspezifischen Unterschiede in der allgmeinen glomerulären Organisation des AL innerhalb der Weibchenkaste nur sehr fein sind. Im Gegensatz dazu sind die geschlechtsspezifischen Unterschiede in Anzahl, Konnektivität und neuromodulatorischer Innervierung von Glomeruli zwischen Weibchen- und Männchen wesentlich ausgeprägter was Unterschiede in olfaktorisch geprägten Verhaltensweisen begünstigen könnte. Die Calcium Imaging Experimente zur Untersuchung der Verarbeitung von Pheromonen und generellen Düften im AL der Ameise zeigten, dass Duftantworten reproduzierbar und zwischen Individuen vergleichbar waren. Die Sensitivität des Calcium Signals lag für beide Duftgruppen in einem sehr niedrigen Bereich (Verdünnung 10-11). Die Antortmuster beider Duftgruppen überlappten zum Teil, was die Annahme zuläßt, dass die Verarbeitung von Pheromonen und generellen Düften keiner räumlichen Trennung innerhalb des AL unterliegt. Die Intensität der Antwortmuster auf die Pheromonkomponenten (Spurpheromon: Nerolsäure; Alarmpheromon: n-Undecan) blieben in den meisten Fällen über einen weiten Konzentrationsbereich konstant (7-8 log Einheiten). Die Dauer der Calciumantwort nach Stimulation mit Nerolsäure verlängerte sich mit steigender Duftkonzentration. Dies läßt für das Spurpheromon den Schluß zu, dass die Duftqualität in einem konstanten Duftmuster (Konzentrationsinvarianz) repräsentiert und die Duftintensität über die Dauer des Calciumsignals abgebildet wird. Da die Antwortmuster auf generelle Düfte (Heptanal, Octanol) dagegen sehr viel stärker innerhalb des getesteten Konzentrationsbereichs varrieren ließ sich für n-Undecan und die beiden generellen Düfte eine solche Dynamik nur in einigen wenigen Fällen beobachtet. Zusammenfassend ist diese Studie die erste strukturelle und funktionelle Studie des olfaktorischen Systems der Ameise. Die Ergebnisse tragen zu einem besseren Verständnis der neuronalen Adaptationen und Mechanismen hinsichtlich Duftverarbeitung im zentralen Nervensystem von Insekten bei. Außerdem liefert diese Studie eine wichtige Grundlage für zukünftige neuroanatomische und –physiologische Untersuchungen auf dem Gebiet der Neurobiologie der Insekten.
30

Langzeitdepressions-ähnliche Minderung kortikospinaler Exzitabilität durch ein assoziatives Paarstimulationsprotokoll : Methodische Untersuchungen und neurophysiologisches Mapping / Long-term depression-like reduction of corticospinal excitability by the use of a paired associative stimulation protocol: Systematic examination and neurophysiologic mapping

Eskandar, Kevin January 2008 (has links) (PDF)
Neuronale Plastizität ist die Voraussetzung für Lernen und Erinnerung. Sie wurde in einer Reihe von Experimenten am Menschen und am Tier eindrucksvoll demonstriert. Das zugrunde liegende Prinzip neuronaler Plastizität ist die Modulierbarkeit synaptischer Übertragungseffizienz. Diese kann im Sinne einer Langzeitpotenzierung (LTP) sowohl hinauf als auch im Sinne einer Langzeitdepression (LTD) herab reguliert werden. Von besonderem Interesse im Allgemeinen und für diese Arbeit ist das Prinzip der assoziativen LTD: Wirkt auf das postsynaptische Neuron zunächst ein starker depolarisierender Reiz und danach in enger zeitlicher Kopplung ein schwacher nicht depolarisierender Reiz so kommt es in der Folge zu einer Erniedrigung der synaptischen Übertragungseffizienz. Für den menschlichen Motorkortex wurde ein experimentelles Protokoll entwickelt, dass mit Hilfe etablierter neurophysiologischer Methoden eine Veränderung der synaptischen Übertragungseffizienz im Sinne eines LTD-ähnlichen Phänomens bewirkt: beinahe synchrone und repetitive Kopplung peripherer N. medianus Stimulation (entspricht dem nicht depolarisierenden Reiz) und kontralateraler transkranieller Magnetstimulation (entspricht dem depolarisierenden Reiz) führt zu einer signifikanten Amplitudenreduktion der magnetisch evozierbaren Potentiale (MEP) des M. abductor pollicis brevis (APB). Voraussetzung für die Effektivität der assoziativen Paarstimulation (PAS-Protokoll) ist, dass der depolarisierende Reiz wenige Millisekunden vor dem nicht depolarisierenden Reiz auf die synaptischen Verbindungen des zentralen APB-Repräsentationsareals einwirkt. Das Ziel dieser Arbeit war es zunächst durch Optimierung der im PAS-Protokoll etablierten Stimulationsparameter die Robustheit und das Ausmaß der erzeugten Exzitabilitätsminderung im APB-Kortexareals zu steigern. Untersucht wurde erstens der Einfluss der Steigerung der Frequenz, sowie zweitens der absoluten Zahl applizierter Paarreize. Drittens wurde untersucht ob ein optimaler Wirkzeitabstand zwischen den beiden assoziativen Stimuli besteht: Eine Synchronisierung des Intervalls zwischen den beiden Paarreizen durch Normierung auf die individuelle Körperlänge führt zu einem konstanten Wirkzeitabstand innerhalb der synaptischen Verbindungen des zentralen APB-Repräsentationsareales. Dies erlaubt eine systematische Untersuchung des optimalen Wirkzeitabstandes der assoziativen Paarreize unabhängig von der individuellen Körperlänge. Mit einem so optimierten PAS-Protokoll wurde der zweite Teil der Arbeit durchgeführt: In den eben beschriebenen Vorversuchen wurde die Änderung der kortikomuskulären Exzitabilität durch Vergleich der durchschnittlichen MEP-Amplituden des Punktes der Schädeldecke, von dem aus eine maximale Reizantwort im Zielmuskel erzeugbar war bestimmt. Um jedoch eine möglichst umfassende Aussage über die Veränderung kortikomuskulärer Exzitabilität treffen zu können, wurde ein etabliertes Kartierungsverfahren verwendet, das eine Darstellung des APB-Repräsentationsareales als zweidimensionale Karte ermöglicht. Mit Hilfe dieser Mapping-Untersuchung sind Aussagen über die räumliche Dimension der Veränderungen kortikomuskulärer Exzitabilität möglich, die über den einfachen Vergleich der an einem Punkt gewonnenen Amplituden hinausgehen. In dieser Arbeit gelang die Induktion kortikaler Plastizität im Sinne assoziativer LTD-ähnlicher Plastizität. Aus unseren Ergebnissen lässt sich ableiten, dass weder durch eine Erhöhung der Frequenz noch der Anzahl der Paarstimuli eine wesentliche Steigerung des LTD-ähnlichen Phänomens zu erzeugen ist. Diesen Umstand führen wir im Wesentlichen auf eine Art Grenzwert der Modulierbarkeit kortikomuskulärer Exzitabilität zurück. Die grundsätzliche Möglichkeit, dass mentale Konzentration auf die in das PAS-Protokoll involvierten Muskeln eine bedeutsamere Rolle für das Ausmaß der induzierten Plastizität spielen könnte als die Intensität der assoziativen Induktion, wurde erörtert. Durch einen Normierungsprozess auf die individuelle Körpergröße kristallisiert sich ein definiertes Fenster der zeitlichen Kopplung der beiden assoziativen Reize mit optimaler LTD-ähnlicher Plastizität heraus. Bei selektiver Betrachtung einer Subgruppe der Mapping-Untersuchung ergaben sich Hinweise darauf, dass die räumliche Verteilung der Exzitabilität durch ein optimiertes PAS-Protokoll verändert wird. Diese Hinweise sind mit der Annahme zu vereinbaren, dass durch ein exzitabilitätsminderndes PAS-Protokoll aktive Synapsen deaktiviert werden können. Mögliche Ursachen für die vergleichsweise schlechte Reproduzierbarkeit der Plastizitätsergebnisse bei kumulativer Betrachtung aller Mapping-Experimente wurden diskutiert. / Neuronal plasticity is the prerequisite for learning and memory. It was demonstrated impressively in a series of experiments on human beings and animals. The basic principle of neuronal plasticity is that the efficiency of synaptic transmission can be modulated. It can be increased as in a long-term potentiation (LTP) and decreased as in a long-term depression (LTD). The principle of associative LTD is of special interest in general and for this study: if at first a strong depolarizing stimulus affects the postsynaptic neuron and then only a short time later a weak non-depolarizing stimulus affects the postsynaptic neuron, the transmission efficiency will be decreased. An experimental protocol has been developed for the human motor cortex that, by means of established neurophysiologic methods, causes a modification of the efficiency of synaptic transmission in terms of an LTD-similar phenomenon: an almost synchronous and repetitive coupling of peripheral N. medianus stimulation (corresponds to the non-depolarizing stimulus) and contralateral magnetic stimulation (corresponds to the depolarizing stimulus) leads to a significant reduction in amplitude of the motor-evoked potentials (MEP) of the M. abductor pollicis brevis (APB). For the effectiveness of the paired associative stimulation it is necessary that the depolarizing stimulus affects the synaptic connections of the central APB-representation area only a few milliseconds before the non-depolarizing stimulus. Initially, the purpose of this study was to enhance the robustness and the extent of the generated reduction in excitability in the APB-cortex area by optimizing the stimulation parameter established in the PAS protocol. First of all, the influence of the increase in frequency was analysed and then secondly, the absolute number of applied pair stimuli. By scaling to the individual body length, a synchronization of the interval between both pair stimuli leads to a constant reaction time interval within the synaptic connection of the central APB representation area. Thirdly, it was examined if there is an optimal reaction time interval between both associative stimuli: by scaling to the individual body length, a synchronization of the interval between both pair stimuli leads to a constant reaction time interval within the synaptic connection of the central APB representation area. This allows a systematic examination of the optimal reaction time interval of the associative pair stimuli regardless of the individual body size. The second part of the study was carried out using such an optimized PAS-protocol. During the pre-experiments that have just been described, the modification of the cortico-muscular excitability was determined by means of comparison of the average MEP-amplitudes from the point of the brain pan where the maximum answer on stimulus in the destination muscle could be generated. In order to be able to make a comprehensive statement about the cortico-muscular excitability an established mapping procedure was used that makes it possible to depict the APB-representation area as a two-dimensional map. By means of this mapping-examination, statements concerning the spatial dimension of the modifications of cortico-muscular excitability can be made, which exceed the simple comparison of amplitudes that have been generated at a certain point. In this study, the induction of cortical plasticity was realized as in associative LTD-similar plasticity. From our results, it can be deduced that neither the increase in frequency nor the number of pair stimuli causes an essential increase of the LTD-similar phenomenon. In our opinion this is due to the fact that there is a kind of limit value in the modulating capacity of cortico-muscular excitability. There was a discussion whether it was possible in principle that the mental concentration on the muscles involved in the PAS-protocol might play a more important role for the extent of the induced plasticity than the intensity of the associative induction. By means of a standardization process to the individual body size it emerges that both associative stimuli have to follow immediately within a defined, narrow time for a ‘window of opportunity’. Looking at a subgroup of the mapping-examination in a selective way it came out that the spatial distribution of the excitability is being modified by an optimized PAS-Protocol. These hints coincide with the assumption that active synapses can be deactivated by means of a PAS-protocol, which minimizes the excitability. Regarding all mapping-experiments in a cumulative way, a discussion ensued about the possible reasons for the comparatively bad reproducibility of the plasticity results.

Page generated in 0.1876 seconds