Spelling suggestions: "subject:"neurones artificiell"" "subject:"neurones artificielle""
61 |
Référentiels pour l'intégration multi-sensorielle et sensomotrice: une approche neuro-robotiqueHalgand, Christophe 20 September 2011 (has links) (PDF)
Le sujet de cette thèse aborde le problème de la représentation de l'espace dans la boucle sensorimotrice chez le primate et sur des systèmes robotiques. Chez l'être vivant, l'intégration multisensorielle passe par la problématique des référentiels pour lesquels il existe des modèles théoriques basés sur des données électrophysiologiques. Cependant ces derniers n'expliquent pas tous les résultats issus des travaux en neurosciences. Dans une première partie de l'étude, nous avons enregistré et mis en évidence, chez le singe vigile, l'influence de la direction de la tête par rapport au corps et de son interaction avec celle de l'oeil par rapport à la tête au sein de l'aire visuelle primaire (V1) sous forme de modulation de l'activité neuronale. L'effet de la position de la tête n'avait été, jusqu'à présent, montré que dans le cortex pariétal, aire hautement intégrative. Nos résultats mettent clairement en évidence l'existence d'une intégration distribu ée et d'une construction d'une représentation stable et unifiée en amont du cortex pariétal. Ces intégrations semblent exister également après le cortex pariétal postérieur. Des résultats électrophysiologiques, longtemps ignorés mais confirmés récemment ont montré l'influence de la position des yeux au sein du cortex prémoteur dorsal. Une deuxième étude basée sur le formalisme de l'asservissement visuel en robotique, nous a permis de proposer une interprétation de ces résultats. La mise en oeuvre d'un réseau de neurones artificiels entraîné à partir de ce formalisme montre la similitude de l'influence des effets de la position des yeux observés au niveau cortical et confirme notre interprétation. Sur l'ensemble de tous ces travaux, nous proposons une discussion sous l'angle des deux formalismes neuro-robotique où nous présentons un bilan fonctionnel de la perception à l'action. Finalement, nous proposons l'existence d'une origine multisensorielle qui avantagerait l'intégration multisensorielle en ne urosciences comme en robotique.
|
62 |
Technologies émergentes de mémoire résistive pour les systèmes et application neuromorphiqueSuri, Manan 18 September 2013 (has links) (PDF)
La recherche dans le domaine de l'informatique neuro-inspirée suscite beaucoup d'intérêt depuis quelques années. Avec des applications potentielles dans des domaines tels que le traitement de données à grande échelle, la robotique ou encore les systèmes autonomes intelligents pour ne citer qu'eux, des paradigmes de calcul bio-inspirés sont étudies pour la prochaine génération solutions informatiques (post-Moore, non-Von Neumann) ultra-basse consommation. Dans ce travail, nous discutons les rôles que les différentes technologies de mémoire résistive non-volatiles émergentes (RRAM), notamment (i) Phase Change Memory (PCM), (ii) Conductive-Bridge Memory (CBRAM) et de la mémoire basée sur une structure Metal-Oxide (OXRAM) peuvent jouer dans des dispositifs neuromorphiques dédies. Nous nous concentrons sur l'émulation des effets de plasticité synaptique comme la potentialisation à long terme (Long Term Potentiation, LTP), la dépression à long terme (Long Term Depression, LTD) et la théorie STDP (Spike-Timing Dependent Plasticity) avec des synapses RRAM. Nous avons développé à la fois de nouvelles architectures de faiblement énergivore, des méthodologies de programmation ainsi que des règles d'apprentissages simplifiées inspirées de la théorie STDP spécifiquement optimisées pour certaines technologies RRAM. Nous montrons l'implémentation de systèmes neuromorphiques a grande échelle et efficace énergétiquement selon deux approches différentes: (i) des synapses multi-niveaux déterministes et (ii) des synapses stochastiques binaires. Des prototypes d'applications telles que l'extraction de schéma visuel et auditif complexe sont également montres en utilisant des réseaux de neurones impulsionnels (Feed-forward Spiking Neural Network, SNN). Nous introduisons également une nouvelle méthodologie pour concevoir des neurones stochastiques très compacts qui exploitent les caractéristiques physiques intrinsèques des appareils CBRAM.
|
63 |
Evaluation et développement de modèles sous-maille pour la simulation des grandes échelles du mélange turbulent basés sur l'estimation optimale et l'apprentissage supervisé / Evaluation et development of subgrid scale models for large eddy simulation of mixing based on optimal estimator and machin learningVollant, Antoine 20 October 2015 (has links)
Dans ce travail, des méthodes de diagnostics et des techniques de développement de modèles sous-maille sont proposées pour la simulation des grandes échelles (SGE) du mélange turbulent. Plusieurs modèles sous-maille issus de ces stratégies sont ainsi présentés pour illustrer ces méthodes.Le principe de la SGE est de résoudre les grandes échelles de l'écoulement responsables des transferts principaux et de modéliser l'action des petites échelles de l'écoulement sur les échelles résolues. Au cours de ce travail, nous nous sommes appuyés sur le classement des modèles sous-maille en deux catégories. Les modèles "fonctionnels" qui s'attachent à reproduire les transferts énergétiques entre les échelles résolues et les échelles modélisées et les modèles "structurels" qui cherchent à bien reproduire le terme sous-maille. Le premier enjeu important a été d'évaluer la performance des modèles sous-maille en prenant en compte leur comportement à la fois fonctionnel (capacité à reproduire les transferts d'énergie) et structurel (capacité à reproduire le terme sous-maille exact). Des diagnosctics des modèles sous-maille ont pu être conduits avec l'utilisation de la notion d'estimateur optimal ce qui permet de connaitre le potentiel d'amélioration structurelle des modèles. Ces principes ont dans un premier temps servi au développement d'une première famille de modèles sous-maille algébrique appelée DRGM pour "Dynamic Regularized Gradient Model". Cette famille de modèles s'appuie sur le diagnostic structurel des termes issus de la régularisation des modèles de la famille du gradient. D'après les tests menés, cette nouvelle famille de modèle structurel a de meilleures performances fonctionnelles et structurelles que les modèles de la famille du gradient. L'amélioration des performances fonctionnelles consiste à supprimer la prédiction excessive de transferts inverses d'énergie (backscatter) observés dans les modèles de la famille du gradient. Cela permet ainsi de supprimer le comportement instable classiquement observé pour cette famille de modèles. La suite de ce travail propose ensuite d'utiliser l'estimateur optimal directement comme modèle sous-maille. Comme l'estimateur optimal fournit le modèle ayant la meilleure performance structurelle pour un jeu de variables donné, nous avons recherché le jeu de variable optimisant cette performance. Puisque ce jeu comporte un nombre élevé de variables, nous avons utilisé les fonctions d'approximation de type réseaux de neurones pour estimer cet estimateur optimal. Ce travail a mené au nouveau modèle substitut ANNM pour "Artificial Neural Network Model". Ces fonctions de substitution se construisent à partir de bases de données servant à émuler les termes exacts nécessaire à la détermination de l'estimateur optimal. Les tests de ce modèle ont montré qu'il avait de très bonnes perfomances pour des configurations de simulation peu éloignées de la base de données servant à son apprentissage, mais qu'il pouvait manquer d'universalité. Pour lever ce dernier verrou, nous avons proposé une utilisation hybride des modèles algébriques et des modèles de substitution à base de réseaux de neurones. La base de cette nouvelle famille de modèles ACM pour "Adaptative Coefficient Model" s'appuie sur les décompositions vectorielles et tensorielles des termes sous-maille exacts. Ces décompositions nécessitent le calcul de coefficients dynamiques qui sont modélisés par les réseaux de neurones. Ces réseaux bénéficient d'une méthode d'apprentissage permettant d'optimiser directement les performances structurelles et fonctionnelles des modèles ACM. Ces modèles hybrides allient l'universalité des modèles algébriques avec la performance élevée mais spécialisée des fonctions de substitution. Le résultat conduit à des modèles plus universels que l'ANNM. / This work develops subgrid model techniques and proposes methods of diagnosis for Large Eddy Simulation (LES) of turbulent mixing.Several models from these strategies are thus presented to illustrate these methods.The principle of LES is to solve the largest scales of the turbulent flow responsible for major transfers and to model the action of small scales of flowon the resolved scales. Formally, this operation leads to filter equations describing turbulent mixing. Subgrid terms then appear and must bemodeled to close the equations. In this work, we rely on the classification of subgrid models into two categories. "Functional" models whichreproduces the energy transfers between the resolved scales and modeled scales and "Structural" models that seek to reproduce the exact subgrid termitself. The first major challenge is to evaluate the performance of subgrid models taking into account their functional behavior (ability to reproduce theenergy transfers) and structural behaviour (ability to reproduce the term subgrid exactly). Diagnostics of subgrid models have been enabled with theuse of the optimal estimator theory which allows the potential of structural improvement of the model to be evaluated.These methods were initially involved for the development of a first family of models called algebraic subgrid $DRGM$ for "Dynamic Regularized GradientModel". This family of models is based on the structural diagnostic of terms given by the regularization of the gradient model family.According to the tests performed, this new structural model's family has better functional and structural performance than original model's family of thegradient. The improved functional performance is due to the vanishing of inverse energy transfer (backscatter) observed in models of thegradient family. This allows the removal of the unstable behavior typically observed for this family of models.In this work, we then propose the use of the optimal estimator directly as a subgrid scale model. Since the optimal estimator provides the modelwith the best structural performance for a given set of variables, we looked for the set of variables which optimize that performance. Since this set of variablesis large, we use surrogate functions of artificial neural networks type to estimate the optimal estimator. This leads to the "Artificial Neural Network Model"(ANNM). These alternative functions are built from databases in order to emulate the exact terms needed to determine the optimal estimator. The tests of this modelshow that he it has very good performance for simulation configurations not very far from its database used for learning, so these findings may fail thetest of universality.To overcome this difficulty, we propose a hybrid method using an algebraic model and a surrogate model based on artificial neural networks. Thebasis of this new model family $ACM$ for "Adaptive Coefficient Model" is based on vector and tensor decomposition of the exact subgrid terms. Thesedecompositions require the calculation of dynamic coefficients which are modeled by artificial neural networks. These networks have a learning method designedto directlyoptimize the structural and functional performances of $ACM$. These hybrids models combine the universality of algebraic model with high performance butvery specialized performance of surrogate models. The result give models which are more universal than ANNM.
|
64 |
Prévision du rayonnement solaire global par télédétection pour la gestion de la production d’énergie photovoltaïque / Nowcasting and very short term forecasting of the global horizontal irradiance at ground level : application to photovoltaic output forecastingDambreville, Romain 16 October 2014 (has links)
L’intégration des énergies intermittentes sur le réseau électrique existant soulèvedes problèmes de stabilité de la balance consommation/production. Afin de limiter les risques,la loi autorise un taux de pénétration maximum de ces énergies de 30% de la puissanceinstallée. Afin de pallier cette limitation, deux pistes sont envisagées, le stockage d’énergie etla prévision de production. Les travaux menés dans cette thèse s’inscrivent dans la secondecatégorie et se concentrent sur la prévision du rayonnement global au sol, ressource principaledes systèmes de production d’énergie photovoltaïque. Dans l’objectif d’une prévision à trèscourt terme (infra-horaire), la problématique développée concerne la fusion d’informationsprovenant d’une part d’observations satellitaires et de l’autre d’observations in-situ telles quedes images hémisphériques. L’approche suivie se veut progressive et s’articule autour de 4grand axes. Le premier chapitre énonce les définitions et les enjeux principaux liés à l’étudedu GHI en décrivant les différents facteurs physiques ayant des interactions sur sa mesure. Lesecond chapitre permet d’évaluer le potentiel des images hémisphériques pour l’estimation durayonnement global. On y développe une méthode d’estimation du GHI basée sur l’utilisationd’un réseau de neurones artificiels permettant d’effectuer une régression non linéaire entre descaractéristiques choisie de l’image et le rayonnement mesuré sur site par un pyranomètre. Letroisième chapitre concerne l’utilisation des images satellitaires pour la prévision à très courtterme du rayonnement global. L’originalité des méthodes proposées provient de l’utilisationen entrées de cartes de rayonnement dérivées des images satellitaires via une méthode externe.L’utilisation de ces cartes de rayonnement permet la construction de modèles linéairessimples (modèles auto-régressifs) grâce à l’homogénéité des données utilisées. Cependant,leur pertinence pour le calcul de champ de vecteurs a également été prouvé et validé dans unsecond modèle. La comparaison des deux modèles ainsi créés à partir d’imagerie satellitairea permis de caractériser les forces et faiblesses de ces modèles. L’intérêt de l’observationsatellitaire réside dans l’anticipation du déplacement des masses nuageuse. Cependant, unbiais non systématique persiste dans la conversion des valeurs des pixels en rayonnement.Ce biais est inhérent à la résolution spatio-temporelle de ces observations. Étant donné cesconsidérations, le chapitre 4 présente alors une méthode d’intégration des données acquisespar l’imagerie hémisphérique, disposant une meilleure résolution spatio-temporelle, dans lesrésultats de prévision satellitaires précédemment évoqués. On joint alors les caractéristiquesretenues au chapitre 2 dans un réseau de neurone avec la prévision pour produire uneprévision dont le biais est largement réduit. L’utilisation de caractéristiques dérivées del’imagerie hémisphérique à la place de simple mesures du pyranomètre est justifiée par l’effetde persistance non souhaité apportées par ces dernières. Ainsi, après avoir étudié chaquesource d’information séparément, on a pu développer un modèle leur permettant de secompléter. / To handle the integration of intermittent energies to the existing grid,managers require more and more acurate tools to forecast the primary resources. This thesisfocuses on the very short term forecast of the global horizontal irradiance (GHI), maininput for most photovoltaic power plant. We chose to use both ground based images fromhemispherical cameras and satellite images to provide a forecating tool. In the first handwe present a novel appraoch to estimate the GHI using ground based images. On secondhand, we propose several satellite based methods to forecast the GHI up to one hour. Finally,we developp a new method allowing us to merge both data in order to benefit from theirrespective advantages. All the methods were tested against real data acquired on the SIRTAsite, Polytechnique campus.
|
65 |
Prédire la chute de la personne âgée : apports des modèles mathématiques non-linéaires / Predicting of falls in the elderly : using of non-linear of mathematical modelsKabeshova, Anastasiia 14 October 2015 (has links)
En 2015, la chute de la personne âgée reste toujours un événement majeur, quel que soit l’angle de vue considéré. Elle est toujours associée à une forte morbi-mortalité, nombreuses incapacités, altération la qualité de vie du chuteur, mais aussi, en raison du vieillissement de la population, avec le nombre croissant de chuteurs requérant une prise en charge médicale. Cette situation repose en bonne partie sur notre incapacité à identifier la personne âgée qui est le plus à risque de chute, cette étape étant la première de toute stratégie d’intervention efficace et efficiente. Il est donc nécessaire voir obligatoire aujourd’hui de redoubler nos efforts sur l’amélioration de la prédiction de la chute. En contrepartie de nouvelles opportunités s’ouvrent à nous en raison de l’implantation et de l’informatisation des données médicales. La chute doit être considérée comme un événement chaotique et sa prédiction doit se faire via de nouveaux modèles mathématiques intégrant la particularité de ce comportement. C’est pour cette raison que des méthodes d’analyse basée sur l'intelligence artificielle semblent être une solution appropriée. C’est à partir de ce constat que nous avons émis l’hypothèse que les modèles mathématiques issus de l’intelligence artificielle devaient permettre d’atteindre une qualité de la prédiction meilleure. L’objectif principal de cette thèse est d’étudier la qualité de la prédiction de la chute, récurrente ou non, chez des personnes âgées de 65 ans et plus, en utilisant les réseaux neuronaux et un modèle de logique floue, en les comparant avec des modèles mathématiques linéaires utilisés classiquement dans la littérature. L’ensemble de nos résultats confirme notre hypothèse de départ en montrant que le choix du modèle mathématique influence la qualité de la prédiction de la chute, les modèles non linéaires, et notamment les réseaux neuronaux et les systèmes de logique flous, étant plus performants que les modèles linéaires pour la prédiction des chutes surtout lorsqu’elles sont récurrentes. / Falls in the elderly are still a major issue in 2015 because they are associated with high rate of morbidity, mortality and disability, which affect the quality of life. From the patient’s perspective, it is still associated with high morbidity, mortality and disability, which affect the quality of life. The number of fallers requiring medical and/or social care is growing up due to aging population. This fact seems paradoxical since during the recent years the knowledge about the mechanisms of falls and the quality of interventions to support fallers significantly increased. This is largely based on our inability to predict correctly the risk of falling among the elderly person, knowing that this is the first step of any efficient and effective intervention strategies. Therefore it is necessary today to double our efforts in improving the prediction of falls. Nonetheless, new opportunities and advanced technologies provide to us the possibility of computerizing of medical data and research, and also to improve prediction of falls using new approaches. A fall should be considered as a chaotic event, and its prediction should be done via new mathematical models incorporating the feature of this behaviour. Thus, the methods ofartificial intelligence-based analysis seem to be an appropriate solution to analyse complex medical data. These artificial intelligence techniques have been already used in many medical areas, but rarely in the field of fall prediction. Artificial neural networks are the most commonly used methods while other promising techniques based on fuzzy logic are less often applied.Based on this observation we have formulated the hypothesis that non-linear mathematical models using artificial intelligence are the models, which are the most likely to achieve the bestquality of the prediction. The main objective of this thesis is to study the quality of theprediction of falls, recurrent or not, among the adults aged 65 years and more,applying neuralnetworks and fuzzy logic models, and comparing them either among themselves or with the linear mathematical models conventionally employed in the literature for fall prediction. The first cross-sectional study was conducted by using a decision tree to explore the risk of recurrent falls in various combinations of fall risk factors compared to a logistic regression model. The second study was designed to examine the efficiency of artificial neural networks (Multilayer Perceptron and Neuroevolution of Augmenting Topologies) to classify recurrent and nonrecurrent fallers by using a set of clinical characteristics corresponding to risk factors measured among seniors living in the community. Finally, in the third study we compared the results of different statistical methods (linear and nonlinear) in order to identify the risk of falls using 7 clinical variables, separating the collection mode (retrospective and prospective) of the fall and its recurrence. The results confirm our hypothesis showing that the choice of the mathematical model affects the quality of fall prediction. Nonlinear models, such as neural networks and fuzzy logic systems, are more efficient than linear models for the prediction of falls especially for recurrent falls. However, the results show that the balance between different criteria used to judge the quality of the forecast (sensitivity, specificity, positive and negative predictive value, area under the curve, positive and negative likelihood ratio, and accuracy) has not been always correct, emphasizing the need to continue the development of the models whose intelligence should specifically predict the fall.
|
66 |
Dynamique des systèmes cognitifs et des systèmes complexes : étude du rôle des délais de transmission de l’information / Dynamics of cognitive systems and complex systems : study of the role of information transmission delaysMartinez, Regis 26 September 2011 (has links)
La représentation de l’information mnésique est toujours une question d’intérêt majeur en neurobiologie, mais également, du point de vue informatique, en apprentissage artificiel. Dans certains modèles de réseaux de neurones artificiels, nous sommes confrontés au dilemme de la récupération de l’information sachant, sur la base de la performance du modèle, que cette information est effectivement stockée mais sous une forme inconnue ou trop complexe pour être facilement accessible. C’est le dilemme qui se pose pour les grands réseaux de neurones et auquel tente de répondre le paradigme du « reservoir computing ».Le « reservoir computing » est un courant de modèles qui a émergé en même temps que le modèle que nous présentons ici. Il s’agit de décomposer un réseau de neurones en (1) une couche d’entrée qui permet d’injecter les exemples d’apprentissage, (2) un « réservoir » composé de neurones connectés avec ou sans organisation particulière définie, et dans lequel il peut y avoir des mécanismes d’adaptation, (3) une couche de sortie, les « readout », sur laquelle un apprentissage supervisé est opéré. Nous apportons toutefois une particularité, qui est celle d’utiliser les délais axonaux, temps de propagation d’une information d’un neurone à un autre. Leur mise en oeuvre est un apport computationnel en même temps qu’un argument biologique pour la représentation de l’information. Nous montrons que notre modèle est capable d’un apprentissage artificiel efficace et prometteur même si encore perfectible. Sur la base de ce constat et dans le but d’améliorer les performances nous cherchons à comprendre les dynamiques internes du modèle. Plus précisément nous étudions comment la topologie du réservoir peut influencer sa dynamique. Nous nous aidons pour cela de la théorie des groupes polychrones. Nous avons développé, pour l’occasion, des algorithmes permettant de détecter ces structures topologico-dynamiques dans un réseau, et dans l’activité d’un réseau de topologie donnée.Si nous comprenons les liens entre topologie et dynamique, nous pourrons en tirer parti pour créer des réservoirs adaptés aux besoins de l’apprentissage. Finalement, nous avons mené une étude exhaustive de l’expressivité d’un réseau en termes de groupes polychrones, en fonction de différents types de topologies (aléatoire, régulière, petit-monde) et de nombreux paramètres (nombre de neurones, connectivité, etc.). Nous pouvons enfin formuler un certain nombre de recommandations pour créer un réseau dont la topologie peut être un support riche en représentations possibles. Nous tentons également de faire le lien avec la théorie cognitive de la mémoire à traces multiples qui peut, en principe, être implémentée et étudiée par le prisme des groupes polychrones. / How memory information is represented is still an open question in neurobiology, but also, from the computer science point of view, in machine learning. Some artificial neuron networks models have to face the problem of retrieving information, knowing that, in regard to the model performance, this information is actually stored but in an unknown form or too complex to be easily accessible. This is one of the problems met in large neuron networks and which « reservoir computing » intends to answer.« Reservoir computing » is a category of models that has emerged at the same period as, and has propoerties similar to the model we present here. It is composed of three parts that are (1) an input layer that allows to inject learning examples, (2) a « reservoir » composed of neurons connected with or without a particular predefined, and where there can be adaptation mecanisms, (3) an output layer, called « readout », on which a supervised learning if performed. We bring a particularity that consists in using axonal delays, the propagation time of information from one neuron to another through an axonal connexion. Using delays is a computational improvement in the light of machin learning but also a biological argument for information representation.We show that our model is capable of a improvable but efficient and promising artificial learning. Based on this observation and in the aim of improving performance we seek to understand the internal dynamics of the model. More precisely we study how the topology of the reservoir can influence the dynamics. To do so, we make use of the theory of polychronous groups. We have developped complexe algorithms allowing us to detect those topologicodynamic structures in a network, and in a network activity having a given topology.If we succeed in understanding the links between topology and dynamics, we may take advantage of it to be able to create reservoir with specific properties, suited for learning. Finally, we have conducted an exhaustive study of network expressivness in terms of polychronous groups, based on various types of topologies (random, regular, small-world) and different parameters (number of neurones, conectivity, etc.). We are able to formulate some recommandations to create a network whose topology can be rich in terms of possible representations. We propose to link with the cognitive theory of multiple trace memory that can, in principle, be implemented and studied in the light of polychronous groups.
|
67 |
Conception d’un circuit de lecture à étampes temporelles multiples pour un photodétecteur destiné à la tomographie d’émission par positronsLemaire, William January 2018 (has links)
La médecine moderne fait usage de divers appareils pour faciliter le diagnostic et le traitement des maladies. Parmi ceux-ci, l’imagerie par tomographie d’émission par positrons (TEP) se démarque par sa capacité d’imager des processus biologiques spécifiques comme le métabolisme du glucose. Cette caractéristique permet de mettre en évidence des signes distinctifs des maladies comme le cancer à l’aide de radiotraceurs capables de cibler certaines cellules. Dans le but de favoriser de meilleurs diagnostics et de mener des recherches de pointe dans le domaine médical, la qualité des images produites par les appareils TEP doit être améliorée. Les avancées des dernières années ont permis d’améliorer la résolution spatiale des images jusqu’à pratiquement atteindre la limite théorique imposée par le déplacement du positron lors du processus de désintégration. Depuis, les travaux s’orientent plutôt vers l’amélioration du contraste de l’image en intégrant la mesure du temps de vol (TdV) dans l’algorithme de reconstruction. Le défi dans cette mesure réside dans la conception d’un photodétecteur avec une résolution temporelle suffisante pour localiser le lieu d’émission du radiotraceur entre deux détecteurs coïncidents. La plupart des photodétecteurs actuels utilisent un seuil sur le nombre de photons de scintillation observé pour déterminer le temps d’arrivée des photons d’annihilation dans le scintillateur. Cependant, plusieurs travaux ont démontré qu’une meilleure résolution temporelle est atteignable en pondérant adéquatement l’information temporelle numérisée de plusieurs photons de scintillation à la place de n’en considérer qu’un seul. Dans le but d’améliorer la résolution temporelle des photodétecteurs, l’utilisation d’un estimateur statistique combinant l’information de plusieurs photons de scintillation se révèle une méthode prometteuse en considérant les résultats théoriques. Cependant, une implémentation matérielle pouvant être intégrée à un appareil TEP reste à être démontrée. Les travaux de recherche présentés dans ce mémoire portent sur l’intégration d’un tel estimateur statistique à un photodétecteur pour la TEP. Ces travaux ont mené au développement d’une chaine d’acquisition qui comporte 1) un circuit de lecture, 2) une trieuse, 3) un filtre de bruit thermique et 4) un estimateur statistique du temps d’interaction basé sur le Best Linear Unbiased Estimator (BLUE). L’intégration de cette chaine à même le circuit intégré du photodétecteur de 1 x 1 mm2 en CMOS 65 nm permet de réduire la bande passante de 250 Mbit/s à 0,5 Mbit/s et le temps mort de 68,6 μs à 1024 ns. Des simulations démontrent l’atteinte d’une résolution temporelle qui s’approche de la limite inférieure théorique (appelée borne de Cramér-Rao) quant à la résolution temporelle atteignable par ce photodétecteur.
|
68 |
Neuro-inspired Architectures for the Acquisition and Processing of Visual Information / Architectures neuro-inspirées pour l'acquisition et le traitement de l'information visuelleAboudib, Ala 02 December 2016 (has links)
L'apprentissage automatique et la vision par ordinateur sont deux sujets de recherche d'actualité. Des contributions clés à ces domaines ont été les fruits de longues années d'études du cortex visuel et de la fonction des réseaux cérébraux. Dans cette thèse, nous nous intéressons à la conception des architectures neuro-inspirées pour le traitement de l'information sur trois niveaux différents du cortex visuel. Au niveau le plus bas, nous proposons un réseau de neurones pour l'acquisition des signaux visuels. Ce modèle est étroitement inspiré par le fonctionnement et l'architecture de la retine et les premières couches du cortex visuel chez l'humain. Il est également adapté à l'émulation des mouvements oculaires qui jouent un rôle important dans notre vision. Au niveau le plus haut, nous nous intéressons à la mémoire. Nous traitons un modèle de mémoire associative basée sur une architecture neuro-inspirée dite `Sparse Clustered Network (SCN)'. Notre contribution principale à ce niveau est de proposer une amélioration d'un algorithme utilisé pour la récupération des messages partiellement effacés du SCN. Nous suggérons également une formulation générique pour faciliter l'évaluation des algorithmes de récupération, et pour aider au développement des nouveaux algorithmes. Au niveau intermédiaire, nous étendons l'architecture du SCN pour l'adapter au problème de la mise en correspondance des caractéristiques d'images, un problème fondamental en vision par ordinateur. Nous démontrons que la performance de notre réseau atteint l'état de l'art, et offre de nombreuses perspectives sur la façon dont les architectures neuro-inspirées peuvent servir de substrat pour la mise en oeuvre de diverses tâches de vision. / Computer vision and machine learning are two hot research topics that have witnessed major breakthroughs in recent years. Much of the advances in these domains have been the fruits of many years of research on the visual cortex and brain function. In this thesis, we focus on designing neuro-inspired architectures for processing information along three different stages of the visual cortex. At the lowest stage, we propose a neural model for the acquisition of visual signals. This model is adapted to emulating eye movements and is closely inspired by the function and the architecture of the retina and early layers of the ventral stream. On the highest stage, we address the memory problem. We focus on an existing neuro-inspired associative memory model called the Sparse Clustered Network. We propose a new information retrieval algorithm that offers more flexibility and a better performance over existing ones. Furthermore, we suggest a generic formulation within which all existing retrieval algorithms can fit. It can also be used to guide the design of new retrieval approaches in a modular fashion. On the intermediate stage, we propose a new way for dealing with the image feature correspondence problem using a neural network model. This model deploys the structure of Sparse Clustered Networks, and offers a gain in matching performance over state-of-the-art, and provides a useful insight on how neuro-inspired architectures can serve as a substrate for implementing various vision tasks.
|
69 |
Estimation neuronale de l'information mutuelle.Belghazi, Mohamed 09 1900 (has links)
Nous argumentons que l'estimation de l'information mutuelle entre des ensembles de variables aléatoires continues de hautes dimensionnalités peut être réalisée par descente de gradient sur des réseaux de neurones.
Nous présentons un estimateur neuronal de l'information mutuelle (MINE) dont la complexité croît linéairement avec la dimensionnalité des variables et la taille de l'échantillon, entrainable par retro-propagation, et fortement consistant au sens statistique. Nous présentons aussi une poignée d'application ou MINE peut être utilisé pour minimiser ou maximiser l'information mutuelle. Nous appliquons MINE pour améliorer les modèles génératifs adversariaux. Nous utilisons aussi MINE pour implémenter la méthode du goulot d'étranglement de l'information dans un cadre de classification supervisé. Nos résultats montrent un gain substantiel en flexibilité et performance. / We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent. We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement the Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in the settings.
|
70 |
AI-based modeling of brain and behavior : combining neuroimaging, imitation learning and video gamesKemtur, Anirudha 07 1900 (has links)
Les récentes avancées dans le domaine de l'intelligence artificielle ont ouvert la voie au développement de nouveaux modèles d'activité cérébrale. Les réseaux neuronaux artificiels (RNA) formés à des tâches complexes, telles que la reconnaissance d'images, peuvent être utilisés pour prédire la dynamique cérébrale en réponse à une série de stimuli avec une précision sans précédent, un processus appelé encodage cérébral. Les jeux vidéo ont fait l'objet d'études approfondies dans le domaine de l'intelligence artificielle, mais n'ont pratiquement pas été utilisés pour l'encodage cérébral. Les jeux vidéo offrent un cadre prometteur pour comprendre l'activité cérébrale dans un environnement riche, engageant et actif, contrairement aux tâches essentiellement passives qui dominent actuellement le domaine, telles que la visualisation d'images. Un défi majeur soulevé par les jeux vidéo complexes est que le comportement individuel est très variable d'un sujet à l'autre, et nous avons émis l'hypothèse que les RNAs doivent prendre en compte le comportement spécifique du sujet afin de capturer correctement les dynamiques cérébrales. Dans cette étude, nous avons cherché à utiliser des RNAs pour modéliser l'imagerie par résonance magnétique fonctionnelle (IRMf) et les données comportementales des participants, que nous avons collectées pendant que les sujets jouaient au jeu vidéo Shinobi III. En utilisant l'apprentissage par imitation, nous avons entraîné un RNA à jouer au jeu vidéo en reproduisant fidèlement le style de jeu unique de chaque participant. Nous avons constaté que les couches cachées de notre modèle d'apprentissage par imitation parvenaient à encoder des représentations neuronales pertinentes pour la tâche et à prédire la dynamique cérébrale individuelle avec une plus grande précision que divers modèles de contrôle, y compris des modèles entraînés sur les actions d'autres sujets. Les corrélations les plus fortes entre les activations des couches cachées et les signaux cérébraux ont été observées dans des zones cérébrales biologiquement plausibles, à savoir les réseaux somatosensoriels, attentionnels et visuels. Nos résultats soulignent le potentiel de la combinaison de l'apprentissage par imitation, de l'imagerie cérébrale et des jeux vidéo pour découvrir des relations spécifiques entre le cerveau et le comportement. / Recent advances in the field of Artificial Intelligence have paved the way for the development of novel models of brain activity. Artificial Neural networks (ANN) trained on complex tasks, such as image recognition and language processing, can be used to predict brain dynamics in response to wide range of stimuli with unprecedented accuracy, a process called brain encoding. Videogames have been extensively studied in the AI field, but have hardly been used yet for brain encoding. Videogames provide a promising framework to understand brain activity in rich, engaging and active environments, in contrast to mostly passive tasks currently dominating the field, such as image viewing. A major challenge raised by complex videogames is that individual behavior is highly variable across subjects, and we hypothesized that ANNs need to account for subject-specific behavior in order to properly capture brain dynamics. In this study, we aimed to use ANNs to model functional magnetic resonance imaging (fMRI) and behavioral gameplay data, which we collected while subjects played the Shinobi III videogame. Using imitation learning, we trained an ANN to play the game closely replicating the unique gameplay style of individual participants. We found that hidden layers of our imitation learning model successfully encode task-relevant neural representations and predict individual brain dynamics with higher accuracy than various control models, including models trained on other subjects' actions. The highest correlations between layer activations and brain signals were observed in biologically plausible brain areas, i.e. somatosensory, attentional and visual networks. Our results highlight the potential of combining imitation learning, brain imaging, and videogames to uncover subject-specific relationships between brain and behavior.
|
Page generated in 0.0729 seconds