• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 10
  • 10
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

14 MeV neutron generator dose modeling

McConnell, Kristen Alycia 18 March 2014 (has links)
Modeling and understanding the doses around the neutron generator provides insightful data in regard to radiation safety and protection precautions. Published data can be used to predict doses, but realistic data for the Nuclear Engineering Teaching Laboratory’s Thermo MP 320 Neutron Generator helps health physicists more accurately predict dose rates and protect experimenters against exposure. The goal was to create a model inclusive of the entire setup and room where the neutron generator is housed. Monte Carlo N-Particle (MCNP) Code reigns as the preferred method for modeling radiation transport and was utilized to model the transport of neutrons within the current configuration of the 14 MeV neutron generator facility. This model took into account all shielding materials and their respective dimensions and locations within the concrete room. By utilizing tallies and tally modifiers, the model predicts dose rates that can be used with experimental factors such as irradiation time and flux to predict a dose in millirem. Validation experiments were performed in the current setup using Landauer Luxel®+ with Neutrak dosimeters placed in strategic locations to record the neutron dose vi received as well as a Ludlum Model 42-41 PRESCILA neutron probe to predict dose rates. The dosimeters and PRESCILA measurement locations matched the positions of the point detector tallies in MCNP. After laboratory analysis, a comparison was performed between the model output and the dosimeter and PRESCILA values to successfully validate the accuracy of the model. / text
2

Development of fast pneumatic system for the study of 14 MeV fission product yields

Montgomery, Matthew Taylor 02 October 2014 (has links)
The use of fission product yield data is pervasive among nuclear calculations, particularly in the realm of nuclear forensics and active interrogation for special nuclear material. The capital source of fission product yield data is the work of T.R. England and B.F. Rider, of Los Alamos National Laboratory, in the early 1990s. Though their work was certainly substantial, a great deal of data was generated computationally, in lieu of done empirically—particularly with low-yield, short-lived progeny. Due to this, relative uncertainties in the measurements can be as high as 64%, and vary wildly from database to database (oft times not even within one standard deviation of one another). The purpose of this work is to build a pneumatic system capable of cyclic irradiation coupled to a D-T neutron source, in order to cumulate proper counting statistics, by which one can backcalculate independent and cumulative fission yields. Beyond the design and control parameters of the pneumatic system, a precise flux characterization of the facility is presented, and finally, proof-of-concept is demonstrated by causing 14 MeV neutron-induced fission and identifying every observed fission product photopeak. / text
3

Quantification of Sodium in Bone and Soft Tissue with In Vivo Neutron Activation Analysis

Mychaela D Coyne (9027296) 29 June 2020 (has links)
<p>Excess sodium (Na) intake is directly related to hypertension and an increased risk of developing many chronic diseases, but there is currently no method to directly quantify Na retained in the body. Because of this, the locations of Na storage and its exchange mechanisms are not well known. This information is critical for understanding the impact of increased Na intake in modern diets. In order to non-invasively quantify Na in bone and soft tissue, a compact deuterium-deuterium (DD) neutron generator-based <i>in vivo</i> neutron activation analysis (IVNAA) system was developed. MCNP was used to design a custom irradiation assembly to maximize Na activation in hand bone while minimizing dose. In order to test the system, live pigs were used. Two 100% efficient high purity germanium (HPGe) detectors collected Na-24 counts over 24 hours post irradiation. From the pig studies, a two-compartment model of exchange was developed to quantify Na in bone and in soft tissue. The right legs of four live pigs, two on a low Na diet and two on a high Na diet, both for 14 days, were irradiated inside the customized irradiation cave for 10 minutes (45 mSv dose to the leg) and then measured with the HPGe detectors. The spectra were analyzed to obtain the net Na counts at different time points. Analysis shows exponential decrease of Na in the leg during the first one hour of measurement, while the change was minimal at the second hour, and the counts were stabilized at the second and third 2 hour measurements, taken 7 and 21 hours post irradiation. Bone Na and soft tissue Na concentrations were calculated using calibration lines created with bone and soft tissue equivalent Na phantoms as well as the parameters obtained from the two-compartment model. The results show that the difference in bone and soft tissue Na between the pigs on high vs low Na diets was significant. With these results, we conclude that DD neutron generator-based IVNAA can be used to accurately quantify Na in bone and soft tissue <i>in vivo </i>and the system is a potential valuable tool for nutrition studies.</p>
4

Characterization of a New D-D Neutron Generator System for Neutron Activation of Manganese in Bone In-Vivo

Elizabeth Helen Jaye (12463536) 27 April 2022 (has links)
<p>Neutron Activation Analysis (NAA) is a non-invasive method for assessing the qualitative and quantitative elemental composition of a sample. One application of this technique is in-vivo quantification of specific elements in the human body. An important element in terms of human exposure assessment is Manganese (Mn). Mn is the fourth most usedindustrial metal and can be an  inhalation  exposure  hazard  specifically  for  welders.  Over  exposure  to  Mn  can  lead  to neurological degeneration issues similar to Parkinson’s disease. It has been found that bone is a good  biomarker  for  Mnas  Mn  is  deposited  in  the  bone  and  remains  for  long  periods  of  time,allowing  for  an  assay  to  reveal  long  term  exposure  information.  The  method  of  using  NAA  to quantify levels of Mn in-vivo using the bones in the human hand is being explored in this work.The  NAA  system  used,  involves  a  deuterium-deuterium  neutron  generator  and  an  N-type  High Purity Germanium Detector. It is critical to have the performance of the entire system characterized using phantoms and cadaver bones before the system can be used for in-vivo measurements. The goal of this work is to determine the neutron yield of the generator system, the neutron and photon dose  received  by  a  sample,  the  detection  limit  of  Mn  with  this  system,  and  to  evaluate  the  Mn detection capability of the systemusing cadaver bones from occupationally exposed Mn miners. The parameters were determined through a combination of simulation with Monte Carlo N-Particle Code  (MCNP),  experiments  using  Mn  doped  bone  phantoms  and  cadaver  bones,  and  various dosimetry  tools such  as  TLDs  and  EPDs.  The  neutron  yieldfor the  D-D  109M  generator  wasestimated to be2.24E+09+/-2.15E+07neutrons per secondfor this work. The Mn detection limit for the system was estimatedto be 0.442 ppm. The equivalent dose received by the sampleduring the standard 10-minute irradiation was estimated to be 8.45 +/-2.05rem. The results found for the human cadaver bones weremixed. It was found that the system was able to successfully detect Mn incadaver bones. Unexpectedly, however, three of the samples showed little to no Ca signal.In addition, significant amounts of soft tissue and bone marrow exist in the samples.Thereforethe Mn concentration in the bones was not able to be accurately estimated. A relative metric of Mn concentration  was  used  instead  and  showed  a  slight  positive  increase  from  the  unexposed  to exposed samples but was not statistically significant.</p>
5

In vivo Neutron Activation Analysis System (IVNAA) to Quantify Potassium (K) and Sodium (Na) in Human Body and Small Animals

Sana Tabbassum (10141649) 14 July 2022 (has links)
<p>Elevated blood pressure (BP) is a significant risk factor for cardiovascular diseases (CVD), which are the leading cause of morbidity and mortality. Dietary minerals such as sodium (Na) and potassium (K) play a crucial role in overall health and play a specific function in regulating blood pressure in the human body. Numerous studies have been conducted on the association between blood pressure and dietary intervention. While many nutritional intervention studies have shown adverse effects of excessive Na intake and the beneficial impact of supplemental K in humans, less is understood on Na and K tissue retention and health outcomes of such retention. The most commonly used biomarkers to study Na retention and regulation is urine Na. However, the use of urine Na concentration as an indicator of Na retention has its limitations and has been recently questioned. In-vivo neutron activation analysis (IVNAA) is a unique and powerful technique for elemental analysis in the human body that has the potential to quantify Na and K retention and monitor their bio-kinetics. This research work designed an in vivo neutron irradiation system with high sensitivity and minimal radiation dose to measure Na/K and monitor Na/K bio-kinetics. The system was characterized, tested, and validated for K measurement in mice and rats. Moreover, we developed a methodology for in vivo quantification of Na in pigs in bone and soft tissue after dietary intervention. The project's overall goal is to exploit the potential of a compact DD neutron generator-based neutron activation analysis system for in vivo quantification of Na and K in humans and small animals.</p>
6

Intense pulsed neutron generation based on the principle of Plasma Immersion Ion Implantation (PI3) technique.

Motloung, Setumo Victor January 2006 (has links)
<p>The development of a deuterium-deuterium/ tritium-deuterium (D-D/ D-T) pulsed neutron generator based on the principle of the Plasma Immersion Ion Implantation (PI3) technique is presented, in terms of investigating development of a compact system to generate an ultra short burst of mono-energetic neutrons (of order 1010 per second) during a short period of time (&lt / 20&mu / s) at repetition rates up to 1 kHz. The system will facilitate neutron detection techniques, such as neutron back-scattering, neutron radiography and time-of-flight activation analysis.</p> <p><br /> Aspects addressed in developing the system includes (a) characterizing the neutron spectra generated as a function of the target configuration/ design to ensure a sustained intense neutron flux for long periods of time, (b) the system was also characterised as a function of power supply operating conditions such as voltage, current, gas pressure and plasma density.</p>
7

Intense pulsed neutron generation based on the principle of Plasma Immersion Ion Implantation (PI3) technique.

Motloung, Setumo Victor January 2006 (has links)
<p>The development of a deuterium-deuterium/ tritium-deuterium (D-D/ D-T) pulsed neutron generator based on the principle of the Plasma Immersion Ion Implantation (PI3) technique is presented, in terms of investigating development of a compact system to generate an ultra short burst of mono-energetic neutrons (of order 1010 per second) during a short period of time (&lt / 20&mu / s) at repetition rates up to 1 kHz. The system will facilitate neutron detection techniques, such as neutron back-scattering, neutron radiography and time-of-flight activation analysis.</p> <p><br /> Aspects addressed in developing the system includes (a) characterizing the neutron spectra generated as a function of the target configuration/ design to ensure a sustained intense neutron flux for long periods of time, (b) the system was also characterised as a function of power supply operating conditions such as voltage, current, gas pressure and plasma density.</p>
8

Intense pulsed neutron generation based on the principle of Plasma Immersion Ion Implantation (PI3) technique

Motloung, Setumo Victor January 2006 (has links)
Magister Scientiae - MSc / The development of a deuterium-deuterium/ tritium-deuterium (D-D/ D-T) pulsed neutron generator based on the principle of the Plasma Immersion Ion Implantation (PI3) technique is presented, in terms of investigating development of a compact system to generate an ultra short burst of mono-energetic neutrons (of order 1010 per second) during a short period of time (< 20μs) at repetition rates up to 1 kHz. The system will facilitate neutron detection techniques, such as neutron back-scattering, neutron radiography and time-of-flight activation analysis. Aspects addressed in developing the system includes (a) characterizing the neutron spectra generated as a function of the target configuration/ design to ensure a sustained intense neutron flux for long periods of time, (b) the system was also characterised as a function of power supply operating conditions such as voltage, current, gas pressure and plasma density. / South Africa
9

Measurement of neutron flux spectra in a Tungsten Benchmark by neutron foil activation method / Messung der Neutronenflussspektren in einem Wolfram-Benchmark mit der Multifolien-Neutronenaktivierungstechnik

Negoita, Cezar Ciprian 16 August 2004 (has links) (PDF)
The nuclear design of fusion devices such as ITER (International Thermonuclear Experimental Reactor), which is an experimental fusion reactor based on the &amp;quot;tokamak&amp;quot; concept, rely on the results of neutron physical calculations. These depend on the knowledge of the neutron and photon flux spectra which is particularly important because it permits to anticipate the possible answers of the whole structure to phenomena such as nuclear heating, tritium breeding, atomic displacements, radiation shielding, power generation and material activation. The flux spectra can be calculated with transport codes, but validating measurements are also required. An important constituent of structural materials and divertor areas of fusion reactors is tungsten. This thesis deals with the measurement of the neutron fluence and neutron energy spectrum in a tungsten assembly by means of multiple foil neutron activation technique. In order to check and qualify the experimental tools and the codes to be used in the tungsten benchmark experiment, test measurements in the D-T and D-D neutron fields of the neutron generator at Technische Universität Dresden were performed. The characteristics of the D-D and D-T reactions, used to produce monoenergetic neutrons, together with the selection of activation reactions suitable for fusion applications and details of the activation measurements are presented. Corrections related to the neutron irradiation process and those to the sample counting process are discussed, too. The neutron fluence and its energy distribution in a tungsten benchmark, irradiated at the Frascati Neutron Generator with 14 MeV neutrons produced by the T(d, n)4He reaction, are then derived from the measurements of the neutron induced &amp;amp;#947;-ray activity in the foils using the STAYNL unfolding code, based on the linear least-square-errors method, together with the IRDF-90.2 (International Reactor Dosimetry File) cross section library. The differences between the neutron flux spectra measured by means of neutron foil activation and the neutron flux spectra obtained in the same assembly, making use of an NE213 liquid-scintillation spectrometer were studied. The comparison of measured neutron spectra with the spectra calculated with the MCNP-4B (Monte Carlo neutron and photon transport) code, which allows a crucial test of the evaluated nuclear data used in fusion reactor design, is discussed, too. In conclusion, this thesis shows the applicability of the neutron foil activation technique for the measurement of neutron flux spectra inside a thick tungsten assembly irradiated with 14 MeV from a D-T generator. / Die Konstruktion von Fusionsreaktoren wie ITER (International Thermonuclear Experimental Reactor), der ein experimenteller Fusionsreaktor ist und auf dem &amp;quot;Tokamak&amp;quot;-Konzept beruht, basiert unter neutronenphysikalischen Gesichtspunkten auf den Ergebnissen von umfangreichen Simulationsrechnungen. Diese setzen die Kenntnis der Spektren des Neutronen- und Photonenflusses voraus die besonders wichtig ist, weil sie, die möglichen Antworten der ganzen Struktur auf physikalische Prozesse vorauszuberechnen erlaubt wie z.B.: Heizen durch nukleare Prozesse, Tritium-Brüten, Atomverschiebung, Abschirmung von Strahlung, Leistungserzeugung und Materialaktivierung. Die Flußspektren können mittels Transportcodes berechnet werden, aber es werden auch Messungen zu ihrer Bestätigung benötigt. Ein wichtiger Bestandteil des Strukturmaterials und der Divertor-Flächen der Fusionsreaktoren ist Wolfram. Diese Dissertation behandelt die Messungen der Neutronspektren und ?fluenz in einer Wolfram-Anordnung mittels der Multifolien-Neutronenaktivierungstechnik. Um die anzuwendenden experimentellen Geräte und die Codes, die im Wolfram-Benchmark-Experiment eingesetzt werden, zu überprüfen und zu bestimmen, wurden Testmessungen in den D-T und D-D Neutronenfeldern des Neutronengenerator der Technischen Universität Dresden durchgeführt. Die Eigenschaften der D-T und D-D Reaktionen, die für die Erzeugung von monoenergetischen Neutronen verwendet werden, sowie die Auswahl der Aktivierungsreaktionen, die für Fusionsanwendungen geeignet sind und die Aktivierungsmessung werden detailliert vorgestellt. Korrekturen, die sich auf den Neutronen-Bestrahlungsprozess und auf den Probenzählungsprozess beziehen, werden ebenfalls besprochen. Die Neutronenfluenz und ihre Energieverteilung in einem Wolfram-Benchmark, bestrahlt am Frascati Neutronen Generator mit 14 MeV-Neutronen aus der T(d, n)4He Reaktion, werden aus den Messungen der &amp;amp;#947;-Strahlenaktivität, die von Neutronen in den Folien induziert ist, durch den STAYNL Entfaltungscode, der auf der Methode der kleinsten Fehlerquadrate basiert, zusammen mit der IRDF-90.2 Wirkungsquerschnitt-Bibliothek abgeleitet. Die Unterschiede zwischen den Neutronenflußspektren, die mit Hilfe der Multifolien-Neutronenaktivierung ermittelt wurden, und den Neutronenflußspektren, gemessen im selben Aufbau mit einem NE-213 Flüssigszintillator, wurden untersucht. Die gemessenen Neutronenspektren werden den aus MCNP-4B Rechnungen (Monte Carlo neutron and photon transport) ermittelten Spektren gegenüber gestellt. Der Vergleich stellt einen wichtigen Test der evaluierten Kerndaten für Fusionsreaktorkonzepte dar. Zusammenfassend zeigt diese Arbeit die Anwendbarkeit der Multifolien-Neutronenaktivierungstechnik bei Messungen der Neutronenflussspektren innerhalb eines massiven Wolframblocks bei Bestrahlung mit schnellen Neutronen aus D-T Generatoren.
10

Measurement of neutron flux spectra in a Tungsten Benchmark by neutron foil activation method

Negoita, Cezar Ciprian 19 August 2004 (has links)
The nuclear design of fusion devices such as ITER (International Thermonuclear Experimental Reactor), which is an experimental fusion reactor based on the &amp;quot;tokamak&amp;quot; concept, rely on the results of neutron physical calculations. These depend on the knowledge of the neutron and photon flux spectra which is particularly important because it permits to anticipate the possible answers of the whole structure to phenomena such as nuclear heating, tritium breeding, atomic displacements, radiation shielding, power generation and material activation. The flux spectra can be calculated with transport codes, but validating measurements are also required. An important constituent of structural materials and divertor areas of fusion reactors is tungsten. This thesis deals with the measurement of the neutron fluence and neutron energy spectrum in a tungsten assembly by means of multiple foil neutron activation technique. In order to check and qualify the experimental tools and the codes to be used in the tungsten benchmark experiment, test measurements in the D-T and D-D neutron fields of the neutron generator at Technische Universität Dresden were performed. The characteristics of the D-D and D-T reactions, used to produce monoenergetic neutrons, together with the selection of activation reactions suitable for fusion applications and details of the activation measurements are presented. Corrections related to the neutron irradiation process and those to the sample counting process are discussed, too. The neutron fluence and its energy distribution in a tungsten benchmark, irradiated at the Frascati Neutron Generator with 14 MeV neutrons produced by the T(d, n)4He reaction, are then derived from the measurements of the neutron induced &amp;amp;#947;-ray activity in the foils using the STAYNL unfolding code, based on the linear least-square-errors method, together with the IRDF-90.2 (International Reactor Dosimetry File) cross section library. The differences between the neutron flux spectra measured by means of neutron foil activation and the neutron flux spectra obtained in the same assembly, making use of an NE213 liquid-scintillation spectrometer were studied. The comparison of measured neutron spectra with the spectra calculated with the MCNP-4B (Monte Carlo neutron and photon transport) code, which allows a crucial test of the evaluated nuclear data used in fusion reactor design, is discussed, too. In conclusion, this thesis shows the applicability of the neutron foil activation technique for the measurement of neutron flux spectra inside a thick tungsten assembly irradiated with 14 MeV from a D-T generator. / Die Konstruktion von Fusionsreaktoren wie ITER (International Thermonuclear Experimental Reactor), der ein experimenteller Fusionsreaktor ist und auf dem &amp;quot;Tokamak&amp;quot;-Konzept beruht, basiert unter neutronenphysikalischen Gesichtspunkten auf den Ergebnissen von umfangreichen Simulationsrechnungen. Diese setzen die Kenntnis der Spektren des Neutronen- und Photonenflusses voraus die besonders wichtig ist, weil sie, die möglichen Antworten der ganzen Struktur auf physikalische Prozesse vorauszuberechnen erlaubt wie z.B.: Heizen durch nukleare Prozesse, Tritium-Brüten, Atomverschiebung, Abschirmung von Strahlung, Leistungserzeugung und Materialaktivierung. Die Flußspektren können mittels Transportcodes berechnet werden, aber es werden auch Messungen zu ihrer Bestätigung benötigt. Ein wichtiger Bestandteil des Strukturmaterials und der Divertor-Flächen der Fusionsreaktoren ist Wolfram. Diese Dissertation behandelt die Messungen der Neutronspektren und ?fluenz in einer Wolfram-Anordnung mittels der Multifolien-Neutronenaktivierungstechnik. Um die anzuwendenden experimentellen Geräte und die Codes, die im Wolfram-Benchmark-Experiment eingesetzt werden, zu überprüfen und zu bestimmen, wurden Testmessungen in den D-T und D-D Neutronenfeldern des Neutronengenerator der Technischen Universität Dresden durchgeführt. Die Eigenschaften der D-T und D-D Reaktionen, die für die Erzeugung von monoenergetischen Neutronen verwendet werden, sowie die Auswahl der Aktivierungsreaktionen, die für Fusionsanwendungen geeignet sind und die Aktivierungsmessung werden detailliert vorgestellt. Korrekturen, die sich auf den Neutronen-Bestrahlungsprozess und auf den Probenzählungsprozess beziehen, werden ebenfalls besprochen. Die Neutronenfluenz und ihre Energieverteilung in einem Wolfram-Benchmark, bestrahlt am Frascati Neutronen Generator mit 14 MeV-Neutronen aus der T(d, n)4He Reaktion, werden aus den Messungen der &amp;amp;#947;-Strahlenaktivität, die von Neutronen in den Folien induziert ist, durch den STAYNL Entfaltungscode, der auf der Methode der kleinsten Fehlerquadrate basiert, zusammen mit der IRDF-90.2 Wirkungsquerschnitt-Bibliothek abgeleitet. Die Unterschiede zwischen den Neutronenflußspektren, die mit Hilfe der Multifolien-Neutronenaktivierung ermittelt wurden, und den Neutronenflußspektren, gemessen im selben Aufbau mit einem NE-213 Flüssigszintillator, wurden untersucht. Die gemessenen Neutronenspektren werden den aus MCNP-4B Rechnungen (Monte Carlo neutron and photon transport) ermittelten Spektren gegenüber gestellt. Der Vergleich stellt einen wichtigen Test der evaluierten Kerndaten für Fusionsreaktorkonzepte dar. Zusammenfassend zeigt diese Arbeit die Anwendbarkeit der Multifolien-Neutronenaktivierungstechnik bei Messungen der Neutronenflussspektren innerhalb eines massiven Wolframblocks bei Bestrahlung mit schnellen Neutronen aus D-T Generatoren.

Page generated in 0.0524 seconds