• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 34
  • 16
  • 13
  • 4
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 153
  • 74
  • 70
  • 43
  • 38
  • 36
  • 29
  • 29
  • 20
  • 17
  • 16
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

An investigation of phase transformation mechanisms for nickel-titanium rotary endodontic instruments

Alapati, Satish B. 22 February 2006 (has links)
No description available.
132

Development and Characterization of NiTi Joining Methods and Metal Matrix Composite Transducers with Embedded NiTi by Ultrasonic Consolidation

Hahnlen, Ryan M. 03 September 2009 (has links)
No description available.
133

Characterization of New Rotary Endodontic Instruments Fabricated from Special Thermomechanically Processed NiTi Wire

Liu, Jie 09 September 2009 (has links)
No description available.
134

Forças, momentos e coeficiente de atrito em teste de três pontos e em teste de resistência ao deslizamento com braquetes autoligáveis e fios 0.014\" utilizando um novo dispositivo / Forces, moments and coefficient of friction in three-bracket bending test and in resistance to sliding test with self-ligating brackets and wires 0.014\'\' using a new device

Freitas, Ana Carolina Carneiro de 26 January 2016 (has links)
O objetivo principal do estudo é comparar o teste em 3 pontos com braquetes com o teste de resistência ao deslizamento utilizando um novo dispositivo que realiza a mensuração simultânea do coeficiente de atrito, das forças e dos momentos nos braquetes de ancoragem e da força de desativação no braquete desalinhado, exercidos por fios ortodônticos. Os objetivos secundários foram desenvolver o dispositivo e comparar, no teste em 3 pontos: (i) a influência, nas grandezas e no coeficiente de atrito cinético, da variação da simetria nas distâncias inter-braquetes, do tipo de braquete de ancoragem (canino ou 2º pré-molar), do deslocamento (3 ou 5mm) do braquete central, do sentido do desalinhamento (vestibular ou lingual) do braquete central e da marca de fio-braquete; (ii) as 3 formas de cálculo do coeficiente de atrito cinético; (iii) os 10 ciclos, para vestibular ou lingual, para verificar se eles são semelhantes ou não entre si. Foram utilizados braquetes autoligáveis (dentes 13, 14 e 15) e fios 0.014\'\' NiTi e CuNiTi das marcas Aditek e Ormco. O teste de resistência ao deslizamento foi realizado no desalinhamento lingual, nos dois deslocamentos e na configuração simétrica. O teste em 3 pontos com braquetes foi realizado no desalinhamento lingual e vestibular, nos dois deslocamentos e na configuração simétrica e assimétrica. Por meio da ANOVA, foram comparados, entre os dois tipos de teste: (A) as grandezas e o coeficiente de atrito e (B) o coeficiente de atrito gerado apenas no braquete de 2º pré-molar. Utilizando-se do mesmo teste estatístico foram comparados, no teste em 3 pontos com braquetes: (A) na configuração simétrica, algumas grandezas e o coeficiente de atrito advindos da variação da marca de fio-braquete, do deslocamento, do desalinhamento e do tipo de braquete; (B) algumas grandezas e o coeficiente de atrito gerados na configuração simétrica e assimétrica; (C) os valores das 3 formas de cálculo do coeficiente de atrito na configuração simétrica; e (D) algumas grandezas e o coeficiente de atrito encontrados nos 10 ciclos. Resultados: (A) a maioria dos valores das grandezas e do coeficiente de atrito gerados pelos dois tipos de teste foram diferentes estatisticamente; (B) o braquete de 2º pré-molar apresentou valores de coeficiente de atrito diferentes entre os dois tipos de teste; (C) na configuração simétrica, as variáveis foram estatisticamente significantes na maioria dos casos para as grandezas analisadas e para o coeficiente de atrito; (D) houve diferença entre a configuração simétrica e assimétrica; (E) o coeficiente de atrito baseado nas duas normais e na força de atrito se aproximou mais da realidade clínica e foi sensível à variação da geometria da relação fio-braquete; e (F) os 10 ciclos para lingual foram semelhantes entre si em 70% dos casos e os 10 ciclos para vestibular foram diferentes em 57% dos casos. Conclusões: o teste em 3 pontos com braquetes é diferente do teste de resistência ao deslizamento; a variação das configurações geométricas e da marca de fio-braquete pode influenciar nos valores das grandezas e do coeficiente de atrito cinético; os 10 ciclos para lingual foram mais semelhantes entre si que os 10 ciclos para vestibular. / The main objective of the study is to compare the three-bracket bending test with the resistance to sliding test using a new device that performs simultaneous measurement of coefficient of friction, the forces and moments on the anchor brackets and deactivation force in misaligned bracket, exercised by orthodontic wires. Secondary objectives were to develop the device and compare, in the three-bracket bending test: (i) the influence, on the physical quantities and on the kinetic friction coefficient, of the variation of the symmetry in the inter-bracket distance, of the type of anchor bracket (canine or 2nd premolar), of displacement (3 or 5mm) and misalignment (buccal or lingual) of the central bracket, and of the wire and bracket brand; (ii) the three ways to calculate the coefficient of kinetic friction; (iii) the 10 cycles, for buccal or lingual, to see if they are similar or not. Self-ligating brackets were used (teeth 13, 14 and 15) and wires 0.014 \'\' NiTi and CuNiTi of Aditek and Ormco brands. The resistance to sliding test was conducted on the lingual misalignment, on both displacements and on symmetrical configuration. The three-bracket bending test was held at the lingual and vestibular misalignment, at both displacements and at the symmetrical and asymmetrical configuration. Through ANOVA, were compared, between the two types of tests: (A) the quantities and the coefficient of friction and (B) the coefficient of friction generated only in the second premolar bracket. Using the same statistical test were compared, in three-bracket bending test: (A) in symmetrical configuration, the quantities and the coefficient of friction arising from the variation in the wire and bracket brands, displacement, misalignment and the type of bracket; (B) the quantities and the coefficient of friction generated by the symmetric and asymmetric configuration; (C) the values of the three ways of calculating friction coefficient; and (D) the quantities and the coefficient of friction encountered in 10 cycles. Results: (A) most of the values of the quantities and the coefficient of friction generated by the two types of test were statistically different; (B) the 2nd premolar bracket showed different friction coefficient values between the two types of test; (C) in the symmetrical configuration, the variables were statistically significant in the most of cases for quantities and the friction coefficient; (D) was found difference between symmetric and asymmetric configuration; (E) the friction coefficient based on both normal forces and frictional force was closer to the clinical reality and was sensitive to variations in the geometry of the wire-bracket relationship; and (F) the 10 cycles for lingual were similar in 70% of cases and the 10 cycles for buccal desalignment were different in 57% of cases. Conclusions: The three-bracket bending test is different from the resistance to sliding test; the variation of geometric configurations and wire and bracket brands may influence the values of the quantities and the coefficient of kinetic friction; the 10 cycles for lingual were more similar to each other than the 10 cycles for buccal.
135

Studies On Nickel-Titanium Shape Memory Alloy Thin Films For Micro-actuator Applications

Sharma, Sudhir Kumar 12 1900 (has links) (PDF)
Shape memory alloys (SMAs) have been recognized as one of the most promising materials for MEMS micro-actuator applications. Among the available materials, Nickel/Titanium (NiTi) SMAs are more popular because, they exhibit unique properties in shape memory effect (SME) and pseudo-elasticity (PE). In addition NiTi SMA possesses high corrosion resistance, excellent mechanical properties and is also bio¬compatible. NiTi thin-film SMAs have been considered as the most significant material in the field of MEMS applications, which can be patterned with standard lithographic techniques to scale-up for batch production. However, the lack of proper understanding of basic materials’ properties and inability to reproduce, has limited the usage of this material in MEMS devices. The properties of NiTi SMA thin-films are very much sensitive to the elemental composition and structure, which are in turn decided by the deposition process and process parameters. A brief history of NiTi shape memory alloys (SMAs), basic information, transformation characteristics, crystal structure, phase diagram and literature reviewed for the current motivation have been presented in the second chapter In the third chapter, a brief summary about the deposition techniques relevant to NiTi film deposition has been presented. The deposition of NiTi films by a number of deposition techniques such as thermal evaporation, co-evaporation, molecular beam Epitaxy, pulsed laser deposition, flash evaporation, electron beam deposition, filtered arc deposition, ion beam assisted sputter deposition, vacuum plasma spraying, ion beam sputtering, ECR sputtering and magnetron sputtering techniques have been discussed. In order to achieve a precise control over film thickness and composition of the films on to the substrates, the selection of magnetron sputtering has been highlighted. In the present thesis, two prolonged approaches such as DC magnetron sputtering of an alloy target and co-sputtering of elemental targets have been presented. Various characterization techniques used for film thickness, composition, structure, micro¬structure, electrical, phase transformation and mechanical properties have also been briefly presented in the same chapter. In the fourth chapter, description of Conventional Alloy Target Sputtering System has been presented. DC magnetron sputtering of an alloy target with two different atomic ratios (Ni:Ti = 45:55 & 50:50) has been used for depositing the coatings. Several limitations in the reproducibility and repeatability have been observed with single alloy target sputtering, irrespective of the target composition ratio. In addition to this, incorporation of oxygen in the films during and after deposition has been observed, which has limited the extensive usage of this single alloy target system. The limitations regarding control over composition, thickness uniformity over large area have been improved by designing and fabricating a dedicated Three Target Magnetron Co-sputtering System. The vacuum diagnosis of the system under different conditions has been carried out by using PPR-200 Residual Gas Analyzer (RGA), which have included in Appendix I. Similar to alloy target sputtering system, the thickness uniformity and required composition with deposition parameters over a size of 75 mm diameter has been achieved and the process repeatability has been established. Oxygen incorporation in the films during deposition has been minimized by pre-sputtering of Ti target for known duration of time, which has resulted in significant reduction in partial pressure of oxygen in the chamber. The oxide layer formation on film surface has been eliminated by in-situ capping layer (TiN) deposition. In the fifth chapter, the influence of process parameters such as sample locations, substrate to target distance (STD), working pressure (WP), gas flow rates, deposition rates, deposition and annealing temperature, Target power, on the film thickness and composition uniformity have been presented for alloy target sputtering system as well as for the co-sputtering system. The film thicknesses have been measured with stylus method. Film compositions have been determined by energy dispersive X-ray spectroscopy (EDS), Secondary ion mass spectrometry (SIMS), Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS). The working pressure of 1.5 X 10-3 mbar, STD of 90 mm and target power of 100 W have been found to produce coatings having uniform thickness and composition over the given area for alloy target sputtering system. Similar investigations have been carried out for co-sputtered NiTiCu films. The working pressure of 1.5x 10-3 mbar, at a STD of 90 mm, at a rotational speed of 15 rpm and at target powers of 600, 50 and 12 W for Ti, Ni and Cu respectively, have resulted in the thickness and required composition uniformity over a size of 75 mm diameter substrate and the process repeatability has been established. In the Sixth chapter, the influence of process parameters on film structure and micro-structure on the NiTi/NiTiCu films deposited by a single alloy target and co¬sputtering have been studied by different analytical techniques like XRD, TEM, AFM, SEM etc. Phase transformation temperatures and kind of transformations have been investigated by DSC, Resistivity / Temperature and Stress/ Temperature studies and correlations have been established. The process parameters have been optimized for TiN deposition, which act as the capping layer to protect NiTi films from surface oxidation. The variation in mechanical behavior for the NiTi/ NiTiCu films before and after TiN capping by nano-indentation test have also presented. XRD and TEM studies have shown that the NiTi / NiTiCu films deposited at room temperature to 400o C are amorphous. Post-annealing, at a temperature of 450O C or above resulted in the film crystallization with oxide layer formation at the film surface, which has been confirmed by XRD and XTEM studies. In the case of Ni-rich NiTi films, R-phase diffraction peaks have also been identified in addition to the Austenite / Martensite phase. XRD investigations have shown that Ti-rich NiTi and Ni-rich NiTi films have resulted in precipitate free films. In the case of Ti-rich NiTiCu and Ni-rich NiTiCu films, the variations in Ti/Ni target power has resulted in the formation of NiTi 2 and Ni3Ti precipitates along with their parent Martensite and Austenite phases. When the Cu content is increased in NiTiCu films, an increase in number of Martensite phase diffraction peaks in XRD spectrum has been observed. XTEM studies have confirmed formation of oxide layer, inter-metallic layer and interface layer at higher post annealing temperatures. SEM studies have shown that the films deposited at higher gas flow rate results in the columnar micro-structure. In the context of NiTiCu films, the films deposited at higher Ti target power have shown more compact and tightly packed film micro-structure. AFM studies have shown increase in the average crystallite size and film roughness with post annealing temperature and duration. TiN coating has been used as the capping layer onto NiTi / NiTiCu films. Structural and micro-structural comparison of these films before and after TiN coating has resulted the appearance of (111) TiN peak in all TiN capped films. SEM and AFM studies have shown that the film roughness have decreased after capping layer deposition. DSC thermal cycling used to verify the film crystallization temperature has shown the appearance of exothermic peak in NiTi / NiTiCu films. DSC, Resistivity-temperature, stress-temperature response has been confirmed the transformation temperature and kind of transformations in all the films. Residual stress measurements have shown that the crystalline films exhibited lower bi-axial stress in comparison to the amorphous films. Ti-rich NiTi films have shown single phase transformations (M-A and A-M) whereas two phase transformations (M-R-A and A-R-M) have been observed in Ni-rich NiTi films. Higher deposition / annealing temperature have shown the appearance of distinct phase transformation peaks in resistivity vs. temperature studies. In the case of NiTiCu films, the decrease in film crystallization temperature with increase in the Cu content has been observed. The phase transformation temperature evaluated from second thermal cycle has shown decrease in the width of hysteresis loop with increase in the Cu content in NTC films. Nano-indentation studies have been carried out to evaluate the micro-hardness and modulus values of TiN capped and uncapped NiTi / NiTiCu films. The modulus and hardness uniformity have been confirmed for the different location over a diameter of 75 mm. The modulus and hardness values have increased with increase in the substrate and annealing temperature. Increase in the Cu target power has resulted in the increase in the hardness and modulus values under same deposition conditions. TiN coated NiTi / NiTiCu films have shown larger modulus and hardness values than the uncapped films. In the Seventh chapter, the fabrication process and actuation response for silicon dioxide, Aluminum and NiTi SMA coated micro-cantilevers has been discussed. Various nano-structures such as pyramids, beams and pillars by focused ion beam (FIB) micro-machining have been fabricated. High aspect ratio nano-pillars have been selected for micro-compression testing. In summary, this thesis emphasizes on the fabrication of specific sputtering systems relevant to NiTi film deposition and process parameter optimization for desired film thickness and composition uniformity. DC magnetron sputtering of a NiTi alloy target (50:50 and 45:55 at. %) and co-sputtering of elemental targets (Ni, Ti and Cu) have been presented. These films have been investigated for structural, micro-structural, phase transformation and mechanical properties. In-situ deposition of TiN capping layer, on to NiTi / NiTiCu films has been carried out to reduce the oxygen trapping. The fabrication process and actuation response of micro-cantilevers have been described. The etching characteristics to generate various nano-structures viz. pyramids, beams and pillars by focused ion beam (FIB) micro-machining have been investigated and mechanical testing of selected nano-structures have also been reported.
136

Forças, momentos e coeficiente de atrito em teste de três pontos e em teste de resistência ao deslizamento com braquetes autoligáveis e fios 0.014\" utilizando um novo dispositivo / Forces, moments and coefficient of friction in three-bracket bending test and in resistance to sliding test with self-ligating brackets and wires 0.014\'\' using a new device

Ana Carolina Carneiro de Freitas 26 January 2016 (has links)
O objetivo principal do estudo é comparar o teste em 3 pontos com braquetes com o teste de resistência ao deslizamento utilizando um novo dispositivo que realiza a mensuração simultânea do coeficiente de atrito, das forças e dos momentos nos braquetes de ancoragem e da força de desativação no braquete desalinhado, exercidos por fios ortodônticos. Os objetivos secundários foram desenvolver o dispositivo e comparar, no teste em 3 pontos: (i) a influência, nas grandezas e no coeficiente de atrito cinético, da variação da simetria nas distâncias inter-braquetes, do tipo de braquete de ancoragem (canino ou 2º pré-molar), do deslocamento (3 ou 5mm) do braquete central, do sentido do desalinhamento (vestibular ou lingual) do braquete central e da marca de fio-braquete; (ii) as 3 formas de cálculo do coeficiente de atrito cinético; (iii) os 10 ciclos, para vestibular ou lingual, para verificar se eles são semelhantes ou não entre si. Foram utilizados braquetes autoligáveis (dentes 13, 14 e 15) e fios 0.014\'\' NiTi e CuNiTi das marcas Aditek e Ormco. O teste de resistência ao deslizamento foi realizado no desalinhamento lingual, nos dois deslocamentos e na configuração simétrica. O teste em 3 pontos com braquetes foi realizado no desalinhamento lingual e vestibular, nos dois deslocamentos e na configuração simétrica e assimétrica. Por meio da ANOVA, foram comparados, entre os dois tipos de teste: (A) as grandezas e o coeficiente de atrito e (B) o coeficiente de atrito gerado apenas no braquete de 2º pré-molar. Utilizando-se do mesmo teste estatístico foram comparados, no teste em 3 pontos com braquetes: (A) na configuração simétrica, algumas grandezas e o coeficiente de atrito advindos da variação da marca de fio-braquete, do deslocamento, do desalinhamento e do tipo de braquete; (B) algumas grandezas e o coeficiente de atrito gerados na configuração simétrica e assimétrica; (C) os valores das 3 formas de cálculo do coeficiente de atrito na configuração simétrica; e (D) algumas grandezas e o coeficiente de atrito encontrados nos 10 ciclos. Resultados: (A) a maioria dos valores das grandezas e do coeficiente de atrito gerados pelos dois tipos de teste foram diferentes estatisticamente; (B) o braquete de 2º pré-molar apresentou valores de coeficiente de atrito diferentes entre os dois tipos de teste; (C) na configuração simétrica, as variáveis foram estatisticamente significantes na maioria dos casos para as grandezas analisadas e para o coeficiente de atrito; (D) houve diferença entre a configuração simétrica e assimétrica; (E) o coeficiente de atrito baseado nas duas normais e na força de atrito se aproximou mais da realidade clínica e foi sensível à variação da geometria da relação fio-braquete; e (F) os 10 ciclos para lingual foram semelhantes entre si em 70% dos casos e os 10 ciclos para vestibular foram diferentes em 57% dos casos. Conclusões: o teste em 3 pontos com braquetes é diferente do teste de resistência ao deslizamento; a variação das configurações geométricas e da marca de fio-braquete pode influenciar nos valores das grandezas e do coeficiente de atrito cinético; os 10 ciclos para lingual foram mais semelhantes entre si que os 10 ciclos para vestibular. / The main objective of the study is to compare the three-bracket bending test with the resistance to sliding test using a new device that performs simultaneous measurement of coefficient of friction, the forces and moments on the anchor brackets and deactivation force in misaligned bracket, exercised by orthodontic wires. Secondary objectives were to develop the device and compare, in the three-bracket bending test: (i) the influence, on the physical quantities and on the kinetic friction coefficient, of the variation of the symmetry in the inter-bracket distance, of the type of anchor bracket (canine or 2nd premolar), of displacement (3 or 5mm) and misalignment (buccal or lingual) of the central bracket, and of the wire and bracket brand; (ii) the three ways to calculate the coefficient of kinetic friction; (iii) the 10 cycles, for buccal or lingual, to see if they are similar or not. Self-ligating brackets were used (teeth 13, 14 and 15) and wires 0.014 \'\' NiTi and CuNiTi of Aditek and Ormco brands. The resistance to sliding test was conducted on the lingual misalignment, on both displacements and on symmetrical configuration. The three-bracket bending test was held at the lingual and vestibular misalignment, at both displacements and at the symmetrical and asymmetrical configuration. Through ANOVA, were compared, between the two types of tests: (A) the quantities and the coefficient of friction and (B) the coefficient of friction generated only in the second premolar bracket. Using the same statistical test were compared, in three-bracket bending test: (A) in symmetrical configuration, the quantities and the coefficient of friction arising from the variation in the wire and bracket brands, displacement, misalignment and the type of bracket; (B) the quantities and the coefficient of friction generated by the symmetric and asymmetric configuration; (C) the values of the three ways of calculating friction coefficient; and (D) the quantities and the coefficient of friction encountered in 10 cycles. Results: (A) most of the values of the quantities and the coefficient of friction generated by the two types of test were statistically different; (B) the 2nd premolar bracket showed different friction coefficient values between the two types of test; (C) in the symmetrical configuration, the variables were statistically significant in the most of cases for quantities and the friction coefficient; (D) was found difference between symmetric and asymmetric configuration; (E) the friction coefficient based on both normal forces and frictional force was closer to the clinical reality and was sensitive to variations in the geometry of the wire-bracket relationship; and (F) the 10 cycles for lingual were similar in 70% of cases and the 10 cycles for buccal desalignment were different in 57% of cases. Conclusions: The three-bracket bending test is different from the resistance to sliding test; the variation of geometric configurations and wire and bracket brands may influence the values of the quantities and the coefficient of kinetic friction; the 10 cycles for lingual were more similar to each other than the 10 cycles for buccal.
137

Investigations On The Effect Of Process Parameters On The Composition Of DC Magnetron Sputter Deposited NiTi Shape Memory Alloy Thin Films

Sumesh, M A 09 1900 (has links) (PDF)
No description available.
138

Virtual Extensometer Analysis of Martensite Band Nucleation, Growth, and Strain Softening in Pseudoelastic NiTi Subjected to Different Load Cases

Elibol, Cagatay, Wagner, Martin F.-X. 10 September 2018 (has links)
Pseudoelastic NiTi shape memory alloys exhibit different stress–strain curves and modes of deformation in tension vs. compression. We have recently shown that under a combination of compression and shear, heterogeneous deformation can occur. In the present study, we use digital image correlation to systematically analyze how characteristic features of the nominally uniaxial engineering stress–strain curves (particularly the martensite nucleation peak and the plateau length) are affected by extensometer parameters in tension, compression, and the novel load case of shear-compression. By post-experimental analysis of full surface strain field data, the effect of the placement of various virtual extensometers at different locations (with respect to the nucleation site of martensite bands or inhomogeneously deforming regions) and with different gauge lengths is documented. By positioning an extensometer directly on the region corresponding to the nucleating martensite band, we, for the first time, directly record the strain-softening nature of the material—a specific softening behavior that is, for instance, important for the modeling community. Our results show that the stress–strain curves, which are often used as a basis for constitutive modeling, are affected considerably by the choice of extensometer, particularly under tensile loading, that leads to a distinct mode of localized deformation/transformation. Under compression-shear loading, inhomogeneous deformation (without lateral growth of martensite bands) is observed. The effects of extensometer gauge length are thus less pronounced than in tension, yet systematic—they are rationalized by considering the relative impact of differently deforming regions.
139

Avaliação da deflexão elástica de fios ortodônticos de níquel-titânio, calibre 0,014 / Load-deflection study of caliber 0.014 nickel-titanium orthodontic wires

Sathler-Zanda, Renata 03 July 2012 (has links)
PROPOSIÇÃO: O objetivo desta pesquisa foi apresentar a magnitude e a constância das forças liberadas por fios ortodônticos de níquel-titânio, usados para a correção dos apinhamentos dentários. Outro objetivo foi comparar os dois meios mais utilizados de avaliação da deflexão elástica destes fios: o teste de 3 pontos e o dispositivo de simulação clínica. MATERIAL E MÉTODOS: Foram avaliados 11 grupos de fios de liga predominantemente de níquel-titânio, calibre 0,014, de 6 marcas diferentes (Abzil convencional e termoativado; GAC convencional e termoativado; Morelli convencional e termoativado; Ormco CuNiTi; Orthometric convencional e termoativado e Orthosource convencional e termoativado), em teste de deflexão elástica, nas deflexões de 0,5; 1; 2 e 3mm. Uma máquina de ensaio universal INSTRON 3342, com célula de carga de 10N foi utilizada e, como protocolo, foi seguida a norma ISO 15.841. Para a análise estatística dos resultados foram utilizados os testes: Kolmogorov-Smirnov, para conferir se havia normalidade; teste t independente, para comparação dos resultados do teste de 3 pontos e dos resultados do dispositivo; e o teste ANOVA seguido do teste de Tukey, para comparações entre grupos. RESULTADOS: Houve diferença estatística entre os resultados gerados pelo teste de 3 pontos e os gerados pelo dispositivo. Por ser o teste indicado pela norma ISO citada, somente os resultados do teste de 3 pontos foram considerados. Todos os fios estudados apresentaram pseudoelasticidade em uma faixa de variação de força de até 40cN. Os grupos Abzil convencional, GAC convencional, Morelli termoativado, Ormco CuNiTi e Orthometric convencional apresentaram força dentro de uma faixa considerada ótima para a indução da movimentação dentária (50cN-100cN). Os fios termoativados liberaram forças mais leves que seus pares convencionais. CONCLUSÕES: Dentre os grupos estudados, aqueles que apresentaram pseudoelasticidade, forças dentro de uma faixa considerada ótima e homogeneidade de amostra, foram os grupos Morelli termoativado e Ormco CuNiTi. / OBJECTIVE: The purpose of this study was to present the magnitude and the constancy of the forces released by nickel-titanium orthodontic wires, used to treat dental crowding. Another purpose was to compare the most usual types of bending tests used to evaluate these wires: 3-point test and clinical simulation device. MATERIAL AND METHODS: Eleven groups of orthodontic nickel-titanium wires, caliber 0.014, of 6 different brands (Abzil conventional and heat-activated; GAC conventional and heat-activated; Morelli conventional and heat-activated; Ormco CuNiTi; Orthometric conventional and heat-activated and Orthosource conventional and heat-activated) were tested by bending test, at deflections of 0.5; 1; 2 and 3mm. A universal testing machine INSTRON 3342 with a 10N load cell was used and, in order to standardize the tests, the ISO 15.841 regulation was followed. Statistical analysis was performed using the subsequent tests: Kolmogorov-Smirnov to verify normality; independent t test to compare the results of the 3-point test and the results derived from the device, and ANOVA followed by the Tukey test for intergroup comparisons. RESULTS: There were significant differences between the results of the 3-point test and the device. As indicated by the ISO regulation, only the results from the 3-point bending test were considered. All groups were classified as pseudoelastic, within a load range of 40cN, at maximum. The groups Abzil conventional, GAC conventional, Morelli heat-activated, Ormco CuNiTi and Orthometric conventional released load within optimum range (50cN-100cN). Heatactivated wires released lower load compared to conventional wire of the same brand. CONCLUSIONS: Among the groups evaluated those that presented pseudoelasticity, load within a range considered optimal, in a homogeneous manner, were Morelli heat-activated and Ormco CuNiTi.
140

Heterogeneous Integration of Shape Memory Alloysfor High-Performance Microvalves

Gradin, Henrik January 2012 (has links)
This thesis presents methods for fabricating MicroElectroMechanical System (MEMS) actuators and high-flow gas microvalves using wafer-level integration of Shape Memory Alloys (SMAs) in the form of wires and sheets. The work output per volume of SMA actuators exceeds that of other microactuation mechanisms, such as electrostatic, magnetic and piezoelectric actuation, by more than an order of magnitude, making SMA actuators highly promising for applications requiring high forces and large displacements. The use of SMAs in MEMS has so far been limited, partially due to a lack of cost efficient and reliable wafer-level integration approaches. This thesis presents new methods for wafer-level integration of nickel-titanium SMA sheets and wires. For SMA sheets, a technique for the integration of patterned SMA sheets to silicon wafers using gold-silicon eutectic bonding is demonstrated. A method for selective release of gold-silicon eutectically bonded microstructures by localized electrochemical etching, is also presented. For SMA wires, alignment and placement of NiTi wires is demonstrated forboth a manual approach, using specially built wire frame tools, and a semiautomatic approach, using a commercially available wire bonder. Methods for fixing wires to wafers using either polymers, nickel electroplating or mechanical silicon clamps are also shown. Nickel electroplating offers the most promising permanent fixing technique, since both a strong mechanical and good electrical connection to the wire is achieved during the same process step. Resistively heated microactuators are also fabricated by integrating prestrained SMA wires onto silicon cantilevers. These microactuators exhibit displacements that are among the highest yet reported. The actuators also feature a relatively low power consumption and high reliability during longterm cycling. New designs for gas microvalves are presented and valves using both SMA sheets and SMA wires for actuation are fabricated. The SMA-sheet microvalve exhibits a pneumatic performance per footprint area, three times higher than that of previous microvalves. The SMA-wire-actuated microvalve also allows control of high gas flows and in addition, offers benefits of lowvoltage actuation and low overall power consumption. / QC 20120514

Page generated in 0.0683 seconds