• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 30
  • 22
  • 7
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 243
  • 132
  • 108
  • 82
  • 36
  • 35
  • 27
  • 24
  • 22
  • 22
  • 22
  • 17
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Elucidating the Transcriptional Network Underlying Expression of a Neuronal Nicotinic Receptor Gene: A Dissertation

Scofield, Michael D. 08 September 2010 (has links)
Neuronal nicotinic acetylcholine receptors (nAChRs) are involved in a plethora of fundamental biological processes ranging from muscle contraction to the formation of memories. The studies described in this work focus on the transcriptional regulation of the CHRNB4 gene, which encodes the ß4 subunit of neuronal nAChRs. We previously identified a regulatory sequence (5´– CCACCCCT –3´), or “CA box”, critical for CHRNB4 promoter activity in vitro. Here I report transcription factor interaction at the CA box along with an in vivo analysis of CA box transcriptional activity. My data indicate that Sp1, Sp3, Sox10 and c-Jun interact with the CHRNB4 CA box in the context of native chromatin. Using an in vivo transgenic approach in mice, I demonstrated that a 2.3-kb fragment of the CHRNB4 promoter region, containing the CA box, is capable of directing cell-type specific expression of a reporter gene to many of the brain regions that endogenously express the CHRNB4 gene. Site-directed mutagenesis was used to test the hypothesis that the CA box is critical for CHRNB4 promoter activity in vivo. Transgenic animals were generated in which LacZ expression is driven by a mutant form of the CA box. Reporter gene expression was not detected in any tissue or cell type at ED18.5. Similarly, I observed dramatically reduced reporter gene expression at PD30 when compared to wild type transgenic animals, indicating that the CA box is an important regulatory feature of the CHRNB4 promoter. ChIP analysis of brain tissue from mutant transgenic animals demonstrated that CA box mutation results in decreased interaction of the transcription factor Sp1 with the CHRNB4 promoter. I have also investigated transcription factor interaction at the CHRNB4 promoter CT box, (5´– ACCCTCCCCTCCCCTGTAA –3´) and demonstrated that hnRNP K interacts with the CHRNB4 promoter in an olfactory bulb derived cell line. Surprisingly, siRNA experiments demonstrated that hnRNP K knockdown has no impact on CHRNA5, CHRNA3 or CHRNB4 gene expression. Interestingly, knockdown of the transcription factor Purα results in significant decreases in CHRNA5, CHRNA3 and CHRNB4 mRNA levels. These data indicate that Purα can act to enhance expression of the clustered CHRNA5, CHRNA3 and CHRNB4 genes. Together, these results contribute to a more thorough understanding of the transcriptional regulatory mechanisms underlying expression of the CHRNB4 as well as the CHRNA5 and CHRNA3 genes, critical components of cholinergic signal transduction pathways in the nervous system.
182

Maintaining the Balance: Coordinating Excitation and Inhibition in a Simple Motor Circuit: A Dissertation

Petrash, Hilary A. 06 August 2012 (has links)
The generation of complex behaviors often requires the coordinated activity of diverse sets of neural circuits in the brain. Activation of neuronal circuits drives behavior. Inappropriate signaling can contribute to cognitive disorders such as epilepsy, Parkinson’s, and addiction (Nordberg et al., 1992; Quik and McIntosh, 2006; Steinlein et al., 2012). The molecular mechanisms by which the activity of neural circuits is coordinated remain unclear. What are the molecules that regulate the timing of neural circuit activation and how is signaling between various neural circuits achieved? While much work has attempted to address these points, answers to these questions have been difficult to ascertain, in part owing to the diversity of molecules involved and the complex connectivity patterns of neural circuits in the mammalian brain. My thesis work addresses these questions in the context of the nervous system of an invertebrate model organism, the nematode Caenorhabditis elegans. The locomotory circuit contains two subsets of motor neurons, excitatory and inhibitory, and the body wall muscle. Dyadic synapses from excitatory neurons coordinate the simultaneous activation of inhibitory neurons and body wall muscle. Here I identify a distinct class of ionotropic acetylcholine receptors (ACR-12R) that are expressed in GABA neurons and contain the subunit ACR-12. ACR-12R localize to synapses of GABA neurons and facilitate consistent body bend amplitude across consecutive body bends. ACR-12Rs regulate GABA neuron activity under conditions of elevated ACh release. This is in contrast to the diffuse and modulatory role of ACR-12 containing receptors expressed in cholinergic motor neurons (ACR-2R) (Barbagallo et al., 2010; Jospin et al., 2009). Additionally, I show transgenic animals expressing ACR-12 with a mutation in the second transmembrane domain [ACR-12(V/S)] results in spontaneous contractions. Unexpectedly, I found expression of ACR-12 (V/S) results in the preferential toxicity of GABA neurons. Interestingly loss of presynaptic GABA neurons did not have any obvious effects on inhibitory NMJ receptor localization. Together, my thesis work demonstrates the diverse roles of nicotinic acetylcholine receptors (nAChRs) in the regulation of neuronal activity that underlies nematode movement. The findings presented here are broadly applicable to the mechanisms of cholinergic signaling in vertebrate models.
183

Modulation of Nicotinic ACh-, GABA(a)- and 5-HT<sub>3</sub>-Receptor Functions by External H-7, a Protein Kinase Inhibitor, in Rat Sensory Neurones

Hu, Hong Zhen, Li, Zhi Wang 01 December 1997 (has links)
1. The effects of external H-7, a potent protein kinase inhibitor, on the responses mediated by γ-aminobutyric acid A type (GAGA(A))-, nicotinic acetylcholine (nicotinic ACh)-, ionotropic 5-hydroxytryptamine (5-HT3)-, adenosine 5'-triphosphate (ATP)-, N-methyl-D-aspartate (NMDA)- and kainate (KA)-receptors were studied in freshly dissociated rat dorsal root ganglion neurone by use of whole cell patch-clamp technique. 2. External H-7 (1-1000 μM) produced a reversible, dose-dependent inhibition of whole cell currents activated by GABA, ACh and 5-HT. 3. Whole-cell currents evoked by ATP, 2-methylthio-ATP, NMDA and KA were sensitive to external H-7. 4. External H-7 shifted the dose-response curve of GABA-activated currents downward without changing the EC50 significantly (from 15.0 ± 4.0 μM to 18.0 ± 5.0 μM). The maximum response to GABA was depressed by 34.0 ± 5.3%. This inhibitory action of H-7 was voltage-independent. 5. Intracellular application of H-7 (20 μM), cyclic AMP (1 mM) and BAPTA (10 mM) could not reverse the H-7 inhibition of GABA-activated currents. 6. The results suggest that external H-7 selectively and allosterically modulates the functions of GABA(A)-, nicotine ACh- and 5-HT3 receptors via a common conserved site in the external domain of these receptors.
184

Catharanthine Modulates Mesolimbic Dopamine Transmission: A Potential Treatment for Alcohol Use Disorder

Williams, Benjamin M. 03 August 2022 (has links)
Catharanthine is derived from the Catharanthus roseus plant and is an analog to ibogaine, a drug that reduces opioid and alcohol withdrawal symptoms and decreases drug self-administration in both animals and humans. Catharanthine has promise to be an alternative pharmacological treatment for addiction without the adverse side effects associated with ibogaine. The objective of this study was to evaluate catharanthine’s effects on dopamine (DA) transmission in the mesolimbic DA system as well as determine its effects on both ethanol withdrawal induced anxiety and drug-seeking behaviors in mice. We hypothesized that catharanthine would inhibit evoked DA release in the nucleus accumbens (NAc) while also reducing anxiety and drug seeking behaviors in mice. We found that superfusion of catharanthine (1-100 µM) to mouse brain slices significantly inhibits evoked DA release in the NAc of the striatum in a dose dependent manner, while also slowing DA reuptake through inhibition of the dopamine transporter (DAT), measured using fast-scan cyclic voltammetry (FSCV). We also found that intraperitoneal administration of catharanthine in live mice significantly increases extracellular DA, measured via microdialysis with electrochemical detection. Catharanthine inhibition of evoked DA release was significantly reduced by the non-selective nAChR antagonist mecamylamine, the α4 nAChR antagonist dihydro-β-erythroidine hydrobromide (DhβE) and the α6 nAChR antagonist α-conotoxin MII, suggesting that catharanthine inhibits α4 and α6 nAChRs in the NAc. Iontophoresis and in-vivo data indicates that catharanthine slows DA reuptake and increases extracellular DA in the NAc through partial inhibition of DATs. Catharanthine also blocked increases in anxiety-like behavior during ethanol withdrawal in mice in the elevated plus maze. Lastly, preliminary data suggests that catharanthine increases both water and ethanol drinking in a 24-hour two-bottle choice drinking paradigm, which was contrary to our hypothesis.
185

Avaliação do efeito de polimorfismos genéticos com a dependência à nicotina / Evaluation of genetic polymorphisms with nicotine dependence

Tomaz, Paulo Roberto Xavier 14 March 2016 (has links)
Introdução: A identificação de variantes genéticas que predispõem a maior susceptibilidade à dependência à nicotina pode ser importante para a prevenção e o tratamento do tabagismo. No contexto de medicina personalizada, os principais objetivos do presente estudo foram avaliar se polimorfismos nos genes CHRNA2, CHRNA3, CHRNA5 e CHRNB3 estão associados com o nível de dependência em indivíduos fumantes e com o resultado do tratamento antitabágico. Métodos: Estudo de coorte com 1049 pacientes fumantes que receberam tratamento farmacológico (vareniclina, vareniclina e bupropiona, bupropiona e/ou terapia de reposição nicotínica). O sucesso na cessação tabágica foi considerado para os pacientes que completaram 6 meses de abstinência contínua. O teste de Fagerström para a dependência à nicotina (FTND) e o escore de consumo situacional Issa foram utilizados para avaliar a dependência à nicotina. A escala de conforto PAF foi utilizada para avaliar o conforto do paciente durante o tratamento. Os polimorfismos CHRNA2 rs2472553, CHRNA3 rs1051730, CHRNA5 rs16969968, CHRNA5 rs2036527 e CHRNB3 rs6474413 foram genotipados pela análise da curva de melting. Resultados: As mulheres portadoras dos genótipos GA e AA para os polimorfismos CHRNA5 rs16969968 e rs2036527 obtiveram maior taxa de sucesso no tratamento antitabagismo: 44,0% e 56,3% (rs16969968), 41,5% e 56,5% (rs2036527), respectivamente; em comparação com as mulheres portadoras do genótipo GG: 35,7% (rs16969968) e 34,8% (rs2036527), (P=0,03; n=389; P=0,01; n=391). Os genótipos GA ou AA para os rs16969968 e rs2036527 foram associados com maior OR para o sucesso em mulheres (OR=1,63; IC 95%=1,04-2,54; P=0,03 e OR=1,59; IC 95%=1,02-2,48; P=0,04; respectivamente), em um modelo multivariado. Não foi encontrada associação dos polimorfismos no gene CHRNA5 com o escore de FTND. Para os polimorfismos CHRNA2 rs2472553, CHRNA3 rs1051730 e CHRNB3 rs6474413 não foram encontradas associações significativas com os fenótipos estudados. Conclusão: Os polimorfismos rs16969968 e rs2036527 no gene CHRNA5 foram associados com maior taxa de sucesso no tratamento antitabagismo em mulheres. Estes resultados podem contribuir com avanços na terapêutica baseada em medicina personalizada / Background: The identification of genetic variants that predispose increased susceptibility to nicotine dependence becomes increasingly important for the prevention and smoking treatment. In the context of personalized medicine, the main aims of this study were to evaluate whether the CHRNA2, CHRNA3, CHRNA5 and CHRNB3 polymorphisms are associated with the level of dependence in smokers and the result of smoking treatment. Methods: This cohort study enrolled 1049 smoking patients who received pharmacological treatment (varenicline, varenicline plus bupropion, bupropion plus/or nicotine replacement therapy). Smoking cessation success was considered for patients who completed 6 months of continuous abstinence. Fagerström test for nicotine dependence (FTND) and Issa situational smoking scores were analyzed for nicotine dependence. PAF comfort scale was used to evaluate the comfort of the patient during treatment. The CHRNA2 rs2472553, CHRNA3 rs1051730, CHRNA5 rs16969968 and rs2036527 and CHRNB3 rs6474413 polymorphisms were genotyped by high resolution melting analysis. Results: Females with GA and AA genotypes for CHRNA5 rs16969968 and rs2036527polymorphisms had higher success rate in smoking cessation treatment: 44.0% and 56.3% (rs16969968), 41.5% and 56.5% (rs2036527), respectively; compared with carriers of the GG genotypes: 35.7% (rs16969968), 34.8% (rs2036527), (P=0.03, n=389; P=0.01, n=391). The GA or AA genotypes to the rs16969968 and rs2036527 were associated with higher odds ratio for success in women (OR=1.63; 95%CI=1.04 to 2.54; P=0.03 and OR=1.59, 95%CI=1.02 to 2.48; P=0.04; respectively), in a multivariate model. We found no association of these polymorphisms with FTND score for nicotine dependence. For the CHRNA2 rs2472553, CHRNA3 rs1051730 and CHRNB3 rs6474413 polymorphisms no significant associations were found with phenotypes studied. Conclusion: The CHRNA5 rs16969968 and rs2036527 were associated with higher success rate in the smoking cessation treatment in women. These results can contribute to major advances in personalized medicine based therapy
186

Avaliação do efeito de polimorfismos genéticos com a dependência à nicotina / Evaluation of genetic polymorphisms with nicotine dependence

Paulo Roberto Xavier Tomaz 14 March 2016 (has links)
Introdução: A identificação de variantes genéticas que predispõem a maior susceptibilidade à dependência à nicotina pode ser importante para a prevenção e o tratamento do tabagismo. No contexto de medicina personalizada, os principais objetivos do presente estudo foram avaliar se polimorfismos nos genes CHRNA2, CHRNA3, CHRNA5 e CHRNB3 estão associados com o nível de dependência em indivíduos fumantes e com o resultado do tratamento antitabágico. Métodos: Estudo de coorte com 1049 pacientes fumantes que receberam tratamento farmacológico (vareniclina, vareniclina e bupropiona, bupropiona e/ou terapia de reposição nicotínica). O sucesso na cessação tabágica foi considerado para os pacientes que completaram 6 meses de abstinência contínua. O teste de Fagerström para a dependência à nicotina (FTND) e o escore de consumo situacional Issa foram utilizados para avaliar a dependência à nicotina. A escala de conforto PAF foi utilizada para avaliar o conforto do paciente durante o tratamento. Os polimorfismos CHRNA2 rs2472553, CHRNA3 rs1051730, CHRNA5 rs16969968, CHRNA5 rs2036527 e CHRNB3 rs6474413 foram genotipados pela análise da curva de melting. Resultados: As mulheres portadoras dos genótipos GA e AA para os polimorfismos CHRNA5 rs16969968 e rs2036527 obtiveram maior taxa de sucesso no tratamento antitabagismo: 44,0% e 56,3% (rs16969968), 41,5% e 56,5% (rs2036527), respectivamente; em comparação com as mulheres portadoras do genótipo GG: 35,7% (rs16969968) e 34,8% (rs2036527), (P=0,03; n=389; P=0,01; n=391). Os genótipos GA ou AA para os rs16969968 e rs2036527 foram associados com maior OR para o sucesso em mulheres (OR=1,63; IC 95%=1,04-2,54; P=0,03 e OR=1,59; IC 95%=1,02-2,48; P=0,04; respectivamente), em um modelo multivariado. Não foi encontrada associação dos polimorfismos no gene CHRNA5 com o escore de FTND. Para os polimorfismos CHRNA2 rs2472553, CHRNA3 rs1051730 e CHRNB3 rs6474413 não foram encontradas associações significativas com os fenótipos estudados. Conclusão: Os polimorfismos rs16969968 e rs2036527 no gene CHRNA5 foram associados com maior taxa de sucesso no tratamento antitabagismo em mulheres. Estes resultados podem contribuir com avanços na terapêutica baseada em medicina personalizada / Background: The identification of genetic variants that predispose increased susceptibility to nicotine dependence becomes increasingly important for the prevention and smoking treatment. In the context of personalized medicine, the main aims of this study were to evaluate whether the CHRNA2, CHRNA3, CHRNA5 and CHRNB3 polymorphisms are associated with the level of dependence in smokers and the result of smoking treatment. Methods: This cohort study enrolled 1049 smoking patients who received pharmacological treatment (varenicline, varenicline plus bupropion, bupropion plus/or nicotine replacement therapy). Smoking cessation success was considered for patients who completed 6 months of continuous abstinence. Fagerström test for nicotine dependence (FTND) and Issa situational smoking scores were analyzed for nicotine dependence. PAF comfort scale was used to evaluate the comfort of the patient during treatment. The CHRNA2 rs2472553, CHRNA3 rs1051730, CHRNA5 rs16969968 and rs2036527 and CHRNB3 rs6474413 polymorphisms were genotyped by high resolution melting analysis. Results: Females with GA and AA genotypes for CHRNA5 rs16969968 and rs2036527polymorphisms had higher success rate in smoking cessation treatment: 44.0% and 56.3% (rs16969968), 41.5% and 56.5% (rs2036527), respectively; compared with carriers of the GG genotypes: 35.7% (rs16969968), 34.8% (rs2036527), (P=0.03, n=389; P=0.01, n=391). The GA or AA genotypes to the rs16969968 and rs2036527 were associated with higher odds ratio for success in women (OR=1.63; 95%CI=1.04 to 2.54; P=0.03 and OR=1.59, 95%CI=1.02 to 2.48; P=0.04; respectively), in a multivariate model. We found no association of these polymorphisms with FTND score for nicotine dependence. For the CHRNA2 rs2472553, CHRNA3 rs1051730 and CHRNB3 rs6474413 polymorphisms no significant associations were found with phenotypes studied. Conclusion: The CHRNA5 rs16969968 and rs2036527 were associated with higher success rate in the smoking cessation treatment in women. These results can contribute to major advances in personalized medicine based therapy
187

The nicotinic acid receptor in human adipose tissue

Chamas, Liliane January 2013 (has links)
Nicotinic acid (NA) has been clinically used for over 50 years to regulate lipid plasma levels. It is the only drug in current clinical use that significantly raises HDL cholesterol and reduces inflammatory markers. However, mechanistic understanding into its wide range of actions remains unclear. The recent identification of the Gi-coupled protein receptor HCAR2, for which NA is a potent agonist, provides intriguing insight due to its anti-lipolytic action and restricted, yet specific, expression in adipose tissue and immune cells. The HCAR2 gene is 96% homologous to HCAR3, but the HCAR3 receptor shares neither the specificity for NA, nor the range of functional effects. Moreover, the close homology makes it difficult to separate the genetic variability and regulation of the two genes. To this end, I resequenced HCAR2 and HCAR3 in a selected population to characterize the variability of the two genes and to inform the subsequent design of specific genotyping assays. The Oxford Biobank, which is a random population-based collection of 30-50 year old men and women in Oxfordshire with a wide range of collected phenotypes, was used to explore genetic associations. A preliminary trend with HDL and rs7314976 in HCAR2 motivated the further search associations. However after increasing the sample size, the HDL association did not reach significance. When looking at inflammatory phenotypes, a 20% lower level of systemic hsCRP was found in males with a promoter region variant in HCAR3 (N=1808, p=0.007 for rs55718746). Replication of this finding in two relevant cohorts (NPHS-II, N=2185 and Whitehall, N=4228) resulted in conflicting findings. After optimising the specific detection of both HCAR2 and HCAR3 transcripts, I characterized gene expression in human AT biopsies. This revealed an 18% increase in HCAR2 expression in the female abdominal depot (N=106, p<0.0001) and a reduction in abdominal HCAR2 in both males (β=-0.37, p<0.001, N=107) and females (β=-0.251, p=0.005, N=106) with increasing adiposity. The rs55718746 variant in HCAR3 was also seen to influence expression of both HCAR2 (N=182, p=0.018 in the abdominal depot) and HCAR3 (N=198, p=0.005) but surprisingly in opposite directions, establishing it as the first cis-eQTL for this genomic region. Finally, I used human adipocyte in vitro culture systems to setup a pilot to study the anti-inflammatory effects of NA. The gene expression of HCAR2 and HCAR3 increased significantly with adipocyte differentiation in vitro. NA led to a drop in IL-6 transcript abundance in two out of three of the in vitro differentiated human adipocytes. In conclusion, genetic variability in HCAR2 and HCAR3 shows weak associations with cardiovascular disease risk phenotypes relating to their respective pathways. The relevance of HCAR2 and HCAR3 gene expression and the role of the receptor in the control of inflammation will require further studies.
188

Associations entre des polymorphismes génétiques des gènes CHRN et l'étourdissement ressenti lors de l'initiation à la nicotine

Pedneault, Maxime 04 1900 (has links)
Objectifs: Plusieurs polymorphismes nucléaires localisés sur les gènes des récepteurs nicotiniques cholinergiques CHRN sont associés au tabagisme. Cependant, peu d’études ont examiné l’association entre les polymorphismes sur les gènes CHRN et l’étourdissement. Les polymorphismes et les symptômes subjectifs sont peu être lié à la dépendance à la nicotine et à l’étourdissement ressenti lors de l’initiation. Le but de cette étude est d’étudier l’association entre 61 polymorphismes sur huit gènes CHRN (CHRNA3 CHRNA4 CHRNA5, CHRNA6, CHRNA7, CHRNB2, CHRNB3, CHRNB4) et l’étourdissement ressenti lors de l’initiation. Méthodes: Les données provenant d'une étude de cohorte longitudinale composée de 1293 étudiants, ont été analysées selon un devis d'étude gène-candidat. Les données ont été collectées par le biais de questionnaires auto-reportés aux troix mois, durant 5 ans. L’ADN provenent de la salive ou du sang a été génotypé pour 61 polymosphismes localisés sur les gènes CHRN ont été génotypés, à l'aide d'une stratégie de couverture maximale du gène. L'équation d'analyse est une régression logistique, incluant un ajustement sur l’âge, le sexe et l’origine ethnique. Résultats: Trois SNPs sur le gène CHRNA6 (rs7812298, rs2304297, rs7828365) sont associés à notre phénotype (OR (95% CI)= 0.54 (0.36, 0.81), 0.59 (0.40, 0.86) and 0.58 (0.36, 0.95, respectivement),. Trois autres polymorphismes (rs3743077 (CHRNA3), rs755204 (CHRNA4), rs7178176 (CHRNA7)) sont également associés à phénotype (OR (95% CI)=1.40 (1.02, 1.90), 1.85 (1.05, 3.27) and 1.51 (1.06, 2.15), respectivement) Conclusion: Plusieurs SNPs localisés sur les gènes CHRN sont associés à l'étourdissement, un phénotype de l'initiation qui est peut-être associé à la dépendance à la nicotine. / Background: Numerous single nucleotide polymorphisms (SNPs) in multiple nicotinic receptor genes (CHRN) are associated with smoking. However few studies have examined the association between CHRN SNPs and subjective responses to smoking which may relate to sustained smoking, such as dizziness at first inhalation. The objective of this study was to investigate the association between 61 SNPs in eight CHRN genes (CHRNA3 CHRNA4 CHRNA5, CHRNA6, CHRNA7, CHRNB2, CHRNB3, CHRNB4) and dizziness at first inhalation. Methods: Data were available in a longitudinal cohort investigation of 1293 students 12-13 years old at baseline. Students completed self-report questionnaires at-school every 3 months for 5 years during secondary school, and a mailed self-report questionnaire three years later. DNA extracted from blood or saliva was genotyped for 61 CHRN SNPs selected using a gene tagging approach. Associations were modeled using logistic regression controlling for sex, race and age at first cigarette. Results: The minor alleles of three SNPs in CHRNA6 (rs7812298, rs2304297, rs7828365) were associated a decreased probability of dizziness (OR (95% CI)=0.54(0.36, 0.81), 0.59(0.40,0.86) and 0.58(0.36,0.95, respectively), while one SNP in each of three other genes (rs3743077 (CHRNA3), rs755204 (CHRNA4), rs7178176 (CHRNA7)) was associated with an increased probability of dizziness (OR(95% CI)=1.40 (1.02,1.90), 1.85(1.05,3.27) and 1.51(1.06,2.15), respectively). Conclusion: Thus, several SNPs located in CHRN genes are associated with dizziness at first inhalation, a smoking initiation phenotype that may relate to sustained smoking.
189

Associations entre des polymorphismes génétiques des gènes CHRN et l'étourdissement ressenti lors de l'initiation à la nicotine

Pedneault, Maxime 04 1900 (has links)
Objectifs: Plusieurs polymorphismes nucléaires localisés sur les gènes des récepteurs nicotiniques cholinergiques CHRN sont associés au tabagisme. Cependant, peu d’études ont examiné l’association entre les polymorphismes sur les gènes CHRN et l’étourdissement. Les polymorphismes et les symptômes subjectifs sont peu être lié à la dépendance à la nicotine et à l’étourdissement ressenti lors de l’initiation. Le but de cette étude est d’étudier l’association entre 61 polymorphismes sur huit gènes CHRN (CHRNA3 CHRNA4 CHRNA5, CHRNA6, CHRNA7, CHRNB2, CHRNB3, CHRNB4) et l’étourdissement ressenti lors de l’initiation. Méthodes: Les données provenant d'une étude de cohorte longitudinale composée de 1293 étudiants, ont été analysées selon un devis d'étude gène-candidat. Les données ont été collectées par le biais de questionnaires auto-reportés aux troix mois, durant 5 ans. L’ADN provenent de la salive ou du sang a été génotypé pour 61 polymosphismes localisés sur les gènes CHRN ont été génotypés, à l'aide d'une stratégie de couverture maximale du gène. L'équation d'analyse est une régression logistique, incluant un ajustement sur l’âge, le sexe et l’origine ethnique. Résultats: Trois SNPs sur le gène CHRNA6 (rs7812298, rs2304297, rs7828365) sont associés à notre phénotype (OR (95% CI)= 0.54 (0.36, 0.81), 0.59 (0.40, 0.86) and 0.58 (0.36, 0.95, respectivement),. Trois autres polymorphismes (rs3743077 (CHRNA3), rs755204 (CHRNA4), rs7178176 (CHRNA7)) sont également associés à phénotype (OR (95% CI)=1.40 (1.02, 1.90), 1.85 (1.05, 3.27) and 1.51 (1.06, 2.15), respectivement) Conclusion: Plusieurs SNPs localisés sur les gènes CHRN sont associés à l'étourdissement, un phénotype de l'initiation qui est peut-être associé à la dépendance à la nicotine. / Background: Numerous single nucleotide polymorphisms (SNPs) in multiple nicotinic receptor genes (CHRN) are associated with smoking. However few studies have examined the association between CHRN SNPs and subjective responses to smoking which may relate to sustained smoking, such as dizziness at first inhalation. The objective of this study was to investigate the association between 61 SNPs in eight CHRN genes (CHRNA3 CHRNA4 CHRNA5, CHRNA6, CHRNA7, CHRNB2, CHRNB3, CHRNB4) and dizziness at first inhalation. Methods: Data were available in a longitudinal cohort investigation of 1293 students 12-13 years old at baseline. Students completed self-report questionnaires at-school every 3 months for 5 years during secondary school, and a mailed self-report questionnaire three years later. DNA extracted from blood or saliva was genotyped for 61 CHRN SNPs selected using a gene tagging approach. Associations were modeled using logistic regression controlling for sex, race and age at first cigarette. Results: The minor alleles of three SNPs in CHRNA6 (rs7812298, rs2304297, rs7828365) were associated a decreased probability of dizziness (OR (95% CI)=0.54(0.36, 0.81), 0.59(0.40,0.86) and 0.58(0.36,0.95, respectively), while one SNP in each of three other genes (rs3743077 (CHRNA3), rs755204 (CHRNA4), rs7178176 (CHRNA7)) was associated with an increased probability of dizziness (OR(95% CI)=1.40 (1.02,1.90), 1.85(1.05,3.27) and 1.51(1.06,2.15), respectively). Conclusion: Thus, several SNPs located in CHRN genes are associated with dizziness at first inhalation, a smoking initiation phenotype that may relate to sustained smoking.
190

Elaboration and Design of α7 nAChR Negative Allosteric Modulators

Alwassil, Osama I. 01 January 2015 (has links)
α7 Neuronal nicotinic acetylcholine receptors are one of two major classes of receptors responsible for cholinergic neurotransmission in the central nervous system. The existence of α7 neuronal nAChRs in different regions of the nervous system suggests their involvement in certain essential physiological functions as well as in disorders such as Alzheimer’s disease (AD), drug dependence, and depression. This project was aimed toward the discovery and development of small–molecule arylguanidines that modulate α7 nAChR function with improved subtype-selectivity through an allosteric approach. Identifying the required structural features of these small molecules allowed optimization of their negative allosteric modulator (NAM) actions at α7 neuronal nAChRs. MD-354 (3-chlorophenylguanidine) was the first small–molecule NAM at α7 nAChRs; however, it also binds at 5-HT3 receptors. The N-methyl analog of MD-354 appeared to be more selective toward α7 nAChRs than 5-HT3 receptors. Comparative studies using two series of novel compounds based on MD-354 and its N-methyl analog explored the aryl 3-position and investigated whether or not the MD-354 series and the N-methyl series bind in the same manner. Biological potencies of the MD-354 series and the N-methyl series of compounds, obtained from electrophysiological assays with Xenopus laevis oocytes expressing human α7 nAChRs in two-electrode voltage-clamp assays, showed that N-(3-iodophenyl)-N- methylguanidine (28) is the most potent analog at α7 nAChRs. Our comparative study and Hansch analyses indicated different binding modes of the two series. In addition, we investigated: i) the length/size of the aliphatic side chain at the anilinic nitrogen, ii) the effect of alkylating the guanidine nitrogen atoms, and iii) the necessity of the presence of these nitrogen atoms for the inhibitory effects of arylguanidines at α7 nAChRs. In efforts to explain the varied functional activity of these arylguanidines, homology models of the extracellular domain and the transmembrane domain of human α7 nAChRs were developed, allosteric sites identified, and docking studies and hydropathic analysis conducted. The 3D quantitative structure-activity relationships for our compounds were also analyzed using CoMFA. A pharmacophore for arylguanidines as α7 nAChR NAMs was identified. Together, these data should be useful for the subsequent design of novel arylguanidine analogs for their potential treatment of neurological disorders.

Page generated in 0.0727 seconds