• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 9
  • 9
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rückkopplungen und Rückwirkungen in der hydrologischen Modellierung am Beispiel von kontinuierlichen Niederschlag-Abfluß-Simulationen und Hochwasservorhersagen

Messal, Hilmar E. E. Unknown Date (has links)
Techn. Universiẗat, Diss., 2000--Berlin.
2

Rainfall-runoff modeling in arid areas

Abushandi, Eyad 08 April 2011 (has links)
The Wadi Dhuliel catchment/ North east Jordan, as any other arid area has distinctive hydrological features with limited water resources. The hydrological regime is characterized by high variability of temporal and spatial rainfall distributions, flash floods, absence of base flow, and high rates of evapotranspiration. The aim of this Ph.D. thesis was to apply lumped and distributed models to simulate stream flow in the Wadi Dhuliel arid catchment. Intensive research was done to estimate the spatial and temporal rainfall distributions using remote sensing. Because most rainfall-runoff models were undertaken for other climatic zones, an attempt was made to study limitations and challenges and improve rainfall-runoff modeling in arid areas in general and for the Wadi Dhuliel in particular. The thesis is divided into three hierarchically ordered research topics. In the first part and research paper, the metric conceptual IHACRES model was applied to daily and storm events time scales, including data from 19 runoff events during the period 1986-1992. The IHACRES model was extended for snowfall in order to cope with such extreme events. The performance of the IHACRES model on daily data was rather poor while the performance on the storm events scale shows a good agreement between observed and simulated streamflow. The modeled outputs were expected to be sensitive when the observed flood was relatively small. The optimum parameter values were influenced by the length of a time series used for calibration and event specific changes. In the second research paper, the Global Satellite Mapping of Precipitation (GSMaP_MVK+) dataset was used to evaluate the precipitation rates over the Wadi Dhuliel arid catchment for the period from January 2003 to March 2008. Due to the scarcity of the ground rain gauge network, the detailed structure of the rainfall distribution was inadequate, so an independent from interpolation techniques was used. Three meteorological stations and six rain gauges were used to adjust and compare with GSMaP_MVK+ estimates. Comparisons between GSMaP_MVK+ measurements and ground rain gauge records show distinct regions of correlation, as well as areas where GSMaP_MVK+ systematically over- and underestimated ground rain gauge records. A multiple linear regression (MLR) model was used to derive the relationship between rainfall and GSMaP_MVK+ in conjunction with temperature, relative humidity, and wind speed. The MLR equations were defined for the three meteorological stations. The ‘best’ fit of the MLR model for each station was chosen and used to interpolate a multiscale temporal and spatial distribution. Results show that the rainfall distribution over the Wadi Dhuliel is characterized by clear west-east and north-south gradients. Estimates from the monthly MLR model were more reliable than estimates obtained using daily data. The adjusted GSMaP_MVK+ dataset performed well in capturing the spatial patterns of the rainfall at monthly and annual time scales, while daily estimation showed some weakness for light and moderate storms. In the third research paper, the HEC-HMS and IHACRES rainfall runoff models were applied to simulate a single streamflow event in the Wadi Dhuliel catchment that occurred in 30-31.01.2008. Both models are considered suitable for arid conditions. The HEC-HMS model application was done in conjunction with the HEC-GeoHMS extension in ArcView 3.3. Streamflow estimation was performed on hourly data. The aim of this study was to develop a new framework of rainfall-runoff model applications in arid catchment by integrating a re-adjusted satellite derived rainfall dataset (GSMaP_MVK+) to determine the location of the rainfall storm. Each model has its own input data sets. HEC-HMS input data include soil type, land use/land cover map, and slope map. IHACRES input data sets include hourly rainfall and temperature. The model was calibrated and validated using observed stream flow data collected from Al-Za’atari discharge station. IHACRES shows some weaknesses, while the flow comparison between the calibrated streamflow results agrees well with the observed streamflow data of the HEC-HMS model. The Nash-Sutcliffe efficiency (Ef) for both models was 0.51, and 0.88 respectively. The application of HEC-HMS model in this study is considered to be satisfactory.
3

Regionalisierung von Hochwasserscheiteln auf Basis einer gekoppelten Niederschlag-Abfluss-Statistik mit besonderer Beachtung von Extremereignissen

Wagner, Michael 04 December 2012 (has links) (PDF)
Die Bemessung von Bauwerken an oder in Fließgewässern erfordert die Kenntnis des statistischen Hochwasserregimes. Beispielsweise legen Hochwasserschutzkonzeptionen häufig ein Hochwasser zu Grunde, welches in einem Jahr mit der Wahrscheinlichkeit von 1/100 auftritt. Ein extremeres Hochwasser wird für den Nachweis der Standsicherheit großer Stauanlagen nach DIN 19700-12 mit einem Hochwasser der jährlichen Eintrittswahrscheinlichkeit von 1/10000 benötigt. Ein solches Hochwasser kann bereits wegen des instationären Klimas nicht allein aus Durchflussmessdaten abgeleitet, sondern lediglich idealisiert dargestellt werden. Das resultiert nicht zuletzt daraus, dass der Mensch natürlich Zeuge eines so unwahrscheinlichen Ereignisses werden kann. Jedoch kann er die Unwahrscheinlichkeit nicht nachweisen. Jedes Berechnungsschema, mit welchem ein so unwahrscheinliches Ereignis abgeschätzt werden soll, wird nur begrenzt zuverlässig sein. Das Ziel der Arbeit ist es daher, die Schätzung etwas zuverlässiger zu gestalten. Grundsätzlich gilt, dass ein Modell umso mehr bzw. sicherere Ergebnisse liefern kann, je mehr Daten in das Modell eingehen. Direkt mit dem Durchfluss gekoppelt sind Angaben zu historischen Hochwasserereignissen bzw. qualitative Einschätzungen kleinräumiger Ereignisse. Eine wichtige Datenquelle neben den Durchflussartigen ist der mit dem Durchfluss kausal verbundene Niederschlag und dessen zu vermutendes Maximum in einem Gebiet. Wird zusätzlich regional vorgegangen, können räumliche Aspekte und Strukturen in größeren Einzugsgebieten berücksichtigt werden. Diese stärken bzw. erweitern die lokalen Berechnungsgrundlagen und gewährleisten ein räumlich konsistentes Bild. Im Umkehrschluss kann das Durchflussregime regionalisiert werden, um Informationen an nicht bemessenen Orten bereitstellen zu können. Aus den genannten erweiterten Berechnungsgrundlagen lassen sich drei Anknüpfungspunkte schließen: (i) Es muss eine sehr flexible und dennoch plausible Darstellungsmöglichkeit des statistischen Niederschlagsregimes bis zum vermutlichen Maximum formuliert werden. (ii) Das entwickelte Niederschlagsregime muss mit dem Durchflussregime gekoppelt werden, um die Informationen nutzen zu können. (iii) Die anschließende Regionalisierung muss die verschachtelte baumartige Struktur hydrologischer Einzugsgebiete berücksichtigen. Punkt (i) wird durch eine zweigeteilte Verteilungsfunktion gelöst. Damit werden die ideale Darstellung des wahrscheinlicheren Bereiches und der plausible Verlauf bis zum Maximum miteinander verbunden. Bezüglich Punkt (ii) wird ein neues Kopplungsprinzip entwickelt. Dieses basiert auf der Annahme, dass ein je nach Gebiet gültiger maximaler Scheitelabflussbeiwert existiert, welcher asymptotisch erreicht wird. Im Ergebnis erhält die Durchflussverteilung mit der Abflussbeiwertapproximation einen oberen Grenzwert in Abhängigkeit von Niederschlagsmaximum und Scheitelabflussbeiwert. Entsprechend der Vorgaben in Punkt (iii) wird die Referenzpegelmethode entwickelt. Diese basiert darauf, dass ähnliche Einzugsgebiete äquivalente Hochwasserscheitel generieren. Damit können bekannte Hochwasserereignisse eines Referenzpegels auf unbeobachtete Teileinzugsgebiete übertragen werden. Bei der Wahl des Referenzpegels wird u.a. die Topologie der Einzugsgebiete berücksichtigt. Die gesamte Strategie kann auf große Untersuchungsgebiete angewandt werden. Am Beispiel sächsischer Flüsse wird die Vorgehensweise von der Datenhomogenisierung bis hin zum extremen Hochwasserdurchfluss an einem unbeobachteten Querschnitt erläutert. / The dimensioning of different constructions at and in streams respectively requires knowlegde on the flood situation at site. For instance flood protection concepts often base on a peak discharge of the annual recurrence probability of 1/100. A more severe flood of an annual recurrence probability of 1/10000 is used to confirm the stability of large dams following DIN 19700-12. Such a flood cannot be deduced from runoff data only, but rather shown in an idealised way. It results not least on the fact, that human can witness a very improbable flood event. But is it not possible to verify the improbability. Every modelling scheme that is confronted with the deduction of such an extreme flood event will be of limited reliability. The task\'s aim will therefore be to make the estimation more reliable. Generally the more data a model involves the more trustworthy the results will become. Directly coupled with runoff are historical flood data and qualitative details of small scale flood events respectively. Aside runoff information an important data source is precipitation data, which is coupled with runoff data in a causal way, and the possible maximum precipitation. If additionally whole regions are examined it is possible to consider regional facets and structures of larger catchments. These strengthen and expand local modelling basics and provide a regional consistent result. Vice versa the flood regime can be regionalised to gain information at unobserved cross sections. Out of the described expanded modelling basics follow three links: (i) It is necessary to find a flexible but still plausible formulation of the statistical precipitation regime until the probable maximum precipitation. (ii) The formulation of point i) has to be coupled with the flood regime to include these information. (iii) The adjacent regionalisation has to account for the nested and arboreal structure of hydrological catchments. Point (i) will be solved by a split distribution function. That allows the ideal display of the more probable domain as well as the characteristics until the probable maximum. Regarding point (ii) a new principle of coupling will be developed. It bases on the assumption that a regional maximum runoff coefficient exists and it will be gained asymptotically. As a result of the runoff coefficient approximation the runoff distribution function gets an upper limit depending on maximum precipitation and runoff coefficient. Respecting the guidelines in point (iii) the reference gauge method will be developed. It bases upon the fact, that likewise catchments generate equivalent peak discharges. For this reason it is possible to carry known peak discharges of a reference gauge onto unobserved subcatchments. Among other things the choice of a reference gauge accounts for the topology of the catchments. The whole strategy can be applied to large catchments what is exemplarily shown in Saxon streams. Beginning with a data homogenisation to the point of discharges of extreme low exceedance probabilities at unobserved cross sections the whole procedure is shown.
4

Einfluss von Unsicherheiten auf die Kalibrierung urban-hydrologischer Modelle

Henrichs, Malte 21 October 2015 (has links) (PDF)
Der Einsatz von hydrologischen Modellen zur Unterstützung von Planung und Betrieb von Entwässerungssystemen ist als Stand der Technik anzusehen. Realitätsnahe und sichere Modellergebnisse stellen dabei die Grundlage für eine zielgerichtete Entscheidungsfindung dar. Nur durch eine Kalibrierung können Parameter von konzeptionellen Modellen zur Berechnung des Niederschlag-Abfluss-Prozesses an die Randbedingungen des zu simulierenden technischen oder natürlichen Systems angepasst werden. Auch wenn die Kalibrierung eines Modells entscheidend zur Erhöhung der Realitätsnähe beiträgt, kann diese durch unterschiedliche Faktoren beeinflusst werden. Dies ist darauf zurückzuführen, dass bei hydrologischen Modellen nicht ausschließlich deterministische Gleichungen mit physikalisch basierten Parametern eingesetzt werden. Wesentliche Einflussfaktoren auf die Kalibrierung von urbanhydrologischen Modellen sind die gewählte Modellstruktur, die Eingangsdaten, die Kalibrierdaten, die Auswahl von Kalibrierereignissen sowie die eigentliche Kalibriermethodik. Im Rahmen dieser Arbeit wurden die Einflüsse der Kalibrierdaten, der Auswahl von Ereignissen und der Kalibriermethodik auf die Ergebnisse der automatischen Kalibrierung mittels multikriterieller Optimierungsverfahren untersucht.
5

Einfluss von Unsicherheiten auf die Kalibrierung urban-hydrologischer Modelle

Henrichs, Malte 23 July 2015 (has links)
Der Einsatz von hydrologischen Modellen zur Unterstützung von Planung und Betrieb von Entwässerungssystemen ist als Stand der Technik anzusehen. Realitätsnahe und sichere Modellergebnisse stellen dabei die Grundlage für eine zielgerichtete Entscheidungsfindung dar. Nur durch eine Kalibrierung können Parameter von konzeptionellen Modellen zur Berechnung des Niederschlag-Abfluss-Prozesses an die Randbedingungen des zu simulierenden technischen oder natürlichen Systems angepasst werden. Auch wenn die Kalibrierung eines Modells entscheidend zur Erhöhung der Realitätsnähe beiträgt, kann diese durch unterschiedliche Faktoren beeinflusst werden. Dies ist darauf zurückzuführen, dass bei hydrologischen Modellen nicht ausschließlich deterministische Gleichungen mit physikalisch basierten Parametern eingesetzt werden. Wesentliche Einflussfaktoren auf die Kalibrierung von urbanhydrologischen Modellen sind die gewählte Modellstruktur, die Eingangsdaten, die Kalibrierdaten, die Auswahl von Kalibrierereignissen sowie die eigentliche Kalibriermethodik. Im Rahmen dieser Arbeit wurden die Einflüsse der Kalibrierdaten, der Auswahl von Ereignissen und der Kalibriermethodik auf die Ergebnisse der automatischen Kalibrierung mittels multikriterieller Optimierungsverfahren untersucht.
6

Anpassung von WaSiM-ETH und die Erstellung und Berechnung von Landnutzungs- und Klimaszenarien für die Niederschlag-Abfluss-Modellierung am Beispiel des Osterzgebirges

Pöhler, Hannaleena Annikki 30 October 2006 (has links)
Für das Verbundprojekt EMTAL (Einzugsgebietsmanagement von Talsperren in Mittelgebirgslandschaften) wurden Methoden zur Klärung hydrologischer Fragen entwickelt. Das dafür gewählte Modell WaSiM-ETH kann den Abfluss im Untersuchungsgebiet gut reproduzieren und ist unter Verwendung physikalisch basierter Teilmodule auf ähnliche Einzugsgebiete übertragbar. Es kann in einer hohen Bandbreite zeitlicher und räumlicher Diskretisierung verwendet werden. Bei der Modellierung verschiedener Landnutzungsszenarien zeigen sich Grenzen im Prozessverständnis, der Parametrisierung bekannter oder vermuteter Prozessse und in der Darstellung verschiedener Prozesse durch das Modell. Innerhalb streng festgelegter Randbedingungen können aber plausible Ergebnisse erlangt werden. Zusätzlich wurden meteorologische Zeitreihen für die Niederschlag-Abfluss-Modellierung bis 2050 erstellt. Die Effekte von Klimaänderungen auf den Abfluss werden gut abgebildet. Die Grenzen der Modellierung liegen hier in erster Linie bei der Güte der Eingangsdaten aus den Klimaprognosen.
7

Regionalisierung von Hochwasserscheiteln auf Basis einer gekoppelten Niederschlag-Abfluss-Statistik mit besonderer Beachtung von Extremereignissen

Wagner, Michael 30 March 2012 (has links)
Die Bemessung von Bauwerken an oder in Fließgewässern erfordert die Kenntnis des statistischen Hochwasserregimes. Beispielsweise legen Hochwasserschutzkonzeptionen häufig ein Hochwasser zu Grunde, welches in einem Jahr mit der Wahrscheinlichkeit von 1/100 auftritt. Ein extremeres Hochwasser wird für den Nachweis der Standsicherheit großer Stauanlagen nach DIN 19700-12 mit einem Hochwasser der jährlichen Eintrittswahrscheinlichkeit von 1/10000 benötigt. Ein solches Hochwasser kann bereits wegen des instationären Klimas nicht allein aus Durchflussmessdaten abgeleitet, sondern lediglich idealisiert dargestellt werden. Das resultiert nicht zuletzt daraus, dass der Mensch natürlich Zeuge eines so unwahrscheinlichen Ereignisses werden kann. Jedoch kann er die Unwahrscheinlichkeit nicht nachweisen. Jedes Berechnungsschema, mit welchem ein so unwahrscheinliches Ereignis abgeschätzt werden soll, wird nur begrenzt zuverlässig sein. Das Ziel der Arbeit ist es daher, die Schätzung etwas zuverlässiger zu gestalten. Grundsätzlich gilt, dass ein Modell umso mehr bzw. sicherere Ergebnisse liefern kann, je mehr Daten in das Modell eingehen. Direkt mit dem Durchfluss gekoppelt sind Angaben zu historischen Hochwasserereignissen bzw. qualitative Einschätzungen kleinräumiger Ereignisse. Eine wichtige Datenquelle neben den Durchflussartigen ist der mit dem Durchfluss kausal verbundene Niederschlag und dessen zu vermutendes Maximum in einem Gebiet. Wird zusätzlich regional vorgegangen, können räumliche Aspekte und Strukturen in größeren Einzugsgebieten berücksichtigt werden. Diese stärken bzw. erweitern die lokalen Berechnungsgrundlagen und gewährleisten ein räumlich konsistentes Bild. Im Umkehrschluss kann das Durchflussregime regionalisiert werden, um Informationen an nicht bemessenen Orten bereitstellen zu können. Aus den genannten erweiterten Berechnungsgrundlagen lassen sich drei Anknüpfungspunkte schließen: (i) Es muss eine sehr flexible und dennoch plausible Darstellungsmöglichkeit des statistischen Niederschlagsregimes bis zum vermutlichen Maximum formuliert werden. (ii) Das entwickelte Niederschlagsregime muss mit dem Durchflussregime gekoppelt werden, um die Informationen nutzen zu können. (iii) Die anschließende Regionalisierung muss die verschachtelte baumartige Struktur hydrologischer Einzugsgebiete berücksichtigen. Punkt (i) wird durch eine zweigeteilte Verteilungsfunktion gelöst. Damit werden die ideale Darstellung des wahrscheinlicheren Bereiches und der plausible Verlauf bis zum Maximum miteinander verbunden. Bezüglich Punkt (ii) wird ein neues Kopplungsprinzip entwickelt. Dieses basiert auf der Annahme, dass ein je nach Gebiet gültiger maximaler Scheitelabflussbeiwert existiert, welcher asymptotisch erreicht wird. Im Ergebnis erhält die Durchflussverteilung mit der Abflussbeiwertapproximation einen oberen Grenzwert in Abhängigkeit von Niederschlagsmaximum und Scheitelabflussbeiwert. Entsprechend der Vorgaben in Punkt (iii) wird die Referenzpegelmethode entwickelt. Diese basiert darauf, dass ähnliche Einzugsgebiete äquivalente Hochwasserscheitel generieren. Damit können bekannte Hochwasserereignisse eines Referenzpegels auf unbeobachtete Teileinzugsgebiete übertragen werden. Bei der Wahl des Referenzpegels wird u.a. die Topologie der Einzugsgebiete berücksichtigt. Die gesamte Strategie kann auf große Untersuchungsgebiete angewandt werden. Am Beispiel sächsischer Flüsse wird die Vorgehensweise von der Datenhomogenisierung bis hin zum extremen Hochwasserdurchfluss an einem unbeobachteten Querschnitt erläutert. / The dimensioning of different constructions at and in streams respectively requires knowlegde on the flood situation at site. For instance flood protection concepts often base on a peak discharge of the annual recurrence probability of 1/100. A more severe flood of an annual recurrence probability of 1/10000 is used to confirm the stability of large dams following DIN 19700-12. Such a flood cannot be deduced from runoff data only, but rather shown in an idealised way. It results not least on the fact, that human can witness a very improbable flood event. But is it not possible to verify the improbability. Every modelling scheme that is confronted with the deduction of such an extreme flood event will be of limited reliability. The task\'s aim will therefore be to make the estimation more reliable. Generally the more data a model involves the more trustworthy the results will become. Directly coupled with runoff are historical flood data and qualitative details of small scale flood events respectively. Aside runoff information an important data source is precipitation data, which is coupled with runoff data in a causal way, and the possible maximum precipitation. If additionally whole regions are examined it is possible to consider regional facets and structures of larger catchments. These strengthen and expand local modelling basics and provide a regional consistent result. Vice versa the flood regime can be regionalised to gain information at unobserved cross sections. Out of the described expanded modelling basics follow three links: (i) It is necessary to find a flexible but still plausible formulation of the statistical precipitation regime until the probable maximum precipitation. (ii) The formulation of point i) has to be coupled with the flood regime to include these information. (iii) The adjacent regionalisation has to account for the nested and arboreal structure of hydrological catchments. Point (i) will be solved by a split distribution function. That allows the ideal display of the more probable domain as well as the characteristics until the probable maximum. Regarding point (ii) a new principle of coupling will be developed. It bases on the assumption that a regional maximum runoff coefficient exists and it will be gained asymptotically. As a result of the runoff coefficient approximation the runoff distribution function gets an upper limit depending on maximum precipitation and runoff coefficient. Respecting the guidelines in point (iii) the reference gauge method will be developed. It bases upon the fact, that likewise catchments generate equivalent peak discharges. For this reason it is possible to carry known peak discharges of a reference gauge onto unobserved subcatchments. Among other things the choice of a reference gauge accounts for the topology of the catchments. The whole strategy can be applied to large catchments what is exemplarily shown in Saxon streams. Beginning with a data homogenisation to the point of discharges of extreme low exceedance probabilities at unobserved cross sections the whole procedure is shown.
8

Large-scale hydrological modelling in the semi-arid north-east of Brazil

Güntner, Andreas January 2002 (has links)
Semi-arid areas are, due to their climatic setting, characterized by small water resources. An increasing water demand as a consequence of population growth and economic development as well as a decreasing water availability in the course of possible climate change may aggravate water scarcity in future, which often exists already for present-day conditions in these areas. Understanding the mechanisms and feedbacks of complex natural and human systems, together with the quantitative assessment of future changes in volume, timing and quality of water resources are a prerequisite for the development of sustainable measures of water management to enhance the adaptive capacity of these regions. For this task, dynamic integrated models, containing a hydrological model as one component, are indispensable tools.<br /> The main objective of this study is to develop a hydrological model for the quantification of water availability in view of environmental change over a large geographic domain of semi-arid environments.<br /> The study area is the Federal State of Ceará (150 000 km2) in the semi-arid north-east of Brazil. Mean annual precipitation in this area is 850 mm, falling in a rainy season with duration of about five months. Being mainly characterized by crystalline bedrock and shallow soils, surface water provides the largest part of the water supply. The area has recurrently been affected by droughts which caused serious economic losses and social impacts like migration from the rural regions. <br /> The hydrological model Wasa (Model of Water Availability in Semi-Arid Environments) developed in this study is a deterministic, spatially distributed model being composed of conceptual, process-based approaches. Water availability (river discharge, storage volumes in reservoirs, soil moisture) is determined with daily resolution. Sub-basins, grid cells or administrative units (municipalities) can be chosen as spatial target units. The administrative units enable the coupling of Wasa in the framework of an integrated model which contains modules that do not work on the basis of natural spatial units.<br /> The target units mentioned above are disaggregated in Wasa into smaller modelling units within a new multi-scale, hierarchical approach. The landscape units defined in this scheme capture in particular the effect of structured variability of terrain, soil and vegetation characteristics along toposequences on soil moisture and runoff generation. Lateral hydrological processes at the hillslope scale, as reinfiltration of surface runoff, being of particular importance in semi-arid environments, can thus be represented also within the large-scale model in a simplified form. Depending on the resolution of available data, small-scale variability is not represented explicitly with geographic reference in Wasa, but by the distribution of sub-scale units and by statistical transition frequencies for lateral fluxes between these units.<br /> Further model components of Wasa which respect specific features of semi-arid hydrology are: <br /> (1) A two-layer model for evapotranspiration comprises energy transfer at the soil surface (including soil evaporation), which is of importance in view of the mainly sparse vegetation cover. Additionally, vegetation parameters are differentiated in space and time in dependence on the occurrence of the rainy season. <br /> (2) The infiltration module represents in particular infiltration-excess surface runoff as the dominant runoff component. <br /> (3) For the aggregate description of the water balance of reservoirs that cannot be represented explicitly in the model, a storage approach respecting different reservoirs size classes and their interaction via the river network is applied. <br /> (4) A model for the quantification of water withdrawal by water use in different sectors is coupled to Wasa. <br /> (5) A cascade model for the temporal disaggregation of precipitation time series, adapted to the specific characteristics of tropical convective rainfall, is applied for the generating rainfall time series of higher temporal resolution.<br /> All model parameters of Wasa can be derived from physiographic information of the study area. Thus, model calibration is primarily not required.<br /> Model applications of Wasa for historical time series generally results in a good model performance when comparing the simulation results of river discharge and reservoir storage volumes with observed data for river basins of various sizes. The mean water balance as well as the high interannual and intra-annual variability is reasonably represented by the model. Limitations of the modelling concept are most markedly seen for sub-basins with a runoff component from deep groundwater bodies of which the dynamics cannot be satisfactorily represented without calibration.<br /> Further results of model applications are:<br /> (1) Lateral processes of redistribution of runoff and soil moisture at the hillslope scale, in particular reinfiltration of surface runoff, lead to markedly smaller discharge volumes at the basin scale than the simple sum of runoff of the individual sub-areas. Thus, these processes are to be captured also in large-scale models. The different relevance of these processes for different conditions is demonstrated by a larger percentage decrease of discharge volumes in dry as compared to wet years.<br /> (2) Precipitation characteristics have a major impact on the hydrological response of semi-arid environments. In particular, underestimated rainfall intensities in the rainfall input due to the rough temporal resolution of the model and due to interpolation effects and, consequently, underestimated runoff volumes have to be compensated in the model. A scaling factor in the infiltration module or the use of disaggregated hourly rainfall data show good results in this respect.<br /> The simulation results of Wasa are characterized by large uncertainties. These are, on the one hand, due to uncertainties of the model structure to adequately represent the relevant hydrological processes. On the other hand, they are due to uncertainties of input data and parameters particularly in view of the low data availability. Of major importance is:<br /> (1) The uncertainty of rainfall data with regard to their spatial and temporal pattern has, due to the strong non-linear hydrological response, a large impact on the simulation results.<br /> (2) The uncertainty of soil parameters is in general of larger importance on model uncertainty than uncertainty of vegetation or topographic parameters.<br /> (3) The effect of uncertainty of individual model components or parameters is usually different for years with rainfall volumes being above or below the average, because individual hydrological processes are of different relevance in both cases. Thus, the uncertainty of individual model components or parameters is of different importance for the uncertainty of scenario simulations with increasing or decreasing precipitation trends.<br /> (4) The most important factor of uncertainty for scenarios of water availability in the study area is the uncertainty in the results of global climate models on which the regional climate scenarios are based. Both a marked increase or a decrease in precipitation can be assumed for the given data.<br /> Results of model simulations for climate scenarios until the year 2050 show that a possible future change in precipitation volumes causes a larger percentage change in runoff volumes by a factor of two to three. In the case of a decreasing precipitation trend, the efficiency of new reservoirs for securing water availability tends to decrease in the study area because of the interaction of the large number of reservoirs in retaining the overall decreasing runoff volumes. / Semiaride Gebiete sind auf Grund der klimatischen Bedingungen durch geringe Wasserressourcen gekennzeichnet. Ein zukünftig steigender Wasserbedarf in Folge von Bevölkerungswachstum und ökonomischer Entwicklung sowie eine geringere Wasserverfügbarkeit durch mögliche Klimaänderungen können dort zu einer Verschärfung der vielfach schon heute auftretenden Wasserknappheit führen. Das Verständnis der Mechanismen und Wechselwirkungen des komplexen Systems von Mensch und Umwelt sowie die quantitative Bestimmung zukünftiger Veränderungen in der Menge, der zeitlichen Verteilung und der Qualität von Wasserressourcen sind eine grundlegende Voraussetzung für die Entwicklung von nachhaltigen Maßnahmen des Wassermanagements mit dem Ziel einer höheren Anpassungsfähigkeit dieser Regionen gegenüber künftigen Änderungen. Hierzu sind dynamische integrierte Modelle unerlässlich, die als eine Komponente ein hydrologisches Modell beinhalten. <br /> Vorrangiges Ziel dieser Arbeit ist daher die Erstellung eines hydrologischen Modells zur großräumigen Bestimmung der Wasserverfügbarkeit unter sich ändernden Umweltbedingungen in semiariden Gebieten.<br /> Als Untersuchungsraum dient der im semiariden tropischen Nordosten Brasiliens gelegene Bundestaat Ceará (150 000 km2). Die mittleren Jahresniederschläge in diesem Gebiet liegen bei 850 mm innerhalb einer etwa fünfmonatigen Regenzeit. Mit vorwiegend kristallinem Grundgebirge und geringmächtigen Böden stellt Oberflächenwasser den größten Teil der Wasserversorgung bereit. Die Region war wiederholt von Dürren betroffen, die zu schweren ökonomischen Schäden und sozialen Folgen wie Migration aus den ländlichen Gebieten geführt haben. <br /> Das hier entwickelte hydrologische Modell Wasa (Model of Water Availability in Semi-Arid Environments) ist ein deterministisches, flächendifferenziertes Modell, das aus konzeptionellen, prozess-basierten Ansätzen aufgebaut ist. Die Wasserverfügbarkeit (Abfluss im Gewässernetz, Speicherung in Stauseen, Bodenfeuchte) wird mit täglicher Auflösung bestimmt. Als räumliche Zieleinheiten können Teileinzugsgebiete, Rasterzellen oder administrative Einheiten (Gemeinden) gewählt werden. Letztere ermöglichen die Kopplung des Modells im Rahmen der integrierten Modellierung mit Modulen, die nicht auf der Basis natürlicher Raumeinheiten arbeiten.<br /> Im Rahmen eines neuen skalenübergreifenden, hierarchischen Ansatzes werden in Wasa die genannten Zieleinheiten in kleinere räumliche Modellierungseinheiten unterteilt. Die ausgewiesenen Landschaftseinheiten erfassen insbesondere die strukturierte Variabilität von Gelände-, Boden- und Vegetationseigenschaften entlang von Toposequenzen in ihrem Einfluss auf Bodenfeuchte und Abflussbildung. Laterale hydrologische Prozesse auf kleiner Skala, wie die für semiaride Bedingungen bedeutsame Wiederversickerung von Oberflächenabfluss, können somit auch in der erforderlichen großskaligen Modellanwendung vereinfacht wiedergegeben werden. In Abhängigkeit von der Auflösung der verfügbaren Daten wird in Wasa die kleinskalige Variabilität nicht räumlich explizit sondern über die Verteilung von Flächenanteilen subskaliger Einheiten und über statistische Übergangshäufigkeiten für laterale Flüsse zwischen den Einheiten berücksichtigt.<br /> Weitere Modellkomponenten von Wasa, die spezifische Bedingungen semiarider Gebiete berücksichtigen, sind: <br /> (1) Ein Zwei-Schichten-Modell zur Bestimmung der Evapotranspiration berücksichtigt auch den Energieumsatz an der Bodenoberfläche (inklusive Bodenverdunstung), der in Anbetracht der meist lichten Vegetationsbedeckung von Bedeutung ist. Die Vegetationsparameter werden zudem flächen- und zeitdifferenziert in Abhängigkeit vom Auftreten der Regenzeit modifiziert. <br /> (2) Das Infiltrationsmodul bildet insbesondere Oberflächenabfluss durch Infiltrationsüberschuss als dominierender Abflusskomponente ab. <br /> (3) Zur aggregierten Beschreibung der Wasserbilanz von im Modell nicht einzeln erfassbaren Stauseen wird ein Speichermodell unter Berücksichtigung verschiedener Größenklassen und ihrer Interaktion über das Gewässernetz eingesetzt. <br /> (4) Ein Modell zur Bestimmung der Entnahme durch Wassernutzung in verschiedenen Sektoren ist an Wasa gekoppelt. <br /> (5) Ein Kaskadenmodell zur zeitlichen Disaggregierung von Niederschlagszeitreihen, das in dieser Arbeit speziell für tropische konvektive Niederschlagseigenschaften angepasst wird, wird zur Erzeugung höher aufgelöster Niederschlagsdaten verwendet.<br /> Alle Modellparameter von Wasa können von physiographischen Gebietsinformationen abgeleitet werden, sodass eine Modellkalibrierung primär nicht erforderlich ist. <br /> Die Modellanwendung von Wasa für historische Zeitreihen ergibt im Allgemeinen eine gute Übereinstimmung der Simulationsergebnisse für Abfluss und Stauseespeichervolumen mit Beobachtungsdaten in unterschiedlich großen Einzugsgebieten. Die mittlere Wasserbilanz sowie die hohe monatliche und jährliche Variabilität wird vom Modell angemessen wiedergegeben. Die Grenzen der Anwendbarkeit des Modell-konzepts zeigen sich am deutlichsten in Teilgebieten mit Abflusskomponenten aus tieferen Grundwasserleitern, deren Dynamik ohne Kalibrierung nicht zufriedenstellend abgebildet werden kann.<br /> Die Modellanwendungen zeigen weiterhin:<br /> (1) Laterale Prozesse der Umverteilung von Bodenfeuchte und Abfluss auf der Hangskala, vor allem die Wiederversickerung von Oberflächenabfluss, führen auf der Skala von Einzugsgebieten zu deutlich kleineren Abflussvolumen als die einfache Summe der Abflüsse der Teilflächen. Diese Prozesse sollten daher auch in großskaligen Modellen abgebildet werden. Die unterschiedliche Ausprägung dieser Prozesse für unterschiedliche Bedingungen zeigt sich an Hand einer prozentual größeren Verringerung der Abflussvolumen in trockenen im Vergleich zu feuchten Jahren.<br /> (2) Die Niederschlagseigenschaften haben einen sehr großen Einfluss auf die hydrologische Reaktion in semiariden Gebieten. Insbesondere die durch die grobe zeitliche Auflösung des Modells und durch Interpolationseffekte unterschätzten Niederschlagsintensitäten in den Eingangsdaten und die daraus folgende Unterschätzung von Abflussvolumen müssen im Modell kompensiert werden. Ein Skalierungsfaktor in der Infiltrationsroutine oder die Verwendung disaggregierter stündlicher Niederschlagsdaten zeigen hier gute Ergebnisse.<br /> Die Simulationsergebnisse mit Wasa sind insgesamt durch große Unsicherheiten gekennzeichnet. Diese sind einerseits in Unsicherheiten der Modellstruktur zur adäquaten Beschreibung der relevanten hydrologischen Prozesse begründet, andererseits in Daten- und Parametersunsicherheiten in Anbetracht der geringen Datenverfügbarkeit. Von besonderer Bedeutung ist: <br /> (1) Die Unsicherheit der Niederschlagsdaten in ihrem räumlichen Muster und ihrer zeitlichen Struktur hat wegen der stark nicht-linearen hydrologischen Reaktion einen großen Einfluss auf die Simulationsergebnisse.<br /> (2) Die Unsicherheit von Bodenparametern hat im Vergleich zu Vegetationsparametern und topographischen Parametern im Allgemeinen einen größeren Einfluss auf die Modellunsicherheit.<br /> (3) Der Effekt der Unsicherheit einzelner Modellkomponenten und -parameter ist für Jahre mit unter- oder überdurchschnittlichen Niederschlagsvolumen zumeist unterschiedlich, da einzelne hydrologische Prozesse dann jeweils unterschiedlich relevant sind. Die Unsicherheit einzelner Modellkomponenten- und parameter hat somit eine unterschiedliche Bedeutung für die Unsicherheit von Szenarienrechnungen mit steigenden oder fallenden Niederschlagstrends.<br /> (4) Der bedeutendste Unsicherheitsfaktor für Szenarien der Wasserverfügbarkeit für die Untersuchungsregion ist die Unsicherheit der den regionalen Klimaszenarien zu Grunde liegenden Ergebnisse globaler Klimamodelle. Eine deutliche Zunahme oder Abnahme der Niederschläge bis 2050 kann gemäß den hier vorliegenden Daten für das Untersuchungsgebiet gleichermaßen angenommen werden.<br /> Modellsimulationen für Klimaszenarien bis zum Jahr 2050 ergeben, dass eine mögliche zukünftige Veränderung der Niederschlagsmengen zu einer prozentual zwei- bis dreifach größeren Veränderung der Abflussvolumen führt. Im Falle eines Trends von abnehmenden Niederschlagsmengen besteht in der Untersuchungsregion die Tendenz, dass auf Grund der gegenseitigen Beeinflussung der großen Zahl von Stauseen beim Rückhalt der tendenziell abnehmenden Abflussvolumen die Effizienz von neugebauten Stauseen zur Sicherung der Wasserverfügbarkeit zunehmend geringer wird.
9

Rainfall-runoff modeling in arid areas

Abushandi, Eyad 27 May 2011 (has links) (PDF)
The Wadi Dhuliel catchment/ North east Jordan, as any other arid area has distinctive hydrological features with limited water resources. The hydrological regime is characterized by high variability of temporal and spatial rainfall distributions, flash floods, absence of base flow, and high rates of evapotranspiration. The aim of this Ph.D. thesis was to apply lumped and distributed models to simulate stream flow in the Wadi Dhuliel arid catchment. Intensive research was done to estimate the spatial and temporal rainfall distributions using remote sensing. Because most rainfall-runoff models were undertaken for other climatic zones, an attempt was made to study limitations and challenges and improve rainfall-runoff modeling in arid areas in general and for the Wadi Dhuliel in particular. The thesis is divided into three hierarchically ordered research topics. In the first part and research paper, the metric conceptual IHACRES model was applied to daily and storm events time scales, including data from 19 runoff events during the period 1986-1992. The IHACRES model was extended for snowfall in order to cope with such extreme events. The performance of the IHACRES model on daily data was rather poor while the performance on the storm events scale shows a good agreement between observed and simulated streamflow. The modeled outputs were expected to be sensitive when the observed flood was relatively small. The optimum parameter values were influenced by the length of a time series used for calibration and event specific changes. In the second research paper, the Global Satellite Mapping of Precipitation (GSMaP_MVK+) dataset was used to evaluate the precipitation rates over the Wadi Dhuliel arid catchment for the period from January 2003 to March 2008. Due to the scarcity of the ground rain gauge network, the detailed structure of the rainfall distribution was inadequate, so an independent from interpolation techniques was used. Three meteorological stations and six rain gauges were used to adjust and compare with GSMaP_MVK+ estimates. Comparisons between GSMaP_MVK+ measurements and ground rain gauge records show distinct regions of correlation, as well as areas where GSMaP_MVK+ systematically over- and underestimated ground rain gauge records. A multiple linear regression (MLR) model was used to derive the relationship between rainfall and GSMaP_MVK+ in conjunction with temperature, relative humidity, and wind speed. The MLR equations were defined for the three meteorological stations. The ‘best’ fit of the MLR model for each station was chosen and used to interpolate a multiscale temporal and spatial distribution. Results show that the rainfall distribution over the Wadi Dhuliel is characterized by clear west-east and north-south gradients. Estimates from the monthly MLR model were more reliable than estimates obtained using daily data. The adjusted GSMaP_MVK+ dataset performed well in capturing the spatial patterns of the rainfall at monthly and annual time scales, while daily estimation showed some weakness for light and moderate storms. In the third research paper, the HEC-HMS and IHACRES rainfall runoff models were applied to simulate a single streamflow event in the Wadi Dhuliel catchment that occurred in 30-31.01.2008. Both models are considered suitable for arid conditions. The HEC-HMS model application was done in conjunction with the HEC-GeoHMS extension in ArcView 3.3. Streamflow estimation was performed on hourly data. The aim of this study was to develop a new framework of rainfall-runoff model applications in arid catchment by integrating a re-adjusted satellite derived rainfall dataset (GSMaP_MVK+) to determine the location of the rainfall storm. Each model has its own input data sets. HEC-HMS input data include soil type, land use/land cover map, and slope map. IHACRES input data sets include hourly rainfall and temperature. The model was calibrated and validated using observed stream flow data collected from Al-Za’atari discharge station. IHACRES shows some weaknesses, while the flow comparison between the calibrated streamflow results agrees well with the observed streamflow data of the HEC-HMS model. The Nash-Sutcliffe efficiency (Ef) for both models was 0.51, and 0.88 respectively. The application of HEC-HMS model in this study is considered to be satisfactory.

Page generated in 0.0704 seconds