Spelling suggestions: "subject:"nigella sativa"" "subject:"sigella sativa""
1 |
Effect of thymoquinone on odontogensis of human dental pulp cellsAlwafi, Hanadi 07 June 2018 (has links)
BACKGROUND: Thymoquinone (TQ) is one of the most active ingredients of Nigella sativa seed. TQ has a variety of pharmacologic properties including possess antinociceptive, antibacterial, anti-inflammatory, anti-oxidative activities and osteogenic effects on bone cells. Because of these properties, TQ might play an important role in odontogenic effects on human dental pulp cells and be used as a pulp capping material.
PURPOSE: This study evaluates the effect of TQ on the attachment efficiency, proliferation, and odontogenic differentiation of Human Dental Pulp Cells (HDPC's). The effect of TQ on odontogenic differentiation was also determined by evaluating alkaline phosphatase (ALP) activity and Dentin Sialoprotein (DSP) expression.
METHODS: Human dental pulp cells were cultured in triplicate using growth media with various TQ concentrations: 5 μM, 10μM, 15μM, 30μM, and 0μM as a control group at 7 and 21 days. Crystal violet staining was used to determine cell attachment efficiency and cell proliferation. The proliferation rates were normalized to cell numbers of each group at 16 hours. Cell differentiation was assessed by evaluating ALP activity and DSP expression. The data were normalized on per million cells basis. Univariate analyses including ANOVA and Student’s t-test were conducted.
RESULTS: Higher cell attachment efficiency was shown in all TQ groups at 16 hours (P<. 0001) except for the 5 μM group. A significantly higher cell proliferation rate was shown with low TQ concentration 5 μM at 7 days (P<. 0001) and at 21days (P<. 0.05). However, the cell proliferation rates decreased significantly with higher TQ concentrations at both time intervals (P< 0.0001). Similarly, prolifration rates decreased at 21 days TQ =10 μM (P< 0.0001) and TQ =15 μM (P=0.0006). Significantly higher levels of alkaline phosphatase activity were observed in all TQ groups at 7 days (P <0.0001) and at 21 days (P <0.0001). Dentin sialoprotein expression was significantly down regulated in all TQ groups at 7 days compared to the control (P <0.05), however, at day 21 only TQ =15 μM exhibited significant down regulation of DSP compared to the control (P <0.0001).
CONCLUSION: All tested TQ concentrations significantly enhanced cell attachment efficiency at 16 hours except TQ =5 μM. Cell proliferation rates were increased significantly by low TQ concentration 5 μM, and decreased significantly with higher TQ concentration 30 μM at 7 and 21 days. TQ exhibits odontogenic potential by inducing a significant increase in ALP activity at 7 and 21 days. TQ did not have any effect on DSP expression at 21 days except TQ =15 μM which significantly decreased DSP expression.
|
2 |
The effect of nigella sativa oil on male reproductive function in male Wistar rats exposed to an obesogenic dietJanuary 2020 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / Obesity is a growing public health concern globally, particularly in developed
countries such as the United States (US). More than 30% of Americans are
considered obese. In the past 20 years in America, incidence of obesity has
increased significantly (Mokdad et al., 2003). As a consequence, the Centers for
Disease Control (CDC) anticipates that 1 in 3 American adults will be diabetic by
2050 (Boyle et al., 2001; Hedley et al., 2004). The most important cause of obesity is
poor nutrition, absence of physical exercise and unfavourable lifestyle changes
(James et al., 2001).
|
3 |
Isolation and Characterization of Active Ingredients from Nigella Sativa for Antibacterial Screening.Kahsai, Alem Welderufael 16 August 2002 (has links) (PDF)
In the past two decades, few reports have confirmed the various antibacterial activities of total extract from the seeds of Nigella sativa (Black cumin). In attempts to identify the active ingredients in this extract, the seeds were extracted with hexane. The volatile oil obtained from the crude extract was shown to contain at least three distinct compounds, thymoquinone, p-cymene, and α-pinene, as confirmed by GC/MS and NMR spectroscopy. While p-cymene and α-pinene showed no antibacterial activities, thymoquinone, exhibited remarkable inhibition of the growth of various strains of bacteria. For instance, the IC50 and the Minimal Inhibitory Concentration (MIC) for thymoquinone were found to be 1.31 μg/mL and 3.6 μg/mL respectively, when tested against the gram-positive bacteria, S. aureus. It is also found that thymoquinone significantly inhibites the protein and RNA synthesis in S. aureus.
|
4 |
Preparation of polymeric nanoparticles for topical anti-inflammatory applications / Préparation de nanoparticules à base de polymère pour applications anti-inflammatoires topiquesBadri, Waisudin 19 June 2018 (has links)
L'objectif de cette thèse est d’encapsuler l'indométacine dans des nanoparticules polymériques en association à l’huile essentielle de Nigella Sativa L. extraite à partir de ses graines afin d’optimiser son utilisation par voie cutanée et potentialiser son activité anti-inflammatoire.Pour ce faire, des nanoparticules à base de poly-epsilon-caprolactone ont été préparées par nanoprécipitation. Une étude systématique a été menée pour comprendre l'effet de la variation des paramètres de préparation sur les propriétés colloïdales des nanoparticules obtenues. Une fois les différents paramètres optimisés, l'indométacine et l'huile essentielle de Nigella Sativa L. ont été encapsulées séparément dans les nanoparticules polymériques. Puis, l’ensemble, indométacine et huile essentielle de Nigella Sativa L. a été encapsulé. Les nanoparticules préparées ont à chaque fois été caractérisées notamment en termes de stabilité et de performance d’encapsulation. Ensuite, nous avons mené une étude ex vivo et in vivo des nanoparticules obtenues afin d’évaluer le potentiel de pénétration cutanée d’une part, et le potentiel clinique dans la prise en charge de l’inflammation / The objective of this PhD thesis was to extract the Nigella Sativa L. Seeds Essential Oil and its encapsulation together with indomethacin within polymeric nanoparticles in order to reduce taken amount and to enhance indomethacin cutaneous penetration, and anti-inflammatory activity. To this direction poly-epsilon-caprolactone based nanoparticles were designed using nanoprecipitation method. A systematic study was performed to figure out the effect of process and formulation parameters on the characteristics of obtained nanoparticles. Once the effects of all parameters were studied, then indomethacin and Nigella Sativa L. Seeds Essential Oil was encapsulated separately. Consequently, both together indomethacin and Nigella Sativa L. Seeds Essential Oil was encapsulated. Then prepared nanoparticles were characterized in terms of stability, encapsulation efficiency. In addition, ex vivo skin penetration and in vivo anti-inflammatory activity of designed nanoparticles was investigated
|
5 |
Thymoquinone is a novel ligand which activates Neu4 sialidase to promote a pro-inflammatory responseFinlay, Trisha 22 April 2009 (has links)
Thymoquinone (TQ), a volatile oil component of black seed oil (derived from Nigella sativa), has been shown to have various biological effects including disease treatment and prevention. TQ is believed to share similar properties to the benzoquinones already in use as therapeutic drugs. Based on previous reports on the anti-inflammatory properties of black seed oil and TQ, it was originally hypothesized that TQ would inhibit lipopolysaccharide (LPS)-induced cellular sialidase activity in an anti-inflammatory manner. Sialidase activity was tested on live mouse bone marrow derived primary macrophage cells, BMC-2 macrophage cells, human embryonic kidney epithelial (HEK293) cells and human fibroblast cells using an assay that measures the cleavage of the sialidase specific fluorescent substrate 2’-(4-methylumbelliferyl)-α-DN-acetylneuraminic acid (4-MUNANA). The cleavage of 4-MUNANA causes the release of free 4-methylumbelliferone, which fluoresces at 450nm (blue) after excitation at 365nm. Unexpectedly, TQ induced sialidase activation in all three cell lines and wild type primary macrophage cells. TQ was unable to induce sialidase activity in primary macrophage cells isolated from Neu4 knockout mice suggesting that the TQ activates Neu4 sialidase enzyme. TQ-induced sialidase activity in these live cells was found to occur through intermediate GPCR-associated guanine nucleotide Gαi subunit and matrix metalloproteinase 9 (MMP9) by using specific inhibitors. In addition, TQ was found to induce sialidase activity in Toll-like receptor-deficient HEK293 cells. These latter data suggested that TQ may be activating GPCR Gαi and MMP9 signaling associated with Neu4 sialidase independent of TLRs. It is proposed that TQ-induced sialidase activity may activate Toll-like receptors in macrophage cells and the subsequent production of pro-inflammatory cytokines in the absence of LPS. Immunocytochemical staining of BMC-2 cells shows that TQ induced NFκB activation. NFκB activation was confirmed with electrophoretic mobility shift assay (EMSA) and western immunoblotting techniques. Cytokine arrays were used to test the pro-inflammatory cytokine response induced in mice by 5 hour treatment of TQ, compared to LPS. Mice treated with TQ exhibited an increase in IL-1β, IL-6 and TNF-α production, similar to LPS treatment. Taken together, the findings in these studies suggest that TQ is a novel ligand for Neu4 sialidase activation which consequently induces pro-inflammatory cytokine responses. / Thesis (Master, Microbiology & Immunology) -- Queen's University, 2009-04-21 17:38:10.413
|
6 |
Étude des propriétés antidiabétiques de Nigella sativa : sites d’action cellulaires et moléculairesBenhaddou Andaloussi, Ali 02 1900 (has links)
Nigella sativa ou cumin noir est une plante et un condiment populaires. Les graines de N. sativa sont très utilisées en médecine traditionnelle des pays nord africains pour le traitement du diabète. Cependant, les mécanismes d'actions cellulaires et moléculaires via lesquels cette plante exerce son effet euglycémiant restent encore mal compris. Le but de notre étude est d'examiner l’effet de N. sativa sur la sécrétion d’insuline, le transport de glucose et sur les voies de signalisation impliquées dans l’homéostasie et le métabolisme de glucose, en utilisant des essais biologiques sur des cultures cellulaires murines (cellules β pancréatiques βTC, myoblastes C2C12, hépatocytes H4IIE et adipocytes 3T3-L1) et des études in vivo chez le rat normoglycémique et le Meriones shawi (rongeur) diabétique.
Chez les cellules β pancréatiques, N. sativa a augmenté leur prolifération ainsi que la sécrétion basale et gluco-stimulée de l’insuline. N. sativa a augmenté aussi la prise de glucose de 50% chez les cellules musculaires alors que chez les cellules graisseuses, la prise de glucose est augmentée jusqu’au 400%. Les expériences d’immunobuvardage de type western ont montré que N. sativa stimule les voies de signalisation de l’insuline (Akt et ERKs) et aussi celle insulino-indépendante (AMPK) chez les cellules C2C12. Par contre, chez les 3T3-L1, l’augmentation de transport de glucose est plutôt reliée à une activation de la voie de peroxisome proliferator activated receptor γ (PPARγ). Chez les hépatocytes, N. sativa augmente la stimulation des protéines intracellulaires Akt et 5' adenosine monophosphate-activated protein kinase (AMPK). Cette activation de l’AMPK est associée à un effet découpleur de la plante au niveau de la phosphorylation oxydative mitochondriale. Par ailleurs, chez les Meriones shawi diabétiques, N. sativa diminue graduellement la glycémie à jeun ainsi que la réponse glycémique (AUC) à une charge orale en glucose (OGTT) pour atteindre des valeurs semblables aux animaux témoins après quatre semaines de traitement. Une amélioration du profile lipidique est observée autant chez les Meriones shawi diabétiques que chez les rats normaux. Au niveau moléculaire, N. sativa augmente le contenu musculaire en glucose transporter 4 Glut4 et la phosphorylation de l’acetyl-coenzyme A carboxylase ACC dans le muscle soléaire et le foie chez les Mériones shawi diabétiques. Par contre, chez le rat normal, on assiste à une stimulation des voies de signalisation de l’insuline (Akt et ERK) au niveau hépatique.
En conclusion, nous avons confirmé l’action insulinotropique de N. sativa au niveau des cellules β pancréatiques et mis en évidence un effet proliférateur pouvant potentiellement s’avérer utile pour contrecarrer la perte de masse cellulaire observée chez les diabétiques. Notre étude a également mis en évidence pour la première fois que N. sativa exerce son activité antidiabétique par une combinaison d’effets insulino-mimétiques et insulino-sensibilisateurs directs permettant ainsi d’augmenter le transport de glucose des tissus périphériques. Cette action de N. sativa est liée à une stimulation des voies de signalisation intracellulaires insulinodépendantes et -indépendantes (AMPK) chez le muscle squelettique et le foie alors qu’elle passe par la voie des PPARγ au niveau du tissu adipeux. Finalement, l’étude in vivo vient confirmer l’effet antidiabétique de N. sativa. Notre apport novateur se situe au niveau de la démonstration que l’activité antidiabétique de N. sativa chez le Meriones shawi diabétique est la résultante des mêmes activités que celles déterminées au niveau de l’étude in vitro. En effet, N. sativa active la voie de l’AMPK, améliore la sensibilité à l’insuline et augmente l’insulinémie. Notre étude montre aussi que N. sativa possède une activité antilipidémiante. Ces résultats confirment le bien-fondé de l'utilisation ethnopharmacologique de N. sativa comme traitement du diabète et des perturbations du métabolisme lipidique qui y sont associées. De plus, les actions pléiotropiques de N. sativa en font un traitement alternatif ou complémentaire du diabète très prometteur qui encouragent à présent la tenue d’études cliniques de bonne qualité. / Nigella sativa or black cumin is a medicinal plant and a popular condiment. The seeds of N. sativa are widely used in the traditional medicine of North African countries for the treatment of diabetes. However, the cellular and molecular mechanisms of action through which the plant exerts its hypoglycemic effect remain unclear. The aim of our study is to determine the effect of N. sativa on insulin secretion, glucose transport and signaling pathways involved in the regulation of glucose homeostasis and metabolism. We carried out in vitro murine cell-based bioassays (βTC pancreatic β cells, C2C12 myoblasts, H4IIE hepatocytes and 3T3-L1 adipocytes) and in vivo studies in normoglycemic rats and diabetic Meriones shawi (rodent).
In pancreatic β cells, N. sativa increased cell proliferation as well as basal and glucose stimulated insulin secretion. It also enhanced glucose uptake in muscle cells by 50%. Moreover, the increase of glucose uptake in fat cells reached levels up to 400%. The experiments using Western immunoblot analysis showed that N. sativa stimulated insulin-dependent (Akt and ERK) as well as -independent (AMPK) pathways in C2C12 cells. In 3T3-L1 cells, the increase of glucose uptake was attributed to the activation of the peroxisome proliferator activated receptor γ (PPARγ) pathway. Similarly to C2C12 cells, N. sativa activated Akt and 5' adenosine monophosphate-activated protein kinase (AMPK) in hepatocytes. This activation of AMPK was associated with an uncoupling effect on mitochondrial oxidative phosphorylation.
In diabetic Meriones, N. sativa gradually decreased fasting blood glucose and the glycemic response to an oral glucose load (OGTT) to values similar to normal animals at the end of treatment. Improved lipid profile is observed in both animal models. At the molecular level, N. sativa increased muscle glucose transporter 4 (Glut4) content and acetyl-coenzyme A carboxylase (ACC) phosphorylation in soleus muscle and liver in diabetic Meriones shawi. In normal rats, the plant extract induced a stimulation of insulin signaling pathways (Akt and ERK) in the liver.
In conclusion, N. sativa has an insulinotropic effect on pancreatic β cells. Our study has revealed for the first time that N. sativa exerts its antidiabetic activity by a combination of insulino-mimetic and insulin-sensitizing effects, thereby increasing glucose uptake in peripheral tissues. This effect of N. sativa is linked to the stimulation of insulin-dependent and -independent (AMPK) pathway in skeletal muscle and liver, while in adipose tissue, the effect was attributed to the activation of PPARγ. Finally, the in vivo study confirms the antidiabetic and antihyperlipidemic effects of N. sativa. Our original contribution lies in the demonstration that the in vivo antidiabetic action of N. sativa is exerted though the same mechanisms identified by our in vitro studies. These data support the soundness of the ethnobotanical use of this plant for the treatment of diabetes and its associated dyslipidemia. Moreover, the pleiotropic actions of N. sativa make it a very promising alternative or complementary treatment for diabetes, which calls for immediate high quality clinical trials.
|
7 |
Étude des propriétés antidiabétiques de Nigella sativa : sites d’action cellulaires et moléculairesBenhaddou Andaloussi, Ali 02 1900 (has links)
Nigella sativa ou cumin noir est une plante et un condiment populaires. Les graines de N. sativa sont très utilisées en médecine traditionnelle des pays nord africains pour le traitement du diabète. Cependant, les mécanismes d'actions cellulaires et moléculaires via lesquels cette plante exerce son effet euglycémiant restent encore mal compris. Le but de notre étude est d'examiner l’effet de N. sativa sur la sécrétion d’insuline, le transport de glucose et sur les voies de signalisation impliquées dans l’homéostasie et le métabolisme de glucose, en utilisant des essais biologiques sur des cultures cellulaires murines (cellules β pancréatiques βTC, myoblastes C2C12, hépatocytes H4IIE et adipocytes 3T3-L1) et des études in vivo chez le rat normoglycémique et le Meriones shawi (rongeur) diabétique.
Chez les cellules β pancréatiques, N. sativa a augmenté leur prolifération ainsi que la sécrétion basale et gluco-stimulée de l’insuline. N. sativa a augmenté aussi la prise de glucose de 50% chez les cellules musculaires alors que chez les cellules graisseuses, la prise de glucose est augmentée jusqu’au 400%. Les expériences d’immunobuvardage de type western ont montré que N. sativa stimule les voies de signalisation de l’insuline (Akt et ERKs) et aussi celle insulino-indépendante (AMPK) chez les cellules C2C12. Par contre, chez les 3T3-L1, l’augmentation de transport de glucose est plutôt reliée à une activation de la voie de peroxisome proliferator activated receptor γ (PPARγ). Chez les hépatocytes, N. sativa augmente la stimulation des protéines intracellulaires Akt et 5' adenosine monophosphate-activated protein kinase (AMPK). Cette activation de l’AMPK est associée à un effet découpleur de la plante au niveau de la phosphorylation oxydative mitochondriale. Par ailleurs, chez les Meriones shawi diabétiques, N. sativa diminue graduellement la glycémie à jeun ainsi que la réponse glycémique (AUC) à une charge orale en glucose (OGTT) pour atteindre des valeurs semblables aux animaux témoins après quatre semaines de traitement. Une amélioration du profile lipidique est observée autant chez les Meriones shawi diabétiques que chez les rats normaux. Au niveau moléculaire, N. sativa augmente le contenu musculaire en glucose transporter 4 Glut4 et la phosphorylation de l’acetyl-coenzyme A carboxylase ACC dans le muscle soléaire et le foie chez les Mériones shawi diabétiques. Par contre, chez le rat normal, on assiste à une stimulation des voies de signalisation de l’insuline (Akt et ERK) au niveau hépatique.
En conclusion, nous avons confirmé l’action insulinotropique de N. sativa au niveau des cellules β pancréatiques et mis en évidence un effet proliférateur pouvant potentiellement s’avérer utile pour contrecarrer la perte de masse cellulaire observée chez les diabétiques. Notre étude a également mis en évidence pour la première fois que N. sativa exerce son activité antidiabétique par une combinaison d’effets insulino-mimétiques et insulino-sensibilisateurs directs permettant ainsi d’augmenter le transport de glucose des tissus périphériques. Cette action de N. sativa est liée à une stimulation des voies de signalisation intracellulaires insulinodépendantes et -indépendantes (AMPK) chez le muscle squelettique et le foie alors qu’elle passe par la voie des PPARγ au niveau du tissu adipeux. Finalement, l’étude in vivo vient confirmer l’effet antidiabétique de N. sativa. Notre apport novateur se situe au niveau de la démonstration que l’activité antidiabétique de N. sativa chez le Meriones shawi diabétique est la résultante des mêmes activités que celles déterminées au niveau de l’étude in vitro. En effet, N. sativa active la voie de l’AMPK, améliore la sensibilité à l’insuline et augmente l’insulinémie. Notre étude montre aussi que N. sativa possède une activité antilipidémiante. Ces résultats confirment le bien-fondé de l'utilisation ethnopharmacologique de N. sativa comme traitement du diabète et des perturbations du métabolisme lipidique qui y sont associées. De plus, les actions pléiotropiques de N. sativa en font un traitement alternatif ou complémentaire du diabète très prometteur qui encouragent à présent la tenue d’études cliniques de bonne qualité. / Nigella sativa or black cumin is a medicinal plant and a popular condiment. The seeds of N. sativa are widely used in the traditional medicine of North African countries for the treatment of diabetes. However, the cellular and molecular mechanisms of action through which the plant exerts its hypoglycemic effect remain unclear. The aim of our study is to determine the effect of N. sativa on insulin secretion, glucose transport and signaling pathways involved in the regulation of glucose homeostasis and metabolism. We carried out in vitro murine cell-based bioassays (βTC pancreatic β cells, C2C12 myoblasts, H4IIE hepatocytes and 3T3-L1 adipocytes) and in vivo studies in normoglycemic rats and diabetic Meriones shawi (rodent).
In pancreatic β cells, N. sativa increased cell proliferation as well as basal and glucose stimulated insulin secretion. It also enhanced glucose uptake in muscle cells by 50%. Moreover, the increase of glucose uptake in fat cells reached levels up to 400%. The experiments using Western immunoblot analysis showed that N. sativa stimulated insulin-dependent (Akt and ERK) as well as -independent (AMPK) pathways in C2C12 cells. In 3T3-L1 cells, the increase of glucose uptake was attributed to the activation of the peroxisome proliferator activated receptor γ (PPARγ) pathway. Similarly to C2C12 cells, N. sativa activated Akt and 5' adenosine monophosphate-activated protein kinase (AMPK) in hepatocytes. This activation of AMPK was associated with an uncoupling effect on mitochondrial oxidative phosphorylation.
In diabetic Meriones, N. sativa gradually decreased fasting blood glucose and the glycemic response to an oral glucose load (OGTT) to values similar to normal animals at the end of treatment. Improved lipid profile is observed in both animal models. At the molecular level, N. sativa increased muscle glucose transporter 4 (Glut4) content and acetyl-coenzyme A carboxylase (ACC) phosphorylation in soleus muscle and liver in diabetic Meriones shawi. In normal rats, the plant extract induced a stimulation of insulin signaling pathways (Akt and ERK) in the liver.
In conclusion, N. sativa has an insulinotropic effect on pancreatic β cells. Our study has revealed for the first time that N. sativa exerts its antidiabetic activity by a combination of insulino-mimetic and insulin-sensitizing effects, thereby increasing glucose uptake in peripheral tissues. This effect of N. sativa is linked to the stimulation of insulin-dependent and -independent (AMPK) pathway in skeletal muscle and liver, while in adipose tissue, the effect was attributed to the activation of PPARγ. Finally, the in vivo study confirms the antidiabetic and antihyperlipidemic effects of N. sativa. Our original contribution lies in the demonstration that the in vivo antidiabetic action of N. sativa is exerted though the same mechanisms identified by our in vitro studies. These data support the soundness of the ethnobotanical use of this plant for the treatment of diabetes and its associated dyslipidemia. Moreover, the pleiotropic actions of N. sativa make it a very promising alternative or complementary treatment for diabetes, which calls for immediate high quality clinical trials.
|
Page generated in 0.0741 seconds