• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 10
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 34
  • 32
  • 11
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Indução termoperiódica da nitrato redutase de membrana plasmática em abacaxizeiro (Ananas comosus) / Thermoperiodic induction of nitrate reductase associated with the plasma membrane in pineapple (Ananas comosus)

Alessandra de Souza Santos 14 October 2010 (has links)
A nitrato redutase (NR) atua juntamente com a nitrito redutase (NiR) catalisando a primeira etapa da redução do nitrato. A NR, no citossol, é ativada, principalmente, pela luz e reduz o nitrato a nitrito. Em seguida, este é reduzido a amônio. Trabalhos anteriores demonstraram que a isoforma citossólica da NR está presente nas folhas e raízes do abacaxizeiro; já as associadas à membrana plasmática (NRMP) ainda não se tem registro. Sabe-se, no entanto, que a NRMP apresenta modos diferentes de ativação, como já constatados para outras espécies. Dentre os fatores que afetam sua atividade pode-se citar a temperatura. Pesquisas realizadas no Laboratório de Fisiologia Vegetal do IBUSP, acerca da influência do termoperíodo sobre os metabolismos nitrogenado e fotossintético de plantas de abacaxizeiro, aventaram a hipótese de que haveria uma nitrato redutase específica de membrana plasmática presente nas células radiculares, a qual seria regulada por termoperíodo, diferindo, portanto, da isoforma citossólica presente nas folhas. Assim, o presente trabalho teve como objetivo principal demonstrar a existência de uma isoforma da NR associada à membrana plasmática, a qual seria responsável pelo incremento da atividade dessa enzima registrada nas raízes de Ananas comosus, quando plantas cultivadas in vitro são submetidas ao termoperíodo (28°C dia/ 15°C noite). Para tanto, determinou-se o tempo mínimo de exposição das plantas de abacaxizeiro ao termoperíodo, necessário à indução da nitrato redutase radicular. Além disso, estudou-se a influência da idade das plantas na resposta ao tratamento com baixa temperatura noturna. Plantas cultivadas in vitro com 90 dias de idade ou com idades variadas foram transferidas para câmaras de crescimento com temperatura constante (28°C dia/noite controle experimental) ou com termoperíodo (28°C dia/ 15°C noite), fotoperíodo de 16 horas e intensidade luminosa de 55 moles m-2 s -1. Elas permaneceram nessas condições por 1, 3, 5, 7, 15, 30, 40, 50 ou 60 dias. Após cada período, a atividade in vivo da NR foi analisada durante a fase de ausência de luz. Para que fosse possível identificar uma possível NRMP nas células radiculares de abacaxizeiro, um método de ensaio in vitro foi padronizado e a melhor técnica de isolamento de frações de membrana plasmática foi selecionada. Após as plantas com 60 dias de idade serem submetidas por 30 dias ao tratamento termoperiódico ou à temperatura constante, as frações de membrana plasmática das células radiculares foram isoladas e o ensaio in vitro da NR foi realizado, utilizando-se NADH, NADPH ou succinato como doadores de elétrons. Os resultados indicaram que o tempo mínimo de exposição das plantas de abacaxizeiro ao termoperíodo foi de 30 dias. O método de ensaio enzimático in vitro foi padronizado para as plantas de abacaxizeiro e a técnica de isolamento de frações de membrana plasmática que se mostrou mais adequada para essa bromélia foi a de fracionamento por sistema de duas fases com Dextran T-500 e PEG 3350. O grau de pureza das frações, avaliado pela detecção da atividade da enzima citoplasmática malato desidrogenase (MDH), foi em média de 95%, evidenciando a eficácia da pradronização do método. Os resultados obtidos para as frações de membranas plasmáticas, extraídas das raízes das plantas que estiveram sob o tratamento termoperiódico, mostraram que a baixa temperatura noturna influenciou positivamente a atividade da nitrato redutase. O aumento da atividade foi observado quando NADH, NADPH ou succinato foram utilizados como doadores de elétrons. Isso significa que, provavelmente, mais de uma isoforma da NRMP está presente nas raízes de abacaxizeiro. Além disso, há indícios de que a isoforma que está ligada externamente à membrana por uma âncora glicosídica (que utiliza succinato como doador de elétrons) está presente nas células radiculares do abacaxizeiro e respondeu positivamente ao estímulo da baixa temperatura noturna. Em contrapartida, nenhuma diferença pôde ser observada quando as atividades da NR foram medidas nas frações de citoplasma das plantas controle e daquelas que foram tratadas com termoperíodo. Não foi detectada atividade nas frações citossólicas quando succinato foi oferecido como poder redutor da NR. Concluiu-se, portanto, que o incremento na atividade da NR, verificado nas plantas que foram tratadas com termoperíodo, deveu-se à indução pela baixa temperatura noturna da NRMP. Esta pesquisa trouxe contribuições importantes acerca da existência de uma nitrato redutase associada à membrana plasmática em abacaxizeiro, nunca antes detectada em uma bromélia e muito pouco estudada nos demais vegetais. As padronizações realizadas serão essenciais para aplicação em outras pesquisas do Laboratório de Fisiologia Vegetal do IBUSP, abrindo oportunidades para se aprofundar ainda mais o tema sobre o controle da ativação da NR. / The nitrate reductase (NR) acts together with the nitrite reductase (NiR) to catalyze the first step of the nitrate reduction. The NR localized in the cytosol is activated mainly by light and reduces nitrate to nitrite, followed by its reduction to ammonium. Previous work demonstrated that the cytosolic isoform of NR is present in leaves and roots of Ananas comosus, although the isoform associated with the plasma membrane (PM-NR) has not yet been registered in this species. The PM-NR has different modes of activation in comparison to the cytosolic NR, as already demonstrated in other species. Among the factors that affect its activity can be mentioned the temperature. Experiments developed in the Laboratory of Plant Physiology of IBUSP hypothesized that exists a specific plasma membrane NR in plant roots regulated by thermoperiod, differing from the cytosolic isoform present in leaves. The present work aimed to demonstrate the existence of this isoform of NR present in the plasma membrane, which would be responsible for the increase of its activity in Ananas comosus roots when plants were cultivated in vitro under thermoperiod of 28°C day/ 15°C night. Initially, it was important to determine the minimum time of exposure to thermoperiod necessary for the induction of nitrate reductase in roots of pineapple plants. Furthermore, it was analyzed the influence of age in the response of plants to low night temperature treatment. For this purpose, plants with different ages cultivated in vitro were transferred to growth chambers either with constant temperature (28°C day/night experimental control) or with thermoperiod (28°C day/ 15°C night). The plants were cultivated in these conditions during 1, 3, 5, 7, 15, 30, 40, 50 or 60 days and then the in vivo NR activity was analyzed in the shoot and root tissues during the dark period. In order to identify a probable PM-NR in the pineapple root cells, it was also necessary to develop a NR in vitro assay protocol specific for Ananas comosus and the appropriate technique for plasma membrane isolation (Dextran T-500 and PEG 3350). The purity of the fractions, determined by the activity of cytoplasmic enzyme malate dehydrogenase (MDH), was on average 95%, indicating the effectiveness of the method. The next step was to evaluate the NR activity in citoplasmic and plasma membrane fractions of root tissues of Ananas comosus. Using 60 daysold plants exposed either to 30 days under the thermoperiodic treatment or to constant temperature, the plasma membrane fractions of roots were isolated and the in vitro NR assay was performed using NADH, NADPH or succinate as electron donators. The results indicated that the minimum thermoperiod exposure time necessary to induce NR activity was 30 days. Furthermore, it was demonstrated that low temperatures during the dark period positively influenced the activity of nitrate reductase in plasma membrane fractions and that the increase in its activity was observed when NADH, NADPH or succinate were used as electron donors. On the other hand, no difference in NR activity was observed in the cytoplasmic fraction of control plants and those which were treated with thermoperiod. Moreover, no NR activity was detected in cytosolic fractions when succinate was provided as electron donor. All together, this results showed that probably diferents isoforms are presents in pineapple roots. The extracellular isoform that is attached to the plasma membrane by a lipophilic anchor (using succinate as electron donor) can be present in root cells of pineapple and responded positively to the low night temperature stimulus. This study has made important contributions to the knowledge of the metabolism and physiology of Ananas comosus. This is the first time that the existence of a nitrate reductase associated with the plasma membrane, a very little studied enzyme, is documented in Bromeliaceae.
12

MOLECULAR CLONING, HETEROLOGOUS EXPRESSION, AND STEADY-STATE KINETICS OF CAMPYLOBACTER JEJUNI PERIPLASMIC NITRATE REDUCTASE

Breeanna Nicole Mintmier (9023459) 29 June 2020 (has links)
Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they catalyze. The dimethyl sulfoxide reductase (DMSOR) family is the most diverse family of molybdoenzymes and, the members of this family catalyze a myriad of reactions that are important in microbial life processes. Periplasmic nitrate reductase (Nap) is an important member of the DMSO reductase family that catalyzes the reduction of nitrate to nitrite, and yet the physiological role of Nap is not completely clear. Enzymes in this family can transform multiple substrates; however, quantitative information about the substrate preference is sparse and more importantly, the reasons for the substrate selectivity are not clear. Substrate specificity is proposed to be tuned by the ligands coordinating the molybdenum atom in the active site. As such, periplasmic nitrate reductase is utilized as a vehicle to understand the substrate preference and delineate the mechanistic underpinning of these differences. To this end, NapA from <i>Campylobacter jejuni </i>has been heterologously overexpressed, and a series of variants, where the molybdenum-coordinating cysteine has been replaced with another amino acid, has been produced. The kinetic and biochemical properties of these variants will be discussed and compared with those of the native enzyme, providing quantitative information to understand the function.
13

Molecular cloning, heterologous expression, and steady-state kinetics of camplyobacter jejuni periplasmic nitrate reductase

Mintmier, Breeanna 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they catalyze. The dimethyl sulfoxide reductase (DMSOR) family is the most diverse family of molybdoenzymes and, the members of this family catalyze a myriad of reactions that are important in microbial life processes. Periplasmic nitrate reductase (Nap) is an important member of the DMSO reductase family that catalyzes the reduction of nitrate (NO3-) to nitrite (NO2-), and yet the physiological role of Nap is not completely clear. Enzymes in this family can transform multiple substrates; however, quantitative information about the substrate preference is sparse and more importantly, the reasons for the substrate selectivity are not clear. Substrate specificity is proposed to be tuned by the ligands coordinating the molybdenum atom in the active site. As such, periplasmic nitrate reductase is utilized as a vehicle to understand the substrate preference and delineate the mechanistic underpinning of these differences. To this end, NapA from Campylobacter jejuni has been heterologously overexpressed, and a series of variants, where the molybdenum-coordinating cysteine has been replaced with another amino acid, has been produced. The kinetic and biochemical properties of these variants will be discussed and compared with those of the native enzyme, providing quantitative information to understand the function.
14

The Regulation of Nitrate Reductase on Corn Roots

Stevens, Donald Larry 09 1900 (has links)
<p> The experiments described in this thesis were performed to study the: 1. Role of nitrate in the induction of nitrate reductase. 2. Effect of nitrate on the in vivo regulation of nitrate reductase. 3. Role of atrazine on the regulation of nitrate reductase.</p> <p> The nitrate reductase assay system was improved up to 10 fold over that previously used (28). This improvement included the addition of oxalacetic acid and malic dehydrogenase to the system, thereby oxidizing all the NADH at the end of the reaction. NADH, which was a required co-factor in the assay system, interfered with the nitrite colour formation.</p> <p> When the induction kinetics of the enzyme are followed in root tip sections (0 -10 mm) of corn, a 25 minute lag period followed by a period of rapid nitrate reductase synthesis is seen. Neither the lag period nor the rate of increase in enzyme activity is affected by the concentration of the inducer used (1.0, 10.0 or 25.0 mM nitrate), However, with concentrations of nitrate from 0.1 mM to 10.0 mM, there is an increase in the final level of nitrate reductase. Nitrate levels between 10.0 mM to 100.0 mM did not alter this maximally induced level of enzyme.</p> <p> In mature root sections (25-35 mm from the tip), a longer lag time and a slower rate of increase in enzyme activity is seen. The system is not saturated with nitrate concentrations up to 100.0 mM.</p> <p> Cycloheximide, a protein synthesis inhibitor, was added to the roots after the enzyme had been maximally induced. This allowed one to study the in vivo turnover of the enzyme. Nitrate did not alter the in vivo turnover of nitrate reductase in corn roots.</p> <p> Atrazine is a herbicide that has been reported to increase nitrate reductase levels in corn (34). When used in the experiments described here, it was found to be ineffective in altering the nitrate reductase activity of the roots and leaves of corn.</p> / Thesis / Master of Science (MSc)
15

Understanding the role of anaerobic respiration in Burkholderia thailandensis and B. pseudomallei survival and virulence

Andreae, Clio Alexandra Martin January 2014 (has links)
Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic in Northern Australia and Southeast Asia. Melioidosis can present with acute, chronic and latent infections and can relapse several months or years after initial presentation. Currently not much is known about the ways in which B. pseudomallei can persist within the host, although it has been speculated that the ability to survive within an anaerobic environment will play some role. B. pseudomallei is able to survive anaerobically for extended periods of time but little is known about the molecular basis of anaerobic respiration in this pathogenic species. Bioinformatic analysis was used to determine the respiratory flexibility of both B. pseudomallei and B. thailandensis, identifying multiple genes required for aerobic and anaerobic respiration, and molybdopterin biosynthesis. Using B. thailandensis as a model organism a transposon mutant library was created in order to identify genes required for anaerobic respiration. From this library one transposon mutant was identified to have disrupted moeA, a gene required for the molybdopterin biosynthetic pathway. This B. thailandensis transposon mutant (CA01) was unable to respire anaerobically on nitrate, exhibiting a significant reduction in nitrate reductase activity, altered motility and biofilm formation, but did not affect virulence in Galleria mellonella. It was hypothesised that the reduction in nitrate reductase activity was contributing to the phenotypes exhibited by the B. thailandensis moeA transposon mutant. To determine whether this was true an in-frame narG deletion mutant was created in B. pseudomallei. Deletion of B. pseudomallei narG (ΔnarG) resulted in a significant reduction in nitrate reductase activity, anaerobic growth, motility and altered persister cell formation, and but did not affect virulence in G. mellonella or intracellular survival within J774A.1 murine macrophages. This study has highlighted the importance of anaerobic respiration in the survival of B. thailandensis and B. pseudomallei.
16

Etude de l'interaction des complexes respiratoires avec les coenzymes membranaires : le cas de la Nitrate réductase chez Escherichia coli / Study of the interaction of respiratory complexes with their membrane coenzymes : the case of the Escherichia coli Nitrate reductase A

Arias cartin, Rodrigo 06 March 2010 (has links)
Au cours de ma thèse, je me suis intéressée à l'interaction du complexe Nitrate Reductase A (NarGHI) avec les quinones et les lipides de la membrane chez E. coli. Nous avons identifié que les intermédiaires ménasmiquinones interagissent avec une liaison hydrogène avec l'histidine 66 du site Qd. Par ailleurs, nous avons mis en évidence par la fixation spécifique d'une molécule de cardiolipine est indispensable au fonctionnement du complexe NarGHI en permettant la fixation du quinol. Enfin, nous avons démontré l'existence d'une liaison fonctionnelle entre la voie de biosynthèse des hèmes et les complexes respiratoires via la protéine HemG, qui couple la réduction des quinones avec l'oxydation du protoporphyrinogène IX. Ces éléments prouvent qu'une voie catalytique peut contribuer à la synthèse ATP. L'ensemble de ces résultats indique une étroite interconnexion physique et fonctionnelle entre tous les éléments qui composent la membrane cytoplasmique d'E. coli / In this thesis, I study the interaction between the nitrate reductase A comlex (NarGHI) with the quinines and lipids of the E. coli cytoplasmic membrane. We demonstrate that His66 present at the Qd site is directly hydrogen bonded to both menasemiquinone and ubisemiquinone species. In addition, we show that functionning of the enzyme complex is controlled by cardiolipin binding in a specific cavity allowing quinol binding at the nearby QD site. Finally, we relealed that heme biosynthesis is a quinone-depended metabolic reaction during anaerobic growth of E. coli, in wich the HemG protein will direct electron transfer issued from oxidation of a heme biosynthetic intermediate towards quinone molecules via interaction between quinones, lipids and membrane- associated complexes that couple respiration and anabolic pathways to ATP generation in specialized domains of E. coli membrane
17

Metabolismus železa a mědi u jednobuněčných mořských řas rodu Ostreococcus / Iron and copper metabolism in marine microalgae of the genus Ostreococcus

Pilátová, Jana January 2015 (has links)
The smallest free living eukaryote known as Ostreococcus tauri became along with some related species great experimental models for iron uptake research in marine picoplankton. The ecological context of such topic is very interesting considering the nature of adaptation to iron limitation and its connection to the copper metabolism. Our experiments has simulated iron and copper limiting conditions of the ocean, as a control we used iron and copper repleted cultivation media. The maximum cell counts were two- to threefold higher in iron-repleted medium compared to iron- depleted one. There was the only exception showing no difference in growth - O. lucimarinus coming from open ocean with high irradiance levels and very low iron concentrations, which all together made it the best adapted species. The reinoculation of cell cultures after a week cultivation into to the same iron/copper containing media led to unmasking the copper effect on growth, which was much weaker than encountered with iron (again except of O. lucimarinus). Iron sufficiency positively affects heme b and chlorophyll a and b content with no significant copper dependency. The circadian timing of heme b and chlorophyll a and b content shows the increasing trend during the day followed by decrease at night. This might be caused by...
18

Metabolismo do nitrogênio e concentração de nutrientes no cafeeiro irrigado em razão da dose de N / Nitrogen metabolism and nutrient concentration in irrigated coffee plants due to nitrogen fertilization rates.

Paula Neto, Ana 29 January 2010 (has links)
A adubação nitrogenada e sua implicação no metabolismo do cafeeiro ainda não são bem conhecidas nas condições de campo, em cafeicultura altamente tecnificada, com temperatura média de outono-inverno superior a 22 ºC e maior quantidade de horas-luz. O objetivo da presente pesquisa foi avaliar a atividade das enzimas redutase do nitrato (RN), glutamina sintetase (GS) e urease em função da dose de nitrogênio (sem N, 200, 400, 600 e 800 kg ha-1). Avaliou-se também a influência das doses de N (uréia) nas concentrações de N-total, nitrato, amônio, clorofila e carotenóides presentes nas folhas; as flutuações de macro e micronutrientes; bem como a correlação entre a produtividade e doses de N. Objetivou-se também identificar a época do pico da atividade da RN. Os experimentos foram realizados no Oeste baiano e em Piracicaba, SP. As avaliações foram realizadas nas fases fenológicas: vegetação, antese, fruto chumbinho, granação e maturação. A maior atividade da RN ocorreu com o fornecimento de 800 kg ha-1 de N, sem variação nas demais doses, bem como não influenciou a atividade da GS e urease. As concentrações de nitrato e amônio não aumentaram com as doses de N, mas a concentração de aminoácidos foi crescente com a dose do nutriente. A maior atividade da RN verificou-se na fase de vegetação e granação dos frutos, a qual foi superior às 12:00 h, enquanto as atividades da GS e urease foram superiores na fase de granação dos frutos. A maior concentração de nitrato se deu entre a fase de fruto chumbinho e início da granação e do amônio no final da granação. O pico da atividade da RN aconteceu aos 25 dias após a adubação nitrogenada. O uso de altas doses de N não prejudicou a concentração de macro e micronutrientes foliar. Finalmente, a máxima produtividade do cafeeiro foi obtida com a aplicação de 400 kg ha-1 de N. / The nitrogen fertilization and its implication in the nitrogen metabolism of coffee plants are not well known in high technology production under field conditions with autumn-winter average temperatures above 22 º C and a larger photoperiod. The objective of this work was to evaluate the nitrate reductase, glutamine synthetase and urease activity due to nitrogen fertilization rates (without N, 200, 400, 600 e 800 kg ha-1). In the present work was evaluated also the influence of nitrogen rates on total nitrogen, nitrate, ammonium, chlorophylls and carotenoids concentration in the leaves, the variation of macro and micronutrients as well as the correlationship between coffee yield and nitrogen fertilization rates. Moreover, the goal of this study was to identify the period of peak activity of nitrate reductase. The experiment was carried out at western of Bahia State and Piracicaba, State of Sao Paulo, Brazil. The periods of evaluations were plant growth, anthesis, pin head fruits, filling and maturation fruits stage development. The highest nitrate reductase activity occurred with 800 kg ha-1 N supply and no changes on this enzyme were observed regarding other rates. Therefore, the nitrogen rates did not affect the glutamine synthetase and urease activity. The nitrate and ammonium concentration did not increase with nitrogen rates; however, the aminoacids concentration increased due to nitrogen fertilization rates. The highest activity of nitrate reductase was observed at 12:00h during plant growth and filling fruits stage development. On the other hand, the higher activity of glutamine synthetase and urease were during filling fruits stage. The highest nitrate concentration was detected during between pin head and beginning of filling fruits stage, and the highest ammonium concentration was during end of filling fruits stage development. The peak activity of nitrate reductase was 25 days after nitrogen fertilization. The high nitrogen rates did not affect the macro and micronutrients concentration in the leaves. The greater coffee yield was provided with 400kg ha-1 of nitrogen supply.
19

Avaliação do efeito fisiológico do uso de fungicidas na cultura de soja / Evaluation of physiological effect of fungicides on soybean crop

Rodrigues, Marco Antonio Tavares 11 December 2009 (has links)
A utilização de produtos de ação fitotônica tem estimulado pesquisas em diversas áreas da agricultura, dentre elas destaca-se a utilização de fungicidas de efeito fisiológico. Um dos mais promissores é a estrobilurina Piraclostrobina, que além da ação fungicida tem ocasionado aumento de produtividade atribuída aos efeitos fisiológicos proporcionados, os quais são conhecidos nas fases vegetativa e reprodutiva. Sendo assim, foram conduzidos experimentos em campo e em casa de vegetação durante quatro anos consecutivos (2004 a 2007) com o objetivo de avaliar o efeito fisiológico em diferentes variedades cultivadas de soja à aplicação da estrobilurina Piraclostrobina. Em 2004, o crescimento das variedades cultivadas de soja CD-208, BRS-133 e Conquista foi acompanhado ao longo do ciclo de cultivo em amostragens destrutivas a cada sete dias. O fungicida Piraclostrobina + Epoxiconazol foi aplicado no momento em que as plantas se encontravam nos estádios fenológicos R5, R4 e R3, respectivamente. As parcelas pulverizadas apresentaram maior produção de massa de matéria seca, maior índice de área foliar e maior produtividade. Em 2005, foram utilizadas as variedades cultivadas Conquista, CD-208 e Monsoy- 7501. Concluiu-se que o fungicida Piraclostrobina + Epoxiconazol promove: (i) aumento da fotossíntese líquida; (ii) melhoria da eficiência de assimilação de nitrogênio devido ao aumento da atividade da enzima nitrato redutase (ANR); (iii) diminuição da síntese de etileno (SE) (redução da senescência e queda de folhas); (iv) aumento da fitomassa seca total; (v) aumento da área foliar; (vi) aumento do teor de clorofila (efeito verde); (vii) melhoria dos resultados em ambientes com mais estresse; (viii) diminuição da incidência de Phomopsis spp. e de Cercospora kikuchii na semente; e (ix) aumento (tendência) do teor de óleo na semente. Em 2006, foram confirmados os resultados referentes aos anos anteriores utilizando as variedades cultivadas Monsoy-8008-RR, Monsoy-7878-RR e BRS-245-RR. Além disso, verificou-se que a aplicação de Piraclostrobina aumentou a atividade das enzimas antioxidantes (peroxidade, superóxido dismutase e catalase) e diminuiu a atividade da enzima polifenoloxidase e aumentou os teores dos hormônios citocininas (zeatinas e isopentinil adenina), giberelinas (GA3) e ácido indolbutírico. Em 2007, foi conduzido experimento em casa de vegetação com o objetivo de avaliar o tempo de resposta de variáveis fisiológicas à aplicação da estrobilurina Piraclostrobina. Utilizou-se a variedade cultivada Conquista em vaso. Na fase vegetativa (estádios fenológicos V2-V3 e V8-V9), foram observados efeitos fisiológicos nas trocas gasosas até 7 DAA e para a ANR e SE até 16 e 18 DAA, respectivamente. Na fase reprodutiva (estádios R1-R2 e R5.1), foi verificado aumento na atividade fotossintética até 10 DAA no estádio R1-R2 e até 7 DAA no estádio R5.1. Em relação ao incremento da SE e ANR, foram evidenciados efeitos da estrobilurina Piraclostrobina somente até 7 e 6 DAA no estádio R1 e 3 e 16 DAA no estádio R5.1, respectivamente. / The use of products with tonic action in plants has stimulated research in different areas of agriculture, where the use of fungicides with physiological effect became important. One of the most promising is the strobilurin Pyraclostrobin, that in addition to the fungicidal action has caused an increase in productivity attributed to the physiological effects provided, which are known in the vegetative and reproductive phases. Therefore, experiments were carried out in greenhouse and field during four consecutive years (2004 to 2007) with the purpose of evaluating the physiological effect on different soybean cultivars to application of the strobilurin Pyraclostrobin. In 2004, the soybean growth, cultivars CD-208, BRS-133 and Conquista, was monitored during the crop cycle using destructive sampling every seven days. The Pyraclostrobin + Epoxiconazole fungicide was applied at the time the plants were in R5, R4 and R3 growth stages, respectively. The treated areas showed higher production of dry matter, greater leaf area index and greater productivity. In 2005, the cultivars Conquista, CD-208 and Monsoy-7501 were used. It was concluded that Pyraclostrobin + Epoxiconazole promotes: (i) increasing of net photosynthesis, (ii) improving the efficiency of nitrogen assimilation due to the increasing of nitrate reductase activity (NRA), (iii) decreasing the ethylene production (reduction of senescence and leaf fall), (iv) increasing the total dry mass, leaf area and chlorophyll content (green effect), (v) improving the performance in environments with more stress; (vi) reducing the incidence of Phomopsis spp. and Cercospora kikuchii in the seed, and (vii) increasing (trend) of oil content in the seed. In 2006, the results were confirmed according to the previous years using the cultivars Monsoy-8008-RR, Monsoy-7878-RR and BRS-245-RR. Besides, it was found that the application of Pyraclostrobin increased the activity of antioxidant enzymes (peroxidase, superoxide dismutase and catalase) and reduced the PPO activity and increased levels of the following hormones: cytokinins (zeatin and adenine isopentinil), gibberellins (GA3) and indole butyric acid. In 2007, a greenhouse experiment was carried out to evaluate the response time of physiological variables to the application of strobilurin Pyraclostrobin. The Conquista cultivar was used in pots. In the vegetative phase (V2-V3 and V8-V9 growth stages), physiological effects on gas exchange were observed until 7 DAA and for the NRA and ethylene synthesis (ES) until 16 and 18 DAA, respectively. In the reproductive phase (R1-R2 and R5.1 stages), an increasing of photosynthetic activity was verified until 10 DAA at R1-R2 stage and up to 7 DAA at R5.1 stage. Regarding to the increasing of the ES and NRA, the strobilurin Pyraclostrobin effects were observed only until to 7 and 6 DAA at R1 stage and 3 and 16 DAA at R5.1 stage, respectively.
20

Metabolismo do nitrogênio e concentração de nutrientes no cafeeiro irrigado em razão da dose de N / Nitrogen metabolism and nutrient concentration in irrigated coffee plants due to nitrogen fertilization rates.

Ana Paula Neto 29 January 2010 (has links)
A adubação nitrogenada e sua implicação no metabolismo do cafeeiro ainda não são bem conhecidas nas condições de campo, em cafeicultura altamente tecnificada, com temperatura média de outono-inverno superior a 22 ºC e maior quantidade de horas-luz. O objetivo da presente pesquisa foi avaliar a atividade das enzimas redutase do nitrato (RN), glutamina sintetase (GS) e urease em função da dose de nitrogênio (sem N, 200, 400, 600 e 800 kg ha-1). Avaliou-se também a influência das doses de N (uréia) nas concentrações de N-total, nitrato, amônio, clorofila e carotenóides presentes nas folhas; as flutuações de macro e micronutrientes; bem como a correlação entre a produtividade e doses de N. Objetivou-se também identificar a época do pico da atividade da RN. Os experimentos foram realizados no Oeste baiano e em Piracicaba, SP. As avaliações foram realizadas nas fases fenológicas: vegetação, antese, fruto chumbinho, granação e maturação. A maior atividade da RN ocorreu com o fornecimento de 800 kg ha-1 de N, sem variação nas demais doses, bem como não influenciou a atividade da GS e urease. As concentrações de nitrato e amônio não aumentaram com as doses de N, mas a concentração de aminoácidos foi crescente com a dose do nutriente. A maior atividade da RN verificou-se na fase de vegetação e granação dos frutos, a qual foi superior às 12:00 h, enquanto as atividades da GS e urease foram superiores na fase de granação dos frutos. A maior concentração de nitrato se deu entre a fase de fruto chumbinho e início da granação e do amônio no final da granação. O pico da atividade da RN aconteceu aos 25 dias após a adubação nitrogenada. O uso de altas doses de N não prejudicou a concentração de macro e micronutrientes foliar. Finalmente, a máxima produtividade do cafeeiro foi obtida com a aplicação de 400 kg ha-1 de N. / The nitrogen fertilization and its implication in the nitrogen metabolism of coffee plants are not well known in high technology production under field conditions with autumn-winter average temperatures above 22 º C and a larger photoperiod. The objective of this work was to evaluate the nitrate reductase, glutamine synthetase and urease activity due to nitrogen fertilization rates (without N, 200, 400, 600 e 800 kg ha-1). In the present work was evaluated also the influence of nitrogen rates on total nitrogen, nitrate, ammonium, chlorophylls and carotenoids concentration in the leaves, the variation of macro and micronutrients as well as the correlationship between coffee yield and nitrogen fertilization rates. Moreover, the goal of this study was to identify the period of peak activity of nitrate reductase. The experiment was carried out at western of Bahia State and Piracicaba, State of Sao Paulo, Brazil. The periods of evaluations were plant growth, anthesis, pin head fruits, filling and maturation fruits stage development. The highest nitrate reductase activity occurred with 800 kg ha-1 N supply and no changes on this enzyme were observed regarding other rates. Therefore, the nitrogen rates did not affect the glutamine synthetase and urease activity. The nitrate and ammonium concentration did not increase with nitrogen rates; however, the aminoacids concentration increased due to nitrogen fertilization rates. The highest activity of nitrate reductase was observed at 12:00h during plant growth and filling fruits stage development. On the other hand, the higher activity of glutamine synthetase and urease were during filling fruits stage. The highest nitrate concentration was detected during between pin head and beginning of filling fruits stage, and the highest ammonium concentration was during end of filling fruits stage development. The peak activity of nitrate reductase was 25 days after nitrogen fertilization. The high nitrogen rates did not affect the macro and micronutrients concentration in the leaves. The greater coffee yield was provided with 400kg ha-1 of nitrogen supply.

Page generated in 0.0819 seconds