• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 140
  • 69
  • 27
  • 25
  • 12
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • Tagged with
  • 358
  • 332
  • 80
  • 66
  • 65
  • 60
  • 58
  • 57
  • 55
  • 50
  • 49
  • 38
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Efeito da aplicação de vinhaça na emissão de gases do efeito estufa e na comunidade desnitrificante e metanogênica do solo / Effect of vinasse application on the emission of greenhouse gases and denitrifying and methanogenic soil communities

Dias, Naissa Maria Silvestre 05 November 2013 (has links)
Existe uma preocupação mundial com as mudanças climáticas causadas pelo aumento da concentração de gases do efeito estufa (GEE) e consequente acréscimo na temperatura média da superfície terrestre. A queima de combustíveis fósseis é a maior causadora do aquecimento global e responsável por danos à saúde humana. É notável o esforço global em diversificar a matriz mundial de combustíveis líquidos, priorizando a substituição de fontes fósseis por renováveis. Tal substituição reforça a necessidade de avaliações de todas as emissões de GEE na cadeia produtiva da cana-de-açúcar. O Brasil é o maior produtor de etanol proveniente de cana-de-açúcar. Um importante co-produto deste processo produtivo é a vinhaça, sendo produzida em elevadas quantidades e constituída por uma expressiva carga orgânica. Esta é comumente aplicada ao solo por fertirrigação. Apesar de atuar beneficamente no solo, pouco se sabe sobre a capacidade deste co-produto de aumentar as emissões de GEE no solo. Assim, o objetivo foi avaliar o efeito da aplicação da vinhaça nas emissões de N2O e CH4 e na comunidade de bactérias desnitrificantes e metanogênicas do solo. As amostragens de GEE e solo foram em áreas de cana sem queima a partir da aplicação de doses vinhaça (0, 150, 300 e 450 m3 ha-1). O delineamento experimental realizado foi em cinco blocos casualizados, totalizando 25 câmaras de coleta de gases do efeito estufa. Amostras de solo foram coletadas em quatro períodos de amostragem após aplicação de vinhaça (0, 7, 15 e 30 dias), em dois anos consecutivos. Foram analisados os GEE, N2O e CH4, além da abundancia de genes por meio da técnica de qPCR. A fertirrigação via aplicação de vinhaça no solo, nos dois anos, proporcionou aumento nas emissões de N-N2O, principalmente nos primeiros dias após a aplicação. Contudo os fluxos de C-CH4 oscilaram indicando a capacidade do solo de servir ora como fonte ora como sumidouro deste GEE. Os fatores de emissão obtidos para aplicação de N na forma de vinhaça, dose de 300 m3 ha-1, foram de 0,08% para o primeiro ano e 0,07% para o segundo ano. A partir da técnica de qPCR, a abundância dos genes indicou que a introdução deste resíduo ao solo pode aumentar significativamente o total de bactérias no solo e a atividade do gene nosZ, contudo o mesmo não ocorre com o potencial de desnitrificação biológica (gene nirK) e nem com o gene mcrA (redução de CH4). Os resultados demonstram que a aplicação da vinhaça no solo influencia as emissões de GEE, assim como a comunidade microbiana do solo / There is a global concern with climate change caused by increased concentration of greenhouse gases (GHG) and consequent increase in the average temperature of the Earth surface. Fossil fuels burning is the major cause of global warming and it is responsible for damages to human health. Remarkable global efforts in diversifying liquid fuels have been attempted, giving priority to the replacement of fossil fuels to renewables. Such substitution reinforces the need of an evaluation of all GHG emissions in the production chain of sugarcane. Brazil is the largest producer of ethanol with source from sugarcane. An important co-product of the production process is vinasse, which is being produced in large quantities comprising a significant organic load. This is commonly applied over the ground by fertigation. Despite being good for the soil, little is known about the ability of this co-product of increasing GHG emissions. This work aimed to evaluate the effect of the application of vinasse in the emissions of N2O and CH4 and in the soil community of denitrifying and methanogenic bacteria. Sampling of GHG and soil were performed in areas of sugarcane without burning with the application of different vinasse doses (0, 150, 300 and 450 m3 ha-1). The experiment was conducted in five blocks, totaling 25 collection chambers of greenhouse gases. Soil samples were collected in four sampling periods after application of vinasse (0, 7, 15 and 30 days), in two consecutive years. We analyzed the GHG, N2O and CH4, and the abundance of genes by qPCR technique. The fertigation via vinasse application on the ground in two years provided an increase in emissions of N-N2O, especially in the first couple of days after application. However the flow of C-CH4 was variable indicating the ability of the soil to serve either as source or as sink of this GHG. The emission factor obtained for N application in the form of vinasse dose of 300 m3 ha-1 was 0.08% for the first year and 0.07% for the second year. By qPCR technique, the abundance of the genes indicated that the use of this residue to the soil can significantly increase the amount of bacteria in the soil and nosZ gene activity. However it does not occur with the potential for biological denitrification (nirK gene) or with the gene mcrA (reduction of CH4). These results demonstrate that the application of vinasse in the soil influences GHG emissions as well as the soil microbial community
232

Factors affecting nitric oxide and nitrous oxide emissions from grazed pasture urine patches under New Zealand conditions

Khan, Shabana January 2009 (has links)
New Zealand is dominated by its agricultural industry with one of the most intensive farming practices being that of intensive dairying. New Zealand currently has approximately 5.3 million dairy cows that excrete up to 2.2 L of urine, per urination event, up to 12 times per day. This equates to 5.1 x10¹⁰ L per year or enough urine to fill over 1.2 million milk tankers. This sheer volume of urine and its associated N content has implications for the cycling of N within the pasture soils utilised, and New Zealand’s greenhouse gas budget due to the emission of N₂O from urine affected areas. The emission of nitric oxide (NO) from agricultural systems is also receiving increasing attention due to concerns about alterations in the balance of atmospheric trace gases and sinks. Worldwide there is a dearth of information with respect to the emissions of NO from urine-N deposition onto soils with only two in situ studies and no studies on the effects of soil pH, environmental variables or urine-N rate on NO fluxes. This present study has provided some fundamental information on the factors and processes affecting the emission of NO from bovine urine applied to pasture soils. Five experiments were performed in total; three laboratory experiments and two field experiments. The first laboratory experiment (chapter 4) examined the effect of the initial soil pH on NOx emissions from urine-N applied at 500 kg N ha⁻¹. Soil was treated to alter the initial soil pH over the range of 4.4 to 7.6. Initial soil pH affected rates of nitrification which in turn affected the decline in soil pH. Emissions of NO increased with increasing soil pH. However, a strong positive linear relationship was established between the NO-N flux, expressed as a percentage of the net NH4⁺-N depletion rate, and the level of soil acidity. The NO-N fluxes were higher under the more acidic soil conditions where N turnover was lower. The fluxes of N₂O did not follow the same pattern and were attributed to biological mechanisms. In experiment two (chapter 5) the objectives were to concurrently examine the effects of varying the soil temperature and the water-filled pore space (WFPS) on NOx emissions from urine-N. In this experiment increasing the soil temperature enhanced both the rate of nitrification and the rate of decrease in soil pH. The relationship between the net NO-N flux, expressed as a percentage of the net NH4⁺-N depletion rate, and the level of soil acidity was again demonstrated at the warmest soil temperature (22°C) where soil acidification had progressed sufficiently to enable abiotic NO formation. The NO-N fluxes increased with decreasing soil moisture and increasing soil acidity indicating abiotic factors were responsible for NO production. The Q10 response of the NO flux between 5 to 15°C decreased from 4.3 to 1.5 as WFPS increased from 11% to 87% respectively. Fluxes of N₂O increased with increasing WFPS and temperature indicating that denitrification was the dominant process. Results from experiments 2 and 3 indicated that the rate of nitrification had a direct bearing on the ensuing soil acidity and that it was this in conjunction with the available inorganic-N pools that affected NOx production. Therefore the third experiment examined the effect of urine-N rate on NOx emissions, with urine-N rate varied over 5 levels from 0 to 1000 kg N ha⁻¹, the highest rate being that found under maximal urine-N inputs to pasture. Rates of nitrification were diminished at the highest rates of urine-N applied and decreases in soil acidity were not as rapid due to this. Again significant but separate linear relationships were developed, for each urine-N rate used, between the NO-N flux, expressed as a percentage of the net NH4⁺-N depletion rate, and the level of soil acidity. The slope of these relationships increased with increasing urine-N rate. The NO-N flux, expressed as a percentage of the net NH4⁺-N depletion rate, versus soil acidity was higher under 1000 kg N ha⁻¹, despite the lower soil acidity in this treatment. This indicated that the enhanced inorganic-N pool was also playing a role in increasing the NO flux. The N₂O fluxes were of limited duration in this experiment possibly due to conditions being disadvantageous for denitrification. In the field experiments two urine-N rates were examined under both summer and winter conditions at two urine-N rates. The emission factors after 71 days for NO-N in the summer were 0.15 and 0.20% of the urine-N applied for the 500 and 1000 kg N ha⁻¹ rates respectively while the respective N₂O-N fluxes were 0.14 and 0.16%. Under winter conditions the emission factors after 42 days for NO-N were <0.001% of the urine-N applied regardless of urine-N rate while the N₂O-N fluxes were 0.05 and 0.09% for the 500 and 1000 kg N ha⁻¹ urine-N rates respectively. The relationships and predictors of NO-N flux determined in the laboratory studies did not serve as strong indicators of the NO-N flux under summer conditions. Low emissions from urine-N over winter were due to the low soil temperatures and high WFPS. These studies have demonstrated that soil chemical and environmental variables influence the production of NOx and N₂O emissions from urine-N applied to soil and that seasonal effects have a significant impact on the relative amounts of NO-N and N₂O-N emitted from urine patches. Suggestions for future work are also made.
233

Physisorption of CO and N2O on ceria surfaces

Müller, Carsten January 2009 (has links)
Physisorption of CO and N2O on surfaces of ceria (CeO2) was investigated by means of high-level quantum-mechanical embedded cluster calculations. Both systems have high relevance in the field of environmental chemistry and heterogeneous catalysis. The CO/CeO2 system, has been investigated in a couple of both experimental and theoretical studies, but for the N2O/CeO2 system, this is the first study in the literature, experimental or theoretical. In physisorption, the interaction relies entirely on classical electrostatic interactions and electron dispersion forces. No covalent bond is formed between the molecule and the surface. A proper description of the dispersion requires some of the most accurate quantum-mechanical methods available, such as MP2 or CCSD(T). Moreover, even the most sophisticated methods cannot heal errors anywhere else in the theoretical treatment. Standard periodic models cannot be used with methods such as CCSD(T), but embedded cluster models can, and have been thoroughly explored in this thesis. In this thesis, embedded cluster models were constructed for the CeO2(110) and (111) surfaces. Using a range of assessment tests, it was verified that the electronic structure of the central region of a large and fully embedded surface cluster agrees well with the corresponding region in a periodic system. CO physisorption was investigated at the CCSD(T) level. Due to the prohibitively large expenses (in computer time) for standard CCSD(T) calculations, the method of increments, previously used in the literature for bulk systems, was extended to adsorption problems. It was found that, electron correlation contributes by 30 - 80% to the molecule-surface interaction and that the contribution depends on the topology of the surface. The calculated CO-ceria interaction energy is 20 kJ/mol for the (111) surface and 27 kJ/mol for the (110) surface. In low temperature TPD experiments for the N2O/CeO2(111) system, one surface species was found with an adsorption energy of about 29 kJ/mol. IR measurements showed stretching frequencies that are typically assigned to N2O adsorption with the O-end directed towards surface cations. However, theoretical calculations up to the MP2 level predicted two equally favorable adsorption species. Improvements in the structural model (larger clusters, consideration of molecule-induced relaxation) or the computational method (larger basis sets) did not affect this result. Only at the CCSD(T) level was one dominating surface species found, namely N2O adsorbed over a Ce ion, with the O-end of the molecule directed towards the surface. The calculated stretching vibrational frequency shifts (with respect to the gas phase) for this adsorbed species agree well with the measured IR spectra.
234

Spatial and temporal patterns of nitrous oxide and their relationship to soil water and soil properties

Yates, Thomas Trent 29 March 2006
Soil N2O flux is sensitive to soil moisture content and soil temperature, which are in turn sensitive to changes in climate and topography. Thus, N2O flux measurements exhibit a high degree of spatial and temporal variability. Knowing how the spatial distribution of soil N2O flux changes over time in a hummocky, agricultural landscape will identify measurement scales appropriate for estimates of N2O emissions from these types of terrains. As well, little is known about N2O emissions from uncultivated, ephemeral wetlands in agricultural landscapes, but this information is needed for accurate inventories of N2O emissions. The objectives of this study were to describe the spatial and temporal distribution of soil N2O flux in a hummocky agricultural landscape, and to understand how soil water and soil temperature control the spatial and temporal patterns of N2O flux. For a hummocky, agricultural landscape in the Dark Brown soil zone of Saskatchewan, N2O flux and related soil variables were measured along a 128-point transect multiple times over two years and concurrently from a 50 point, stratified design over three years. The spatial and temporal variation in N2O flux followed an event-based / background emission pattern. High flux events were triggered by precipitation events and recession of water from wetlands following spring snowmelt. Days with high mean flux were characterized by highly skewed (reverse J-shaped) distributions. High variance and coherency was observed at cultivated wetland elements during emission events. Strong location-dependent positive relationships were found between soil N2O flux and water-filled pore space or soil temperature, related to specific landscape elements. Background emissions were characterized by random variation or cyclic behavior that ranged in scale from 20 to 60 m. Cumulative emissions were highest from cultivated wetlands and basin centers of uncultivated wetlands, although emissions from cultivated wetlands were much more important to total cumulative emissions on an area basis. The results indicate that models intended to estimate N2O flux from these landscapes cannot rely on a single predictive relationship, but will have to incorporate predictive relationships localized at specific landscape elements depending on the time of year. At certain times predictive relationships cannot be used and up-scaled estimates will have to rely on direct measurement of emissions.
235

Landscape- and regional-scale quantification of nitrous oxide emission from a subhumid transitional grassland-forest region

Corre, Marife Detarot 01 January 1997 (has links)
This study was conducted to obtain landscape- and regional-scale estimates of N<sub>2</sub>O emissions for a representative part of the Black soil zone of Saskatchewan. A 4318-km<sup>2</sup> study region was stratified based on soil texture and land use. At the regional scale, soil texture was the proxy variable used to represent the differences in soil moisture regimes and soil fertility, whereas land use was the surrogate variable used to reflect the differences in N and C cycling. Soil landscapes were selected to cover the range of soil texture and land use characteristics in the study region. At the landscape level, shoulder and footslope complexes were used as the spatial sampling units to cover the range of topographical and soil characteristics within the landscape. At the landform complex level, soil moisture (as assessed by volumetric moisture content and water-filled pore space) was the most important factor controlling N<sub>2</sub>O emission. At the landscape scale, soil moisture was, in turn, influenced by topography, and on the seasonal scale it was affected by climatic factor(s) (e.g., precipitation). The annual N<sub>2</sub>O emissions were calculated as the sum of the spring and the summer to fall fluxes. The spring emission was estimated by interpolating the N<sub>2</sub>O fluxes measured on discrete sampling days, whereas the summer to fall emission was estimated by establishing regression models that related N<sub>2</sub>O fluxes to water-filled pore space. Regional estimates of N<sub>2</sub>O emissions were obtained using the GIS database of soil texture and land use types. The average annual fluxes for fertilized cropped, fallow, pasture, and forest areas, weighted by their areal extent in the different textural areas of the study region, were 2.01, 0.12, 0.04, and 0.02 kg N<sub>2</sub>O-N ha<sup>-1</sup> yr<sup>-1</sup> respectively. The weighted-average annual fluxes for the medium- to fine-textured and sandy-textured areas were 1.31 and 0.04 kg N<sub>2</sub>O-N ha<sup>-1</sup> yr$\sp{-1},$ respectively. For the study region, the weighted-average annual flux was 0.90 kg N<sub>2</sub>O-N ha<sup>-1</sup> yr$\sp{-1}.$
236

Spatial and temporal patterns of nitrous oxide and their relationship to soil water and soil properties

Yates, Thomas Trent 29 March 2006 (has links)
Soil N2O flux is sensitive to soil moisture content and soil temperature, which are in turn sensitive to changes in climate and topography. Thus, N2O flux measurements exhibit a high degree of spatial and temporal variability. Knowing how the spatial distribution of soil N2O flux changes over time in a hummocky, agricultural landscape will identify measurement scales appropriate for estimates of N2O emissions from these types of terrains. As well, little is known about N2O emissions from uncultivated, ephemeral wetlands in agricultural landscapes, but this information is needed for accurate inventories of N2O emissions. The objectives of this study were to describe the spatial and temporal distribution of soil N2O flux in a hummocky agricultural landscape, and to understand how soil water and soil temperature control the spatial and temporal patterns of N2O flux. For a hummocky, agricultural landscape in the Dark Brown soil zone of Saskatchewan, N2O flux and related soil variables were measured along a 128-point transect multiple times over two years and concurrently from a 50 point, stratified design over three years. The spatial and temporal variation in N2O flux followed an event-based / background emission pattern. High flux events were triggered by precipitation events and recession of water from wetlands following spring snowmelt. Days with high mean flux were characterized by highly skewed (reverse J-shaped) distributions. High variance and coherency was observed at cultivated wetland elements during emission events. Strong location-dependent positive relationships were found between soil N2O flux and water-filled pore space or soil temperature, related to specific landscape elements. Background emissions were characterized by random variation or cyclic behavior that ranged in scale from 20 to 60 m. Cumulative emissions were highest from cultivated wetlands and basin centers of uncultivated wetlands, although emissions from cultivated wetlands were much more important to total cumulative emissions on an area basis. The results indicate that models intended to estimate N2O flux from these landscapes cannot rely on a single predictive relationship, but will have to incorporate predictive relationships localized at specific landscape elements depending on the time of year. At certain times predictive relationships cannot be used and up-scaled estimates will have to rely on direct measurement of emissions.
237

Modellering av klimatpåverkan från Enköpings avloppsreningsverk : Processvalets betydelse när utsläppsvillkoren skärps / Modeling of the carbon footprint from Enköping wastewater treatment plant : The significance of the process technique when discharge limits are tightened

Särnefält, Hanna January 2015 (has links)
Trots att avloppsreningsverkens primära syfte är att minska människans påverkan på miljön genom att bland annat reducera halten näringsämnen i vattnet bidrar de samtidigt till den ökande växthuseffekten. FN:s klimatpanel pekar ut avloppsreningsverk som en signifikant källa till direkt emission av lustgas och metan och det sker även indirekta emissioner uppströms och nedströms reningsverket. Samtidigt som diskussionen om klimatpåverkan från avloppsreningsverk växer är många recipienter hårt belastade och nu väntas en skärpning av utsläppsvillkoren för att minska tillförseln av näringsämnen till de naturliga vattensystemen. Studier har visat att skärpta utsläppsvillkor ökar klimatpåverkan från avloppsreningsverk. Två miljöproblem, övergödning och klimatförändringar, står mot varandra och måste värderas för att framtidens avloppsrening ska kunna planeras. Syftet var att undersöka hur klimatpåverkan från avloppsreningsverk påverkas av teknikval och utsläppsvillkor. Simuleringsverktyget BioWin användes för att beräkna koldioxidavtryck från Enköpings framtida avloppsreningsverk. Tre olika processtekniker (aktivslamprocessen, membranbioreaktor och aktivslamprocessen med biologisk fosforreduktion) och sju olika utsläppsvillkor studerades. I beräkningarna togs hänsyn till både direkta och indirekta emissioner genom bland annat lustgasproduktion, kemikalieförbrukning och användning av el. Den konventionella aktivslamprocessen orsakade minst koldioxidavtryck medan avtrycket från den moderna membranbioreaktorn var överlägset störst. En skärpning av utsläppsvillkoren för kväve och fosfor gav en ökning av koldioxidavtrycket med upp till 55 % och det var speciellt kvävekravet som styrde ökningen. Då utsläppsvillkoren skärptes ökade avtrycket mest från membranbioreaktorn vilket indikerar att den ur klimatsynpunkt lämpar sig sämre vid skärpta utsläppsvillkor. Lustgasemission stod för den största delen av koldioxidavtrycket. Lustgasemissionen ökade vid skärpta utsläppsvillkor samt då kvävereningen stördes, exempelvis vid låga vattentemperaturer. Fler komponenter bör tas i åtanke vid utvärdering av miljöpåverkan från ett avloppsreningsverk, exempelvis övergödning. Detta skulle göra det möjligt att bedöma den totala miljövinsten, eller förlusten, med att skärpa villkoren. / Although the primary aim for wastewater treatment plants (WWTP) is to minimize the environmental impact by reducing the content of nutrients in the wastewater, they also contribute to the increasing greenhouse effect. The International Panel on Climate Change refer to WWTP:s as a significant source of direct emission of nitrous oxide and methane and indirect emission also occurs upstream and downstream the WWTP. As the discussion about climate impact from WWTP is growing, many recipients are congested and a tightening of the discharge limits is expected in order to reduce the load of nutrients on the natural water systems. Studies have shown that more stringent discharge limits increases the climate impact from WWTP. Two environmental problems, eutrophication and climate change, are facing each other and they must be valued in order for future WWTP to be planned. The aim was to investigate how the climate impact of wastewater treatment plants is affected by choice of technology and discharge limits. The simulation tool BioWin was used to calculate the carbon footprint (CF) from the future WWTP in the town of Enköping. Three different process technologies (activated sludge process, membrane bioreactor and activated sludge process with biological phosphorus removal) and seven different discharge limits were examined. The calculations took into account both direct and indirect emissions from e.g. production of nitrous oxide and use of electricity. The conventional activated sludge process caused the smallest CF, while the modern membrane bioreactor by far caused the largest CF. Tightening of the discharge limits gave an increase of the CF with up to 55 %, and especially the demands on nitrogen governed the increase. More stringent limits increased the CF from the membrane bioreactor the most, which indicates that from an environmental point of view, this technique is less suitable when limits are tightened. Emission of nitrous oxide accounted for the largest part of the CF and this emission increased as the discharge limits were tightened and when the nitrogen treatment was disturbed by, for instance, low water temperatures. More components should be accounted for when environmental impact from WWTP is investigated, e.g. eutrophication. This would make it possible to assess the overall environmental gain, or loss, from tightening of the discharge limits.
238

Grassland Management and Diversity Effects on Soil Nitrogen Dynamics and Losses

Hoeft, Ina 27 February 2012 (has links)
Grünland spielt eine große Rolle in der Landnutzung und nimmt ein Drittel der landwirtschaftlich genutzten Fläche von Europa ein. Als Konsequenz der Intensivierung landwirtschaftlicher Bewirtschaftungsmaßnahmen der letzten 60 Jahre nahm die Produktivität des Grünlands zu während die Diversität dieser Systeme abnahm. In Grünland-Ökosystemen spielt Stickstoff (N) eine Schlüsselrolle – N bedingt die Primärproduktion und beeinflusst die Biodiversität. Zudem kann eine steigende N-Verfügbarkeit gasförmige Emissionen, wie z.B. Distickstoffoxid (N2O) und Stickstoffmonoxid (NO) fördern, die eine große Rolle in der Atmosphäre spielen und zur globalen Erwärmung beitragen. Eine höhere Nitratauswaschung (NO3-) aus Böden kann eine Gefahr für die Grundwasserqualität sein. N-Verluste durch Ausgasung von N2O und NO sowie NO3--Auswaschung sind dabei die Folgen der mikrobiellen Prozesse Denitrifikation und Nitrifikation. In dieser Studie haben wir den Effekt von unterschiedlichen Bewirtschaftungsintensitäten und funktioneller Pflanzendiversität auf die N-Verluste und Ökosystemfunktionen untersucht. Die Studie ist Teil des Excellenzclusters „Funktionelle Biodiversitätsforschung“ der Georg-August-Universität Göttingen und wurde durch das Niedersächsische Ministerium für Wissenschaft und Kultur finanziert. Die Studie wurde im Rahmen von zwei interdisziplinären Projekten (BIOMIX & GRASSMAN) von 2008 bis 2010 im Solling, Niedersachsen, Deutschland durchgeführt. Wir untersuchten von Rindern und Schafen beweidetes Grünland (BIOMIX) und gemähtes Grünland mit unterschiedlichen Bewirtschaftungsintensitäten (GRASSMAN). In beiden Projekten wurde die funktionelle Pflanzendiversität durch Herbizide eingestellt. Der Fokus unserer Arbeit lag auf den N-Verlusten (N2O and NO Emissionen, NO3--Auswaschung) und der N Dynamik (Netto und Brutto Mineralisation). In GRASSMAN berechneten wir zusätzlich die N-Nutzungseffizienz und die N-Rückhalteeffizienz auf Ökosystemebene. Dabei ist die N-Nutzungseffizienz das Produkt der Aufnahmeeffizienz (definiert als N-Aufnahme der Pflanze pro verfügbares N) und der N-Nutzungseffizienz auf Pflanzenebene (definiert als Produktivität pro N-Aufnahme der Pflanze). Darüber hinaus berechnen wir N-Rückhalteeffizienz in Böden als einen Index, der das Verhältnis von N-Verlusten zu dem im Grünland verbleibenden N beschreibt. In BIOMIX haben wir die Auswirkung von Beweidung und Pflanzenarten-zusammensetzung auf N2O and NO Emissionen untersucht. Die mit einem Herbizid gegen Dikotyle vorbehandelten Weiden wurden mit Rindern oder Schafen Rotationsweise beweidet. Mittlere N2O Emissionen lagen bei 38.7 µg N2O-N m-2 h-1, mittlere NO Emissionen betrugen 2.4 µg NO-N m-2 h-1. Kumulative NO-N Emissionen waren höher auf den von Schafen beweideten Flächen als auf den von Rindern beweideten Flächen. In einem kontrollierten Applikations-Experiment führte die Behandlung mit Rinderurin zu höheren N2O Emissionen als die Behandlung mit Schafurin. Die Emissionshöchstwerte von 1921 µg N2O-N m-2 h-1 bei Behandlung mit Rinderurin im Vergleich zu 556 µg N2O-N m-2 h-1 bei Schafurin standen im Zusammenhang mit unterschiedlichen N-Einträgen pro Ausscheidung der Tiere. Die Emissionshöchstwerte der mit Dung behandelten Flächen waren im Vergleich mit den jeweiligen Urinbehandlungen viel geringer. Die N2O Emissionsfaktoren betrugen 0.4% für Rinderurin, 0.5% für Schafurin, 0.05% für Rinderdung und 0.09% für Schafdung. Sowohl das Beweidungs-Experiment, als auch das kontrollierte Applikations-Experiment zeigten, dass die Pflanzenartenzusammensetzung auf N-Emissionen im Vergleich zum Einfluss der Weidetierart auf N-Emissionen unbedeutend war. Trotz höherer N-Einträge auf Rinderweiden waren die N-Emissionen aus der Schafbeweidung höher. Wir führten dies auf die gleichmäßigere Verteilung von Schafs-Exkrementen im Vergleich zu Rindern-Exkrementen zurück. In GRASSMAN untersuchten wir die Auswirkungen von unterschiedlichen Bewirtschaftungsregimen (Düngung und Schnittintensität) und Pflanzenarten-zusammensetzung auf die N-Verluste (N2O Emissionen, NO3- Auswaschung) und die N-Dynamik (Netto und Brutto Mineralisation) und kalkulierten die N-Nutzungseffizienz und die N-Rückhalteeffizienz. Ein dreifaktorielles Design mit folgenden Faktoren wurde über einen Zeitraum von zwei Jahren etabliert: Düngung (180 – 30 – 100 kg NPK ha-1 yr-1 und keine Düngung), Schnittintensität (ein- und dreimal pro Jahr) und Pflanzenartenzusammensetzung (eine unbehandelte Kontrolle, eine Dikotyl-erhöhte und eine Monokotyl-erhöhte Grasnarbe). In 2009 wurden die N2O Emissionen erheblich von beiden Bewirtschaftungsfaktoren (Düngung und Schnittintensität) beeinflusst, während in 2010 nur die Düngung die N2O Emissionen beeinflusste. In 2009 wurden NO3- Auswaschungsverluste durch Düngung und in 2010 von beiden Bewirtschaftungsfaktoren (Düngung und Schnittintensität) beeinflusst. Die Netto N-Mineralisation Raten wurden in 2009 nur von der Düngung beeinflusst. In 2010, zeigte nicht nur die Düngung, sondern auch die Schnittintensität einen Einfluss auf die Netto N-Mineralisation Raten. Weder die Bewirtschaftung (Düngung) noch die Pflanzenartenzusammensetzung hatte einen Einfluss auf die Brutto N-Mineralisation. Die N-Nutzungseffizienz wurde vor allem durch die Düngung und als weiterer Faktor durch die Schnittintensität in 2009 beeinflusst, welche 41% bzw. 3% der Varianz erklärten. In 2010 hatte die Düngung mit 24% der erklärten Varianz einen geringeren Effekt auf die N-Nutzungseffizienz, während die Auswirkungen der Schnittintensität (12%) und die Pflanzenartenzusammensetzung (6%) stärker ausgeprägt waren. Die N-Nutzungseffizienz war auf ungedüngten Flächen größer als auf gedüngten, in den dreimal geschnittenen Flächen höher als in den einmal geschnittenen, und in der unbehandelten Kontrolle höher als in der Monokotyl-erhöhte oder Dikotyl-erhöhte Grasnarbe. Düngung verringert die N-Nutzungseffizienz durch die Abnahme in der N-Aufnahmeeffizienz und der N-Nutzungseffizienz auf Pflanzenebene, während die Schnittintensität und die Pflanzenartenzusammensetzung nur durch die N-Aufnahmeeffizienz beeinflusst werden. Die N-Rückhalteeffizienz wurde nur für 2010 berechnet und wurde durch die Düngung und die Pflanzenartenzusammensetzung mit 22% und 17% der erklärten Varianz beeinflusst. N-Rückhalteeffizienz nahm in der Reihenfolge unbehandelte Kontrolle > Dikotyl-erhöhte > Monokotyl-erhöhte Grasnarbe mit einem signifikanten Unterschied zwischen der unbehandelten Kontrolle und der Monokotyl-erhöhten Grasnarbe ab. Die N-Rückhalteeffizienz ist mit dem mikrobiellen Ammonium (NH4+) und der mikrobiellen Biomasse hoch und mit der N-Aufnahme der Pflanzen nur gering korreliert, was die Bedeutung der mikrobiellen N Retention im System Boden-Pflanze unterstreicht. Unsere Ergebnisse zeigen, dass die Bewirtschaftung der wichtigste und bestimmende Faktor der Ökosystemfunktionen eines Grünlands ist. Düngung, Schnittintensität und Beweidung beeinflussen die N-Nutzungseffizienz, die N-Rückhalteeffizienz und die N-Verluste. Die Zusammensetzung der botanischen Grasnarbe hat einen geringen Einfluss auf den N Kreislauf oder die N-Nutzungs- und die N-Rückhalteeffizienz. Wobei die Pflanzenartenzusammensetzung der unbehandelten Kontrolle (~70% Monokotyle und ~30% Dikotyle), die sich unter der extensiven Langzeit-Bewirtschaftung eingestellt hatte, die höchsten Effizienzen zeigte - sowohl eine Erhöhung der Monokotyledonen als auch eine Erhöhung der Dikotyledonen führte zu einer Verringerung der Effizienzen. Darüber hinaus sind N-Nutzungs- und N-Rückhalteeffizienz geeignete Werkzeuge, die sich zur Evaluierung ökologischer Nachhaltigkeit von Pflanzenartenzusammensetzungen und Management-Praktiken im Grünland eignen.
239

CONSERVATION AGRICULTURE IN KENTUCKY: INVESTIGATING NITROGEN LOSS AND DYNAMICS IN CORN SYSTEMS FOLLOWING WHEAT AND HAIRY VETCH COVER CROPS

Shelton, Rebecca Erin 01 January 2015 (has links)
Unintentional nitrogen (N) loss from agroecosystems produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, adoption of conservation agricultural management practices, such as no-till and cover cropping, has increased. This study assessed N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems across a year. Three systems were evaluated: 1) an unfertilized organic system with cover crops Vicia villosa, Triticum aestivum, or a mix of the two; 2) an organic system with a Vicia cover crop employing three fertilization schemes (0 N, organic N, or a cover crop N-credit approach); 3) a conventional system with a Triticum cover crop and three fertilization techniques (0 N, urea N, or organic N). During cover crop growth, species affected N leaching but gaseous emissions were low across all treatments. During corn growth, cover crop and fertilizer approach affected N loss. Fertilized treatments had greater N loss than unfertilized treatments, and fertilizer type affected gaseous fluxes temporally and in magnitude. Overall, increased N availability did not always indicate greater N loss or yield, suggesting that N conserving management techniques can be employed in conservation agriculture systems without sacrificing yield.
240

Soil greenhouse gas fluxes under elevated nutrient input along an elevation gradient of tropical montane forests in southern Ecuador

Müller, Anke Katrin 30 September 2014 (has links)
Los suelos de los bosques tropicales desempeñan un papel importante en el clima de la Tierra mediante el intercambio con la atmosfera de grandes cantidades de gases de efecto invernadero (GEI). Sin embargo, esta importante función podría ser alterada por las actividades humanas causando el aumento en la deposición de nutrientes en los ecosistemas terrestres, especialmente en las regiones tropicales. Las causas de cómo el incremento de las cantidades de nutrientes está afectando los flujos de suelo de los GEI de los bosques tropicales es relativamente poco conocida, por ello los monitoreos de nutrientes in situ de los bosques montanos tropicales (BHT) son aún menos comprendidos. Ya que los BHT representan alrededor del 11-21% de la superficie forestal tropical, es de vital importancia predecir y cuantificar los cambios en los flujos de GEI del suelo en respuesta a la adición de nutrientes ya que podrían favorecer la retroalimentación a otros cambios globales. Esta tesis tiene como objetivo cuantificar el impacto de adición moderada de nitrógeno (N) y/o fósforo (P) en los flujos de tres GEI en suelo: dióxido de carbono (CO2), óxido nitroso (N2O) y el metano (CH4), a lo largo de un gradiente altitudinal (1000 m, 2000 m, 3000 m) de los BHT primarios en el sur de Ecuador. Desde hace más de cinco años, se ha medido los flujos de GEI del suelo en un experimento de manipulación de nutrientes (‘NUMEX’, por sus siglas en inglés), con replicas para control, y la adición de N (50 kg N ha-1 año-1), P (10 kg P ha-1 año-1) y N+P. Las mediciones in situ se realizaron mensualmente utilizando cámaras ventiladas estáticas, seguido por un análisis de cromatografía de gases para conseguir una perspectiva más profunda sobre los procesos implicados en el intercambio suelo-atmósfera de GEI. Se realizaron nuevas investigaciones incluyendo el monitoreo de factores básicos de control (i.e. temperatura del suelo, humedad y las concentraciones del N mineral), los diferentes componentes de los flujos de CO2 del suelo, tasas de reciclaje netos de N y fuentes de los flujos de N2O del suelo. Con este propósito, se utilizó la extracción de hojarasca y técnicas de excavación de zanjas (trenching technique), incubación de las muestras in situ (buried bag method) y el etiquetaje de 15N de corto plazo. Los flujos de GEI del suelo en los bosques que estudiados se mostraron en el rango de aceptado de los flujos de gases de otras BHT en elevaciones comparables, excepto para el N2O. Los flujos de N2O, que se derivan principalmente de la des nitrificación, fueron bajos para un TMF lo que se puede atribuir a los ciclos conservativos de N del suelo en nuestros sitios de estudios. Los suelos fueron fuentes de CO2 y N2O (la intensidad del recurso disminuye al aumentar la altitud) y en todas las elevaciones el CH4 es bajo. Encontramos efectos de los nutrientes en todos los flujos de GEI medidos en cada elevación. Las respuestas de los flujos de CO2 del suelo cambian con la duración y el tipo de nutrientes adicionado. En 1000 m, la adición del N no afecta los flujos de CO2 del suelo, mientras que las adiciones de P y N+P disminuyeron los flujos en el primer y cuarto a quinto año. En 2000 m., la adición de N y N+P incrementa los flujos de CO2 en el primer año; a partir de entonces, la adición del N disminuye los flujos mientras que la adición de N + P no mostro ningún efecto la adición de P carece de efectos. En 3000 m, la adición de N además incrementó los flujos de CO2 constantemente; la adición de P y N+P aumentaron los flujos sólo en el primer año a partir de entonces no existió ningún efecto. Los efectos diferenciales de los nutrientes estuvieron relacionados a un estatus del N y P y respuestas variadas de los componentes de la respiración del suelo. Las respuestas de los flujos de N2O y CH4 a la adición de nutrientes mostraron gran variabilidad entre años. Los flujos de N2O no se vieron afectados por la adición de tres a cinco años de N a pesar de las diferencias significativas observadas durante los dos primeros años del mismo experimento. Atribuimos la ausencia de las respuestas en años mas tardíos debido a los contenidos bajos de humedad del suelo en nuestro periodo de monitoreo 2010-2012. En todo el gradiente altitudinal, la adición de P disminuyó los flujos de N2O y las concentraciones de N mineral, presumiblemente debido a que alivió de la limitación del P en la producción primaria neta, lo que aumentó la captación de N a través de las plantas. La adición de N+P además mostró tendencias similares las respuestas a la adición de N solamente, pero con efectos menos fuertes debido a los efectos contrapuestos de la adición de P. Durante los dos primeros años de la adición de nutrientes, los flujos de CH4 no se vieron afectados en ninguna elevación, lo cual atribuimos a la combinación de cantidades moderadas de nutrientes añadidos, la fuerte inmovilización de nutrientes, y la separación de la más alta capacidad de absorción de CH4 en el subsuelo de la superficie del suelo donde se añaden fertilizantes. En el tercer a quinto año, la adición de nutrientes del suelo aumentaron la captación de CH4, aunque los efectos de N y P variaron a lo largo del gradiente altitudinal: en 1000 m, la adición de N y N+P aumentó la captación anual de CH4 a 20-60%; en 2000 m P y N+P incrementaron la captación a 21-50%; y en 3000 m la adición de P y N+P incrementó la captación de CH4 a 34-40%. Estos efectos diferenciales de la adición de nutrientes pueden estar relacionados con el estatus inicial de del suelo y respuesta diferenciales de otros componentes del ecosistema a la adición de nutrientes en cada elevación. Demostramos que los flujos de GEI del suelo y consecuentemente la red potencial de calentamiento global del suelo pueden cambiar considerablemente a lo largo de un gradiente de elevación, siguiendo una tendencia general de disminución con el aumento de la elevación. Los resultados indican además que la elevada deposición de N y P puede afectar los flujos de GEI del suelo en los BHT Andinos, pero las respuestas a los flujos de GEI a la adición de nutrientes depende del estatus inicial de los nutrientes del suelo, la duración de la adición de nutrientes y la variabilidad inter-anual de las condiciones climáticas. Puesto que los efectos de la adición de nutrientes fueron no lineares con el tiempo de exposición y a la par existen complejas interacciones con otros componentes del ecosistema, aún quedan muchas incertidumbres en la predicción exacta de los efectos de la deposición de nutrientes en los flujos de GEI. Sin embargo, ofrecemos los primeros datos sobre los efectos de nutrientes a medio plazo de N, P y N+P en los flujos de los tres principales gases de efecto invernadero del suelo a lo largo de un gradiente altitudinal de los BHT Andina. Nuestros resultados sugieren que la red potencial de calentamiento global de los suelos en todo el gradiente altitudinal podría aumentar ligeramente con la entrada contribución de N, mientras que podría disminuir con el aumento de la contribución de P y N+P.

Page generated in 0.0304 seconds