• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rocket-borne in situ measurements in the middle atmosphere

Hedin, Jonas January 2009 (has links)
The Earth's mesosphere and lower thermosphere in the altitude range 50-130 km is a fascinating part of our atmosphere. Complex interactions between radiative, dynamical, microphysical and chemical processes give rise to several prominent phenomena, many of those centred around the mesopause region (80-100 km). These phenomena include noctilucent clouds, polar mesosphere summer echoes, the ablation and transformation of meteoric material, and the Earth’s airglow. Strong stratification and small scale interactions are common features of both these phenomena and the mesopause region in general. In order to study interactions on the relevant spatial scales, in situ measurements from sounding rockets are essential for mesospheric research. This thesis presents new measurement techniques and analysis methods for sounding rockets, thus helping to improve our understanding of this remote part of the atmosphere. Considering the need to perform measurements at typical rocket speeds of 1 km/s, particular challenges arise both from the design of selective, sensitive, well-calibrated instruments and from perturbations due to aerodynamic influences. This thesis includes a quantitative aerodynamic analysis of impact and sampling techniques for meteoric particles, revealing a distinct size discrimination due to the particle flow. Optical techniques are investigated for mesospheric ice particle populations, resulting in instrument concepts for accessing smaller particles based on Mie scattering at short ultraviolet wavelengths. Rocket-borne resonance fluorescence measurements of atomic oxygen are critically re-assessed, leading to new calibration concepts based on photometry of O2 airglow emissions. The work presented here also provides important pre-studies for the upcoming PHOCUS rocket campaign from Esrange in July 2010. PHOCUS will address the interaction between three major mesospheric players: meteoric smoke, noctilucent clouds and gas-phase chemistry.
2

Tomographic views of the middle atmosphere from a satellite platform

Hultgren, Kristoffer January 2014 (has links)
The middle atmosphere is a very important part of the Earth system. Until recently, we did not realize the importance of the structure of this vaporous shell and of the fundamental role it plays in both creating and sustaining life on the planet. Thanks to the development and improvement of new sounding methods and techniques, our knowledge of the composition of the atmosphere has become more detailed than ever before. We have also learned how to reveal complex interactions between different species and how they react to the incoming solar radiation. The middle part of the Earth’s atmosphere serves as a host for the Polar Mesospheric Clouds. These clouds consist of a thin layer of water-ice particles, only exsisting during the summer months and only close to the poles. There are indications that the occurrence of Polar Mesospheric Clouds may be linked to climate change. It has been pointed out that the first sightings coincide with the industrial revolution. Satellite observations have shown that Polar Mesospheric Clouds have become brighter and possibly more widely distributed during the 20th century. The clouds might therefore be suited as indicators of the variability of the climate - a good reason for studying this night-shimmering phenomena. The clouds can also be used as a proxy for middle atmospheric dynamics. In order to fully utilize Polar Mesospheric Clouds as tracers for atmospheric variability and dynamics, we need to better understand their local properties. The Optical Spectrograph and Infra-Red Imager System (OSIRIS) is one of two instruments installed on the Odin satellite. The optical spectrograph of this instrument observes sunlight scattered by the atmosphere and thus the Polar Mesospheric Clouds. This thesis deals with a tomographic technique that can reconstruct both horizontal and vertical structures of the clouds by using observations from various angles of the atmospheric region. From this information, microphysical properties such as particle sizes and number densities are obtained. The tomographic technique presented in this thesis also provides a basis for a new satellite concept - MATS. The idea behind the MATS satellite mission is to analyze wave activity in the atmosphere over a wide range of spatial and temporal scales, based on the scientific heritage from Odin/OSIRIS and the tomographic algorithms presented in this thesis. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper3: Submitted. Paper 4: Manuscript.</p>
3

A Software Model for MATS Satellite Payload

Seth, Tejaswi January 2018 (has links)
This thesis presents the development of a software model that simulates a payload instrument onboard the MATS satellite. The goal of this model is to provide an understanding of how the instrument impacts the measured data. This model is important for error analysis and may help in correcting the measured data for systematic flaws in the instrument. The software will consist of 5 main modules as follows: Scene Generator, Optics Module,Stray Light Module, Charge-Coupled Device Module and Electronics Module. This thesis forms a basic foundation for the software by designing the CCD module and a part of the Optics module, and concludes the effects of both on the output of the system. It takes into account important mission defined procedures that ultimately aim to improve image quality, resolve vertical structures in different bandwidths and analyze noise effects on the measured data.
4

Investigation of Polar Mesosphere Summer Echoes in Northern Scandinavia

Barabash, Victoria January 2003 (has links)
<p>This PhD thesis deals with phenomena which are closely related to the unique thermal structure of the polar summer mesosphere, namely Polar Mesosphere Summer Echoes (PMSE). PMSE are strong radar echoes commonly observed by VHF MST radars from thin layers in the 80-90 km altitude interval at high latitudes during summer. They follow a seasonal pattern of abrupt appearance in late May and a gradual disappearance in mid-August. This period corresponds roughly to the time between the completion of the summer time cooling of the polar mesopause to the time of reversal of the mesospheric circulation to autumn condition. In this connection, PMSE are associated with the extremely low temperatures, i.e. below 140 K, which are unique to the polar summer mesopause. Traditional theories of radar (partial) reflection and scattering have been unable to explain the PMSE and the exact mechanism for their occurrence remains unclear despite the steadily increasing interest in them over the past 20 years. Currently accepted theories regarding the mechanism giving rise to PMSE agree that one of the conditions needed for enhanced radar echoes is the presence of low-mobility charge carries such as large cluster ions and ice aerosols which capture the ambient electrons. It has been established that the PMSE are in some way associated with noctilucent clouds (NLC), layers of ice crystals, which constitute the highest observed clouds in the earth’s atmosphere. PMSE occurrence and dynamics are also found to be closely connected with the planetary and gravity waves.</p><p>Observations of PMSE presented in this thesis have been carried out by the Esrange MST radar (ESRAD) located at Esrange (67°56’N, 21°04’E) just outside Kiruna in northernmost Sweden. The radar operates at 52 MHz with 72 kW peak power and a maximum duty cycle of 5%. The antenna consists of 12x12 array of 5-element Yagis with a 0.7l spacing. During the PMSE measurements the radar used a 16-bit complementary code having a baud length of 1mS. This corresponds to height resolution of 150 m. The sampling frequency was set at 1450 Hz. The covered height range was 80-90 km. The presence of PMSE was determined on the basis of the radar SNR (signal-to-noise ratio). The PMSE measurements have been made during May-August each year since 1997.</p><p>PMSE seasonal and diurnal occurrence rates as well as dynamics have been studied in connection with tidal winds, planetary waves, temperature and water vapor content in the mesosphere (Papers I, IV and VI). Simultaneous and common-volume observations of PMSE and noctilucent clouds have been performed by radar, lidar and CCD camera (Paper V). Correlation between variations in PMSE and variations in extra ionization added by precipitating energetic electrons or high-energy particles from the Sun has been examined (Papers II and III). Possible influence of transport effects due to the electric field on PMSE appearance has been studied during a solar proton event (Paper III).</p>
5

Investigation of Polar Mesosphere Summer Echoes in Northern Scandinavia

Barabash, Victoria January 2003 (has links)
This PhD thesis deals with phenomena which are closely related to the unique thermal structure of the polar summer mesosphere, namely Polar Mesosphere Summer Echoes (PMSE). PMSE are strong radar echoes commonly observed by VHF MST radars from thin layers in the 80-90 km altitude interval at high latitudes during summer. They follow a seasonal pattern of abrupt appearance in late May and a gradual disappearance in mid-August. This period corresponds roughly to the time between the completion of the summer time cooling of the polar mesopause to the time of reversal of the mesospheric circulation to autumn condition. In this connection, PMSE are associated with the extremely low temperatures, i.e. below 140 K, which are unique to the polar summer mesopause. Traditional theories of radar (partial) reflection and scattering have been unable to explain the PMSE and the exact mechanism for their occurrence remains unclear despite the steadily increasing interest in them over the past 20 years. Currently accepted theories regarding the mechanism giving rise to PMSE agree that one of the conditions needed for enhanced radar echoes is the presence of low-mobility charge carries such as large cluster ions and ice aerosols which capture the ambient electrons. It has been established that the PMSE are in some way associated with noctilucent clouds (NLC), layers of ice crystals, which constitute the highest observed clouds in the earth’s atmosphere. PMSE occurrence and dynamics are also found to be closely connected with the planetary and gravity waves. Observations of PMSE presented in this thesis have been carried out by the Esrange MST radar (ESRAD) located at Esrange (67°56’N, 21°04’E) just outside Kiruna in northernmost Sweden. The radar operates at 52 MHz with 72 kW peak power and a maximum duty cycle of 5%. The antenna consists of 12x12 array of 5-element Yagis with a 0.7l spacing. During the PMSE measurements the radar used a 16-bit complementary code having a baud length of 1mS. This corresponds to height resolution of 150 m. The sampling frequency was set at 1450 Hz. The covered height range was 80-90 km. The presence of PMSE was determined on the basis of the radar SNR (signal-to-noise ratio). The PMSE measurements have been made during May-August each year since 1997. PMSE seasonal and diurnal occurrence rates as well as dynamics have been studied in connection with tidal winds, planetary waves, temperature and water vapor content in the mesosphere (Papers I, IV and VI). Simultaneous and common-volume observations of PMSE and noctilucent clouds have been performed by radar, lidar and CCD camera (Paper V). Correlation between variations in PMSE and variations in extra ionization added by precipitating energetic electrons or high-energy particles from the Sun has been examined (Papers II and III). Possible influence of transport effects due to the electric field on PMSE appearance has been studied during a solar proton event (Paper III).

Page generated in 0.0699 seconds