Spelling suggestions: "subject:"oon destructive"" "subject:"soon destructive""
401 |
Confocal acoustic holography for non-invasive 3D temperature and composition measurementAtalick, Stefan 03 May 2007 (has links)
This thesis summarizes my work at the University of Victoria to design and evaluate
a proof-of-concept instrument called the Confocal Acoustic Holography Microscope (CAHM).
The instrument will be able to measure small changes in temperature and composition in a
fluid specimen, which can be indirectly measured via small fluctuations in the speed of sound.
The CAHM combines concepts of confocal microscopy, interferometry, and
ultrasonic imaging. This recent work in confocal acoustic holography has progressed from our previous research in confocal laser holography.
The prototype CAHM design uses a frequency of 2.25 MHz, and can measure sound
speed changes of 16 m/s, temperature changes of 5°C, with a spatial resolution of 660 μm.
With future improvements to the CAHM, utilizing the latest technologies such as 2D array detectors, MEMS, and acoustic lenses, we expect resolutions of 1 m/s, 0.5°C, and 150 μm.
The design of the CAHM involved the production of a 3D CAD layout of the optomechanical components and ray tracing simulations using Zemax optical design software. Simulated acoustic holograms and fringe shifts were produced and they were found to match up very well with theoretical calculations. A simplified acoustic holography instrument was built and tested. Speed of sound measurements were made for several test specimens, while keeping temperature constant. Specimens of ethanol, isopropanol, acetic acid, glycerine, and mineral oil were measured. Holograms were collected for acetic acid and mineral oil and were compared to the reference case (distilled water). The fringe spacing and phase shifts measured experimentally matched up well with the Zemax simulations and the theoretical calculations. Hence, the popular Zemax optical software can be effectively used to design acoustic instruments. To our knowledge, this is the first use of Zemax for acoustic designs.
Based on the successful results of the simulations and experiments, the CAHM is
expected to have many useful applications, especially in medical diagnostics where it could be used to measure density and temperature within the human body. Phase contrast images could also be used to help identify suspicious lesions, such as those found in prostate or breast tissue. Other applications include non-destructive testing of electronic and mechanical parts, measurements of fluid samples, material science experiments, and microgravity experiments, where non-invasive examination is required.
|
402 |
GPR data processing for reinforced concrete bridge decksWei, Xiangmin 12 January 2015 (has links)
In this thesis, several aspects of GPR data processing for RC bridge decks are studied. First, autofocusing techniques are proposed to replace the previous expensive and unreliable human visual inspections during the iterative migration process for the estimation of the velocity/dielectric permittivity distribution from GPR data. Second, F-K filtering with dip relaxation is proposed for interference removal that is important for both imaging and the performance of post-processing techniques including autofocusing techniques and CS-based migration studied in this thesis. The targeted interferes here are direct waves and cross rebar reflections. The introduced dip relaxation is for accommodating surface roughness and medium inhomogeneity. Third, the newly developed CS-based migration is modified and evaluated on GPR data from RC bridge decks. A more accurate model by accounting for impulse waveform distortion that leads to less modeling errors is proposed. The impact of the selection of the regularization parameter on the comparative amplitude reservation and the imaging performance is also investigated, and an approach to preserve the comparative amplitude information while still maintaining a clear image is proposed. Moreover, the potential of initially sampling the time-spatial data with uniform sampling rates lower than that required by traditional migration methods is evaluated.
|
403 |
Estimation Of The Height Of Surface Breaking Cracks Using Ultrasonic Timing MethodsOzturk, Emre 01 April 2006 (has links) (PDF)
In this thesis, two ultrasonic timing methods are used in order to investigate the accuracy and reliability of measurements for surface breaking cracks having different orientations and heights. Also the best applicable measurement technique is searched by comparing the received test results. These methods are the Time of Flight Diffraction (TOFD) Method using diffraction of longitudinal waves and another method using the reflection of shear waves from the crack tips. In order to simulate and measure the height of surface breaking cracks three sets of test blocks from steel, and two sets of wedges from plexiglas material are manufactured. Also several probes having frequencies of 2Mhz, 4Mhz, 5Mhz and angles of 45o and 70o are used.
Some test procedures are created to make realistic comparisons between the test results and the ones found by previous studies in literature. The results are compared according to the standard deviations of errors in crack height
measurements and it is found that the depth, orientation of defects and the frequency of probes have considerable affect on the results. With wider probe angles and higher frequencies of probes to some extent the errors are observed
to be running low and the height of cracks could be measured closer to the original size. The amount of the errors is increased in measurements with the increasing angle of cracks. The results of both methods are found to be very
satisfactory. A range of ± / 0.5 mm for means of error from the original vertical crack heights is determined. The results agree with the previous studies.
|
404 |
Diffraction Tomographic Imaging of Shallowly Buried Targets using Ground Penetrating RadarHislop, Gregory Francis January 2005 (has links)
The problem of subsurface imaging with Ground Penetrating Radar (GPR) is a challenging one. Due to the low-pass nature of soil sensors must utilise wave-lengths that are of the same order of magnitude as the object being imaged. This makes imaging difficult as straight ray approximations commonly used in higher frequency applications cannot be used. The problem becomes even more challenging when the target is shallowly buried as in this case the ground surface reflection and the near-field parameters of the radar need to be considered. This thesis has investigated the problem of imaging shallowly buried targets with GPR. Two distinct problems exist in this field radar design and the design of inverse scattering techniques. This thesis focuses on the design of inverse scattering techniques capable of taking the electric field measurements from the receiver and providing accurate images of the scatterer in real time. The thesis commences with a brief introduction to GPR theory. It then provides an extensive review of linear inverse scattering techniques applied to raw GPR data. As a result of this review the thesis draws the conclusion that, due to its strong foundations in Maxwell's equations, diffraction tomography is the most appropriate approach for imaging shallowly buried targets with GPR. A three-dimensional diffraction tomographic technique is then developed. This algorithm forms the primary contribution of the thesis. The novel diffraction tomography technique improves on its predecessors by catering for shallowly buried targets, significant antenna heights and evanescent waves. This is also the first diffraction tomography technique to be derived for a range of antenna structures. The advantages of the novel technique are demonstrated first mathematically then on synthetic and finally practical data. The algorithm is shown to be of high practical value by producing accurate images of buried targets in real time.
|
405 |
Harming and healing young women and the development of the autonomous self /Kyle, Renee L. January 2006 (has links)
Thesis (Ph.D.)--University of Wollongong, 2006. / Typescript. Includes bibliographical references: leaf 158-178.
|
406 |
Deliberate self-harm a search for self or a cry for help? /Padoa, Carryn. January 2008 (has links)
Thesis (D.Psyc.(Clin.))--University of Wollongong, 2008. / Typescript. Includes bibliographical references: leaf 70-81.
|
407 |
A method for the non-destructive determination of the knotty core sizes of standing Pinus patula trees, based on ring width assessments at breast height and the pruning historyMunalula, Francis 03 1900 (has links)
Thesis (MScFor (Forest and Wood Science))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The objective of this study was to develop and assess a methodology of using pruning information (age and height) and ring width measurements on increment core samples taken at breast height from standing pruned Pinus patula trees for modeling the knotty core sizes in the pruned section of a tree. A total of 170 trees from 17 compartments, representing a wide variety of growth sites from the Mpumalanga escarpment, were selected and destructively sampled. Sample trees were selected to represent the productive timber volume available from the compartments using stratified sampling. Sample discs were removed at breast height (1.3m) and at six meter height. After drying and sanding, the cross-sectional surfaces of one surface of each of the discs were scanned on a document scanner and the ring widths measured, using an image analysis program. A preliminary study, using 30 discs, was undertaken to ascertain the appropriate number of radii per disc to measure. A comparison between results of two opposite radii, as opposed to four radii, showed that the difference in mean ring width resulting from the two approaches was statistically not significant. In practice this means that for ring width assessment, sampling of increment cores opposite to one another at breast height would be sufficiently accurate to study average ring width variation across the radius of a tree. A study was also conducted to determine to what accuracy ring widths at six metre height could be predicted from breast height measurements. It was shown that cumulative growth at six metre height can be predicted from cumulative growth at breast height, site index and cambial age at breast height as independent variables (R2 = 0.96). Ring width measurements at breast height can, therefore, be used to predict incremental growth throughout the pruned section. Combined with available information on the pruning history of a stand (pruning heights and pruning age), this study proved that quantitative knowledge on incremental growth can be used as a basis for estimating changes in knotty core sizes along the entire pruned section of the stem.
Analysis of variation for the entire data set from ring width measurements showed that there was far greater variation in knotty core percentages (the percentage of diameter occupied by knotty core) between different compartments than within compartments. Within a tree, the knotty core percentages between three stem sections, 0-2.4m, 2.4–4.8m, and 4.8-7m, were found to increase significantly from the bottom section (49.1%) to the top section (65.4%).
A single 2.4m log from the pruned section of each tree was removed and processed into sawn timber at a sawmill. After drying of the boards, a sub-sample of sawn boards from 17 logs, one log from each compartment, was selected and reconstructed into log form. From the reconstructed log (reconstructed to represent their original position in the log) the actual knotty core size was estimated by measuring the distance from the pith to the end of the branch stub. A comparison of the actual knotty core sizes and the modelled knotty core sizes of a sub-sample of trees showed only a modest relationship (R2 = 0.62). Reasons for this might be variability in pruning quality, inaccurate pruning records, nodal swellings and the methodology used to measure the actual knotty core sizes.
Knowledge of knotty core sizes of standing trees can be used for many different purposes. Two applications that were assessed and found to be useful include decision support for cross cutting logs and for sawmill production planning purposes. Sawmill simulation software was used to evaluate value -and grade recoveries under different scenarios. Results showed that cross-cutting the pruned sections of logs from a compartment with large within-tree knotty core size variation into shorter logs, as opposed to keeping the pruned sections as single logs, result in increases in grade and value recovery. It was also shown that sawing of pruned logs from compartments with relatively small knotty cores, results in much better grade recoveries than logs from compartments with relatively large knotty cores (this information will be useful for production planning purposes). It can be concluded that the methodology proposed to reconstruct knotty cores from tree ring measurements has the potential to be used as a decision aid in the forest and forest products industry.
|
408 |
Traitement des signaux thermométriques pour la caractérisation des matériaux : analyse et quantification du comportement des revêtements / Thermometric signal processing for characterization of materials : analysis and quantification of the behavior of coatingsAbdelmoula, Sihem 02 October 2017 (has links)
Les exigences de qualité des produits ainsi que des normes environnementales et énergétiques de plus en plus drastiques nécessitent le développement de technologies de fonctionnalisation de surface en particulier celles qui s’appuient sur les procédés de revêtement par dépôt de couches minces. Le contrôle de la qualité de surface revêtue présente un enjeu industriel d’envergure. En effet, il n’existe pas à l’heure actuelle de technique d’inspection non destructive qui allie à la fois rapidité, fiabilité et flexibilité pour le contrôle de l’uniformité de revêtement. Pour répondre à cette problématique, ce travail de thèse porte sur le développement d’une technique d’inspection basée sur la thermographie active. Après étude expérimentale et numérique de la réponse thermique de surfaces bicouches, nous proposons une première méthodologie d’exploitation des mesures issues d’une excitation ponctuelle (laser) et surfacique (flash(s)). L’approche mise en place s’appuie sur l’implantation d’un algorithme des moindres carrés partiels (PLS NIPALS). Celui-ci a été testé sur plusieurs matériaux conducteurs et non conducteurs et dans différentes configurations expérimentales puis comparé à la méthode de contrôle conventionnelle par courants de Foucault (pour les matériaux conducteurs). La méthode développée permet d’extraire la signature thermique intrinsèque de l’hétérogénéité d’épaisseur du revêtement. Une deuxième approche a été explorée, elle s’appuie sur la mise en œuvre des nouveaux outils que nous offre le « Deep Learning ». Les premiers résultats obtenus semblent prometteurs. L’ensemble des résultats ouvre le champ vers une exploitation industrielle de la thermographie infrarouge pour le contrôle non destructif de revêtement. / Product quality requirements as well as increasingly drastic environmental and energy standards require the development of surface functionalization technologies, particularly those based on thin film coating processes. The quality control of coated surface presents an important industrial challenge. Indeed, actually there is any non-destructive inspection technique that combines speed, reliability and flexibility for coating uniformity inspection. To respond this challenge, this work focuses on the development of an inspection technique based on active thermography. After experimental and numerical studies of thermal responses of bilayer surfaces, we propose firstly a measurement methodology based on a point (laser) and surface excitation (flash (s)). The approach is based on the implementation of a partial least squares algorithm (PLS-NIPALS). It was tested on several conductive and non-conductive materials and in various experimental configurations and compared to the conventional eddy current control method (for conductive materials). The developed method makes it possible to extract the intrinsic thermal signature of the coating thickness heterogeneity. A second approach has been explored, based on the classification algorithm based on Deep Learning tool. The first results seem promising. The overall results open the opportunity to an industrial exploitation of infrared thermography for non-destructive coating testing.
|
409 |
Evidence a analýza terénních tvarů reliéfu a jejich vztahu ke středověkým hradním areálům / Antropogenic landforms identification and analysis of their relation to medieval castlesSýkora, Martin January 2018 (has links)
This Thesis focuses on the anthropogenic geomorphology in the vicinity of eight selected castles in the Bohemia region. The first part of study gathers information about already known archaeological features in the castle areas or hinterland. The first step of the survey uses LIDAR data combined with both historical and contemporary maps. Next, a surface survey helped to prove the existence of selected archaeological features, mark their location and get their written description and photographic documentation. Thanks to the information collected this way, we can possibly interpret former use of the features, as well as their origins in relation to the existence of the castle itself. The last part evaluates efficiency of the used method and reflects of the state of the examined castles areas and surroundings. Key-words: Medieval archaeology - Non-destructive methods - LIDAR - Castle - Anthropogenic landforms
|
410 |
INTELLIGENT NON-DESTRUCTIVE EVALUATION EXPERT SYSTEM FOR CARBON-CARBON COMPOSITES USING THERMOGRAPHY, ULTRASONICS, AND COMPUTED TOMOGRAPHYPan, Yicheng 01 May 2010 (has links)
This study develops a reliable intelligent non-destructive evaluation (NDE) expert system for carbon-carbon (C/C) composites based on thermography, ultrasonic, computed tomography and post processing by means of fuzzy expert system technique. Data features and NDE expert knowledge are seamlessly combined in the intelligent system to provide the best possible diagnosis of the potential defects and problems. As a result, this research help ensure C/C composites' integrity and reliability. Four types of orthotropic aerospace composite material groups, which include 2-D pitched based commercial aircraft disc brakes and asmolds, 3-D PAN based C/C composites, and carbon fiber reinforced plastic (CFRP) panels, were tested. Based on the performance testing results of thermography, air-coupled ultrasonic, and x-ray computed tomography, the testing data pattern corresponding to feature and quantification of defects were found. This NDE knowledge databases were transformed to fuzzy logic expert system models. The models succeefully classified and indicated the defect's size and distribution and the intelligent systems perform NDE better than human operators. These fuzzy expert systems not only eliminate human errors in defect detection but also function as NDE experts. In addition, fuzzy expert systems improve the defect detection by incorporating fuzzy expert rules to remove noises and to measure defect size more accurately. In the future, the expert system model could be continuously updated and modified to quantify the size and distribution of defects. The systems developed here can be adapted and applied to build an intelligent NDE expert system for better quality control as well as automatic defect and porosity detection in C/C composite production process.
|
Page generated in 0.097 seconds