• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 37
  • 29
  • 17
  • 12
  • 9
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 369
  • 131
  • 124
  • 93
  • 64
  • 60
  • 57
  • 50
  • 41
  • 40
  • 38
  • 37
  • 36
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Fracture of Ferroelectric Materials

Oates, William Sumner 18 August 2004 (has links)
Ferroelectric materials continue to find increasing use in actuator, sensor and transducer design. Questions regarding lifetime and reliability remain a concern due to the inherent low fracture toughness and complex material behavior. The poling procedure required for use in actuator and sensing devices introduces anisotropy in elastic and dielectric coefficients as well as piezoelectric coupling between the mechanical and electrical fields. This introduces complex fracture behavior which necessitates advanced analytical techniques and fracture characterization. In this dissertation, fracture mechanics of ferroelectric materials is evaluated by employing different analytical techniques and experimental methodology. The theoretical work has focused on linear piezoelectric coupling that accounts for the influence of anisotropy and heterogeneity on fracture. A new orthotropic rescaling technique is presented that explicitly solves the anisotropic linear elastic piezoelectric crack problem in terms of material coefficients. The effects of heterogeneities on electric field induced microfracture are analyzed by implementing a crack at the edge of a heterogeneous piezoelectric inclusion. A positive, flaw-localized driving force is realized when permeable crack face boundary conditions are considered. The experimental portion of the work evaluates fracture behavior in the ferroelectric ceramic, lead zirconate titanate (PZT), and the ferroelectric relaxor single crystal PZN-4.5%PT. Relative humidity and electric boundary conditions are shown to have significant effects on crack kinetics in PZT. Fracture anisotropy in single crystal PZN-4.5%PT is characterized using the Single-Edge V-notch Beam (SEVNB) method and Vickers indentations. Scanning electron micrographs are used to determine the crack profile which leads to a prediction of crack tip toughness and local energy release rate. A weak cleavage plane is identified in the single crystal relaxor which contains a significantly lower toughness in comparison to the ferroelectric ceramic PZT.
152

Spin Valve Effect in Ferromagnet-Superconductor-Ferromagnet Single Electron Transistor

Anaya, Armando Alonso 30 March 2005 (has links)
This thesis describes a research of suppression of superconducting gap in a superconducting island of a Ferromagnetic-Superconducting-Ferromagnetic Single-Electron-Transistor due to the fringing magnetic fields produced by the ferromagnetic leads. The devices are working below the critical temperature of the superconducting gap. A model is proposed to explain how the fringing magnetic field produced by the leads is strong enough to suppress the superconducting gap. The peak of the fringing magnetic field produced by one lead reaches 5000 oe. It is observed an inverse tunneling magneto resistance during the suppression of the superconducting gap, obtaining a maximum absolute value 500 times greater than the TMR in the normal state where the efficiency of the spin injection is low. It is concluded that the suppression of the superconducting gap is due to fringing magnetic field and not to the spin accumulation because the low efficiency of the spin injection. It is suggested a new geometry to reduce the effect of the fringing magnetic field so it can be obtained a suppression of the superconductivity due to the spin accumulation. It is described the qualitatively behavior of the IV characteristic when the suppression of the superconductivity is due to spin accumulation.
153

Ferroelectric and Ferromagnetic Alloy Clusters in Molecular Beams

Yin, Shuangye 10 May 2006 (has links)
Ferroelectric and ferromagnetic alloy clusters are produced and studied in molecular beams. Nb clusters doped with 1-3 impurity atoms are ferroelectric with low transition temperatures. The alloy clusters with an even number of valence electrons have larger dipole moments than those with odd number of valence electrons. The ferroelectricity is suppressed by magnetic impurities or thermal excitations, and is enhanced by Au and Al doping. The observations strongly suggest that electron-pairing interactions exist in Nb clusters, which indicates Cooper pairing in clusters. The magnetic moments of Co clusters doped with small fraction of Mn,V and Al are studied and compared with those of the bulk alloys. CoMn alloy clusters have enhanced average magnetic moments with Mn doping, which is opposite to the behavior of bulk CoMn. CoV and CoAl alloy clusters behave similarly to their bulk counterparts. We explain the experimental results using the virtual-bound-state model. Finally, the magnetic properties of BiMn clusters are studied in molecular beams. The Mn local moments are found to couple ferromagnetically or ferrimagnetically depending on the composition of the clusters.
154

The magnetism of free cobalt clusters measured in molecular beams

Xu, Xiaoshan 27 February 2007 (has links)
Magnetic properties of cobalt clusters (20 N 200) were studied in molecular beams. The magnetization of cobalt clusters is studied at a broad range of temperatures, magnetic fields and clusters sizes. It is shown that the agnetization of ferromagnetic clusters in a cluster beam can be understood as an adiabatic process using the avoided crossing theory. Besides the ground state that bears magnetic moment of about 2 Bohr magneton per atom, an excited state that has 1 Bohr magneton per atom was discovered for every cobalt cluster observed. The energy separations between the two states was investigated by photo-ionization experiments. The ionization threshold shows that the energy gap between the two states is on the order of 0.1 eV for small clusters (N 100) and vanishes for larger clusters. Experiments also show that the polarizability of the excited state is lower than that of the ground state, which indicates a significant electronic tructure difference between the two states. Two states are also found for iron clusters (20 N 200) for which the magnetic moments per atom are about 3 Bohr magneton for the ground state and 1 Bohr magneton for the excited states. This explains the fractional magnetic moments as well as the local magnetic order observed above the Curie temperatures for iron group ferromagnets. Further experiments show two states for manganese clusters for which the ground state has magnetic moment of 1 Bohr magneton per atom in about the same size range. This suggests that the two states are a universal phenomenon of 3d transition metal clusters, which originate from the interaction between 3d and 4s electrons.
155

Broadband Ferromagnetic Resonance Spectrometer : Instrument and Applications

Denysenkov, Vasyl January 2003 (has links)
<p>This thesis compiles results of research in two mutuallydependent parts: 1) development of ferromagnetic resonance(FMR) spectrometer to study microwave properties offerromagnetic materials, and 2) characterization of new irongarnets: pulsed laser deposited Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>and Bi<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>films and Ce:Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>single crystal.</p><p>First part describes a novel<i>Broadband</i>FMR<i>Spectrometer</i>designed to characterize thin ferromagneticfilms. The spectrometer uses two probeheads: one is the X-bandmicrowave reflection cavity for room temperature measurementsand the in-cryostat microstrip line probe to perform FMRexperiments in the frequency range from 50 MHz to 40 GHz. Veryuniform and stable magnetic field up to 2.4 T, temperatures 4 Kto 420 K, and continuous frequency scan performed by<i>HP8722D</i>vector network analyzer provide various modes ofoperation. Both probeheads are equipped with two-circlegoniometers to ensure accurate study of magneticanisotropy.</p><p>The spectrometer was used to make express-analysis ofquality thus to optimize processing parameters of epitaxialiron garnet films grown by pulsed laser deposition (PLD).Comprehensive study of uniaxial and cubic magnetocrystallineanisotropy has been performed for Ce:Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>bulk crystal as well as for Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>and Bi<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>films grown on different substrates by PLD andreactive ion beam sputtering techniques. BroadbandFMR-spectroscopy revealed difference in spectra of domain wallresonances: instead of“soft”spin modes in filmsgrown by liquid phase epitaxy, PLD-made films show“diffuse”transformation of domains near thesaturation field. This effect indicates non-uniformity ofsaturation magnetization and field of uniaxial anisotropy inPLD-iron garnets. Spin wave resonances in comparison withuniform FMR have been studied to evaluate“localquality”of ferromagnetic films. The resonance field andFMR linewidth behavior were studied at various crystallographicdirections determined by X-ray diffraction.</p><p>FMR was used to choose PLD-made YIG films with low losses atmicrowave frequencies and to build magnetostatic surface wavesmicrowave bandpass filter. The filter was designed as a planarfilm structure with a microstrip line for transducers. It is afirst demonstration of feasibility to introduce PLD processingtechnique to magnetostatic wave technology.</p><p>Magneto-optical study of Ce:Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>single crystal complements results ofFMR-spectroscopy of new garnets.</p><p><b>Keywords:</b>ferrites, thin films, ferromagnetic resonance,microwaves, FMR spectrometer, magnetic anisotropy,magnetostatic waves.</p>
156

Synthesis and Dipolar Assembly of Cobalt-Tipped CdSe@CdS Nanorods

Hill, Lawrence J. January 2014 (has links)
This dissertation contains four chapters with advances relevant to the fields of nanoparticle synthesis and nanoparticle self-assembly: a review of nanoparticle self-assembly, or “colloidal polymers”; dumbbell heterostructured nanorod synthesis; dipolar matchstick heterostructured nanorod synthesis; and self-assembly of dipolar matchsticks to form colloidal polymers. These chapters are followed by appendices containing supporting data for chapters two through four. The first chapter is a review summarizing current research involving the 1-D assembly of nanocrystals to form “colloidal polymers.” One of the major goals of materials chemistry is to synthesize hierarchical materials with precise controlled particle ordering covering all length scales of interest (termed, the “bottom up” approach). Recent advances in the synthesis of inorganic colloids have enabled the construction of complex morphologies for particles in the range of 1 – 100 nm. The next level of structural order is to control the structure of assemblies formed from these materials. Linear nanoparticle assemblies are particularly challenging to achieve due to the need to impart functionality to colloids such that (typically) only two sites are active per particle. An emerging idea in the literature which addresses this challenge is to consider linear assemblies of inorganic nanoparticles as colloidal analogs to traditional polymers. This conceptual framework has enabled the formation of linear assemblies having controlled composition (to form segmented and statistical copolymers), architecture (linear, branched, cyclic), and degree of polymerization (chain length). However, this emerging field of synthesizing colloidal polymers has not yet been reviewed in terms of methods to control fundamental polymer parameters. Therefore, linear nanoparticle assembly is reviewed in chapter 1 by applying concepts from traditional polymer science to nanoparticle assembly. The emphasis of chapter 1 is on controlling degree of polymerization, architecture, and composition for colloidal polymers, and seminal examples are highlighted which control these parameters. The second chapter is centered on a novel methodology to install ferromagnetic cobalt domains onto core@shell, “CdSe@CdS” nanorods. While the structures synthesized in this work were novel, the key advance from this work was the development of a methodology to separate nanorod activation from deposition of ferromagnetic cobalt domains onto semiconductor nanorods. As synthesized CdSe@CdS nanorods are passivated with strongly binding phosphonic acid ligands, and these ligands prevent direct deposition of many materials (such as cobalt). Synthetic methods must therefore modify nanorod surfaces prior to deposition of additional nanoparticle domains (tips). Previous synthetic methods for the deposition of magnetic domains onto nanorod termini typically combined activation of nanorod termini and metal deposition into a single synthetic step. While these previous reports were successful in achieving tipped nanorods, the coupling of these two reactions required matching the kinetics of nanorod activation and decomposition/reduction of metal precursors in order to achieve the desired heterostructure morphology. However, the presence of ligands used for nanorod activation can also affect the rate of metal precursor decomposition/reduction and the propensity of the metal to form free nanoparticles through homogeneous nucleation. Thus, simultaneous nanorod activation and metal deposition hinders modification of these syntheses to obtain differing heterostructured morphologies. In the work presented in chapter 2, we chemically activate nanorod termini towards cobalt deposition in a separate chemical step from deposition of metallic cobalt nanoparticle domains. First, reductive platinum deposition conditions were utilized to activate nanorod termini towards the deposition of cobalt domains, which were deposited in a subsequent reaction step. Then, the kinetics of nanorod activation during platinum deposition were tracked, and the platinum-tipped nanorod morphologies were correlated with the results of subsequent cobalt deposition reactions. Ultimately, controlled placement of cobalt domains onto one or both nanorod termini was demonstrated based on the degree of activation during platinum deposition. Cobalt nanoparticle tips were then selectively oxidized to form CoₓOy-tipped nanorods, which were a novel class of p-n type nanomaterials achieved over a total of five synthetic steps. Relevant supporting details for the synthesis of these dumbbell tipped nanorods are provided in Appendix A. The third chapter describes the synthesis of CoNP-tipped nanorods with a single, strongly dipolar, ferromagnetic CoNP-tip per nanorod. The key synthetic advance was the ability to activate a single terminus per nanorod without activation of lateral nanorod facets, which was vital in achieving these larger, dipolar, cobalt tips (rather than lateral decoration of cobalt onto nanorod lateral facets). These dipolar “matchstick” CoNP-tipped nanorods then spontaneously formed linear assemblies carrying nanorod side chains as pendant functionality. Activation of CdSe@CdS nanorods was found to occur through the deposition of small (< 2 nm) PtNP-tips which were not readily observable by standard characterization techniques. The finding that small (< 2 nm) PtNP-tips altered nanorod reactivity towards cobalt deposition emphasized the effect of subtle changes to nanorod surface chemistry. Relevant supporting details for the synthesis of these dipolar matchstick tipped nanorods are provided in appendix B. The fourth chapter is centered on the self-assembly of dipolar matchstick cobalt-tipped nanorods to form colloidal (co)polymers reminiscent of traditional bottlebrush polymers, with controlled composition and phase behavior on carbon surfaces. Similar to earlier findings in traditional polymer science, nanorod side chain length was found to significantly impact surface assembly of these colloidal analogs of bottlebrush copolymers, which provided a useful parameter for affecting surface wetting and phase behavior of nanoparticle thin films. This work was also the first demonstration of colloidal copolymers from the dipolar assembly of magnetic nanoparticles, where both segmented and statistical copolymer compositions were achieved. We then demonstrated, for the first time, that a colloidal copolymer with segmented composition can form a mesoscopic phase separated morphology which is similar to that observed for traditional block copolymers. This key advance opens the possibility of controlling structural ordering over still longer length scales by the development of methods to control phase separated morphologies in a manner similar to traditional block copolymers. Relevant supporting details for the synthesis and assembly of these colloidal bottlebrush polymers are provided in appendix C.
157

Synthesis, Assembly and Colloidal Polymerization of Polymer-Coated Ferromagnetic Cobalt Nanoparticles

Keng, Pei Yuin January 2010 (has links)
This dissertation describes a novel methodology to prepare, functionalize, and assemble polymer-coated ferromagnetic cobalt nanoparticles (PS-CoNPs) and cobalt oxide nanowires. This research demonstrated the ability to use dipolar nanoparticles as `colloidal monomers' to form electroactive 1-D mesostructures via self- and field-induced assembly. The central focus of this dissertation is in developing a novel methodology termed as `Colloidal Polymerization', in the synthesis of well-defined cobalt oxide nanowires as nanostructured electrode materials for potential applications in energy storage and conversion.Ferromagnetic nanoparticles are versatile building blocks due to their inherent spin dipole, which drive 1-D self-assembly of colloids. However, the preparation and utilization of ferromagnetic nanoparticles have not been extensively examined due to the synthetic challenges in preparing well-defined materials that can be easily handled. This dissertation has overcome these challenges through the hybridization of polymeric surfactants with an inorganic colloid to impart functionality, colloidal stability and improved processing characteristics. This modular synthetic approach was further simplified to prepare ferromagnetic nanoparticles in gram scale, which enabled further investigations to develop new chemistry and materials science with these materials. These polymer-coated magnetic nanoparticles self-assembled into extended linear chains due to strong dipolar attractions between colloids. Additionally, novel dipolar assemblies, such as, flux-closure nanorings and lamellae type mesostructures were demonstrated by controlling the interparticle of attractive forces (dipolar versus van der Waals).The research presented herein focused on utilizing polymer-coated ferromagnetic cobalt nanoparticles as `colloidal molecules' to form interconnected 1-D mesostructures via `Colloidal Polymerization'. This process exploited the magnetic organization of dipolar colloids into 1-D mesostructures followed by a facile oxidation reaction to form interconnected electroactive cobalt oxide nanowires. This facile and template free approach enabled the large scale synthesis of semiconductor cobalt oxide nanowires, in which the electronic and electrochemical properties were confirmed for potential applications for energy storage and conversion. This work served as a platform in fabricating a wide range of semiconductor heterostructures, which allowed for structure-property investigation of new nanostructured electrodes.
158

Focused ion beam milled magnetic cantilevers

Fraser, Alastair Unknown Date
No description available.
159

A Study of Periodic and Aperiodic Ferromagnetic Antidot Lattices

Bhat, Vinayak S 01 January 2014 (has links)
This thesis reports our study of the effect of domain wall pinning by ferromagnetic (FM) metamaterials [1] in the form of periodic antidot lattices (ADL) on spin wave spectra in the reversible regime. This study was then extended to artificial quasicrystals in the form of Penrose P2 tilings (P2T). Our DC magnetization study of these metamaterials showed reproducible and temperature dependent knee anomalies in the hysteretic regime that are due to the isolated switching of the FM segments. Our dumbbell model analysis [2] of simulated magnetization maps indicates that FM switching in P2T is nonstochastic. We have also acquired the first direct, two-dimensional images of the magnetization of Permalloy films patterned into P2T using scanning electron microscopy with polarization analysis (SEMPA). Our SEMPA images demonstrate P2T behave as geometrically frustrated networks of narrow ferromagnetic film segments having near-uniform, bipolar (Ising-like) magnetization, similar to artificial spin ices (ASI). We find the unique aperiodic translational symmetry and diverse vertex coordination of multiply-connected P2T induce a more complex spin-ice behavior driven by exchange interactions in vertex domain walls, which differs markedly from the behavior of disconnected ASI governed only by dipolar interactions.
160

Optical pump-probe studies of spin dynamics in ferromagnetic materials

Wu, Jing January 2001 (has links)
No description available.

Page generated in 0.0573 seconds