• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis, Assembly and Colloidal Polymerization of Polymer-Coated Ferromagnetic Cobalt Nanoparticles

Keng, Pei Yuin January 2010 (has links)
This dissertation describes a novel methodology to prepare, functionalize, and assemble polymer-coated ferromagnetic cobalt nanoparticles (PS-CoNPs) and cobalt oxide nanowires. This research demonstrated the ability to use dipolar nanoparticles as `colloidal monomers' to form electroactive 1-D mesostructures via self- and field-induced assembly. The central focus of this dissertation is in developing a novel methodology termed as `Colloidal Polymerization', in the synthesis of well-defined cobalt oxide nanowires as nanostructured electrode materials for potential applications in energy storage and conversion.Ferromagnetic nanoparticles are versatile building blocks due to their inherent spin dipole, which drive 1-D self-assembly of colloids. However, the preparation and utilization of ferromagnetic nanoparticles have not been extensively examined due to the synthetic challenges in preparing well-defined materials that can be easily handled. This dissertation has overcome these challenges through the hybridization of polymeric surfactants with an inorganic colloid to impart functionality, colloidal stability and improved processing characteristics. This modular synthetic approach was further simplified to prepare ferromagnetic nanoparticles in gram scale, which enabled further investigations to develop new chemistry and materials science with these materials. These polymer-coated magnetic nanoparticles self-assembled into extended linear chains due to strong dipolar attractions between colloids. Additionally, novel dipolar assemblies, such as, flux-closure nanorings and lamellae type mesostructures were demonstrated by controlling the interparticle of attractive forces (dipolar versus van der Waals).The research presented herein focused on utilizing polymer-coated ferromagnetic cobalt nanoparticles as `colloidal molecules' to form interconnected 1-D mesostructures via `Colloidal Polymerization'. This process exploited the magnetic organization of dipolar colloids into 1-D mesostructures followed by a facile oxidation reaction to form interconnected electroactive cobalt oxide nanowires. This facile and template free approach enabled the large scale synthesis of semiconductor cobalt oxide nanowires, in which the electronic and electrochemical properties were confirmed for potential applications for energy storage and conversion. This work served as a platform in fabricating a wide range of semiconductor heterostructures, which allowed for structure-property investigation of new nanostructured electrodes.
2

Integration and Fabrication Techniques for 3D Micro- and Nanodevices

Fischer, Andreas C. January 2012 (has links)
The development of micro and nano-electromechanical systems (MEMS and NEMS) with entirely new or improved functionalities is typically based on novel or improved designs, materials and fabrication methods. However, today’s micro- and nano-fabrication is restrained by manufacturing paradigms that have been established by the integrated circuit (IC) industry over the past few decades. The exclusive use of IC manufacturing technologies leads to limited material choices, limited design flexibility and consequently to sub-optimal MEMS and NEMS devices. The work presented in this thesis breaks new ground with a multitude of novel approaches for the integration of non-standard materials that enable the fabrication of 3D micro and nanoelectromechanical systems. The objective of this thesis is to highlight methods that make use of non-standard materials with superior characteristics or methods that use standard materials and fabrication techniques in a novel context. The overall goal is to propose suitable and cost-efficient fabrication and integration methods, which can easily be made available to the industry. The first part of the thesis deals with the integration of bulk wire materials. A novel approach for the integration of at least partly ferromagnetic bulk wire materials has been implemented for the fabrication of high aspect ratio through silicon vias. Standard wire bonding technology, a very mature back-end technology, has been adapted for yet another through silicon via fabrication method and applications including liquid and vacuum packaging as well as microactuators based on shape memory alloy wires. As this thesis reveals, wire bonding, as a versatile and highly efficient technology, can be utilized for applications far beyond traditional interconnections in electronics packaging. The second part presents two approaches for the 3D heterogeneous integration based on layer transfer. Highly efficient monocrystalline silicon/ germanium is integrated on wafer-level for the fabrication of uncooled thermal image sensors and monolayer-graphene is integrated on chip-level for the use in diaphragm-based pressure sensors. The last part introduces a novel additive fabrication method for layer-bylayer printing of 3D silicon micro- and nano-structures. This method combines existing technologies, including focused ion beam implantation and chemical vapor deposition of silicon, in order to establish a high-resolution fabrication process that is related to popular 3D printing techniques. / <p>QC 20121207</p>

Page generated in 0.0643 seconds