• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 37
  • 29
  • 17
  • 12
  • 9
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 369
  • 131
  • 124
  • 93
  • 64
  • 60
  • 57
  • 50
  • 41
  • 40
  • 38
  • 37
  • 36
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Injection de spin dans des systèmes à base de semiconducteurs III-V en vue de nouveaux composants spintroniques / Spin injection in III-V semiconductor-based systems for spintronic applications

Zhang, Tiantian 09 April 2014 (has links)
La spintronique dans les semiconducteurs vise à utiliser le spin de l’électron comme degré de liberté supplémentaire (en plus de la charge électrique) afin de véhiculer l’information, ce qui permettrait la mise au point de composants intégrant de nouvelles fonctionnalités. Ce travail de thèse porte sur deux étapes importantes qui doivent être maîtrisées : l’injection électrique de porteurs polarisés en spin dans les semiconducteurs III-V, et la manipulation du spin de l’électron (par champ magnétique) dans ces matériaux optimisés. Dans un premier temps, la grande efficacité des injecteurs de spin à base de CoFeB/MgO/GaAs est démontrée dans des dispositifs de type Diodes Electroluminescentes polarisées en spin (SpinLEDs). La comparaison entre des injecteurs comprenant une barrière tunnel fabriquée soit par pulvérisation cathodique, soit par épitaxie par jets moléculaires (MBE), permet de montrer que ces deux techniques donnent des résultats comparables. Dans les deux cas, l’efficacité de l’injection est améliorée par un recuit de l’échantillon autour de 300−350◦C. Le recuit induit une amélioration de la qualité de l’interface CoFeB/MgO. De plus, l’efficacité de l’injection de spin n’est stable en fonction du courant injecté que lorsque la barrière tunnel est fabriquée par pulvérisation cathodique. Ceci est dˆu aux caractéristiques de l’interface MgO/GaAs qui diffèrent selon la technique de croissance de la barrière. Dans un deuxième temps, l’injection de spin en l’absence de champ magnétique externe appliqué est réaliséegrâce à un nouveau type d’injecteur constitué d’une électrode de CoFeB ultrafine présentant une aimantation rémanente de la couche le long de l’axe de croissance de l’échantillon. Pour la première fois des taux de polarisation circulaire de l’électroluminescence de l’ordre de 20% sont mesurés à 25 K à champ magnétique nul. Ensuite, la problématique de la relaxation de spin des porteurs injectés dans les vallées L de haute énergie dans GaAs (phénomène non négligeable sous injection électrique) est également traitée. Nous observons qu’une fraction de la mémoire du spin photogénéré en L est conservée lorsque les électrons sont diffusés vers la vallée Γ, malgré une relaxation d’énergie de plusieurs centaines de meV. Le temps de relaxation de spin dans les vallées L est estimé autour de 200 fs. Enfin, nous avons exploré le matériau GaAsBi dilué (x ∼ 2.2%) dont la perturbation de la matrice par l’élément Bi permet d’attendre des propriétés électroniques et de spin fortement modifiées. Des mesures de photoluminescence ont mis en évidence une diminution de l’énergie de bande interdite de l’ordre de 85meV/%Bi. De plus, par la mesure directe des battements quantiques de la polarisation de photoluminescence nous avons déterminé un facteur de Landé des électrons de conduction de l’ordre de deux fois supérieur à celui de GaAs. Ces résultats témoignent de la forte perturbation des états de valences et de l’augmentation de l’interaction spin-orbite / Spintronics of semiconductors aims at using carrier spins as supplementary means of information transport. Thiswould lead to components showing extended functionalities. This thesis work is dedicated to the study of injectionand manipulation of electron spin in semiconductors, which are the basis of any spintronic application. In a first stepwe demonstrate the high efficiency of CoFeB/MgO/GaAs - based spin injectors. Circular polarization degrees of electroluminescence over 20% are measured on spin polarized LEDs (SpinLEDs) at 0.8 T and 25 K. Comparison betweensputtering- and MBE- grown spin injectors has shown similar results. In both case, spin injection efficiency is increasedby thermal annealing of the sample, in the range 300 − 350◦C. Indeed, annealing improves the quality of CoFeB/MgOinterface, and induces the crystallization of CoFeB above 300◦C. A higher stability of spin injection with current injectionis found when the tunnel barrier is grown by sputtering. This is due to the MgO/GaAs interface characteristicswhich is related to the growth technique. In a second step, we demonstrate spin injection without external appliedmagnetic field, through an ultra-thin (a few atomic layers) CoFeB electrode, taking advantage of the perpendicular magnetic anisotropy of the layer which leads to a remanant magnetization along the growth axis. For the first time in this configuration, circular polarization degrees of electroluminescence of about 20% are measured at 25 K at zero magnetic field. In a third step, due to the crucial role it may play in electrical injection, electron spin dynamics in high energy L-valleys is investigated. Using polarization resolved excitation photoluminescence in the range 2.8-3.4 eV, we observe that a fraction of photogenerated spin polarization is preserved when electrons are scattered hundreds of meV down to Γ valley. Spin relaxation time in L valleys is estimated to 200 fs. Finally we investigate electron and spin properties of GaAsBi dilute bismide alloy. We observe that the bandgap energy is reduced by 85meV/%Bi when Bi element is introduced into GaAs matrix. Moreover, the electron Land´e factor is about twice the one in GaAs for a 2.2% Bi composition. These features are evidence of the strong perturbation of host states and spin-orbit interaction enhancement
142

Crescimento e estrutura de monocamadas de Co sobre Cu90Au10(100)

Alysson Martins Almeida Silva 22 August 2008 (has links)
Nenhuma / O estudo das correlações entre as propriedades estruturais e magnéticas de filmes finos e ultrafinos é hoje assunto de grande interesse tanto científico como tecnológico, sendo que, dada a disponibilidade de materiais e a importância das aplicações atuais e potenciais, filmes magnéticos compostos por metais e ligas de metais de transição 3d estão entre os materiais mais investigados. O Co é um metal de transição 3d, ferromagnético, e que, em volume, apresenta estrutura hexagonal compacta (hc). Entretanto, tanto esta fase como as fases cúbica de face centrada (cfc) e cúbica de corpo centrado (ccc) podem ser estabilizadas à temperatura ambiente na forma de filmes ultrafinos, ou ainda em forma de estruturas multicamadas, e as propriedades magnéticas dos mesmos apresentam uma complexa correlação com a estrutura cristalina. Existe um grande numero de trabalhos a respeito de Co crescido sobre superfícies de Cu (cfc, parâmetro de rede a = 3,615 Å) e outros monocristais, mas nada há na literatura sobre monocamadas de Co depositadas sobre Cu90Au10, uma liga cfc com parâmetro de rede (3,66 Å) expandido de 1,0% em relação ao Cu. Investigamos aqui o crescimento, em condições de epitaxia de feixe molecular (MBE), e a estrutura de filmes de Co depositados a temperatura ambiente, com espessuras entre uma e cinco monocamadas atômicas (ML) depositadas sobre a superfície (100) da liga Cu90Au10. A composição química e a pureza da superfície do monocristal e dos filmes foram determinadas por espectroscopia de elétrons excitados por raios X (XPS). A cristalinidade da superfície do substrato, bem como a forma de crescimento e a estrutura dos filmes foram determinados por difração de elétrons de baixa e alta energia, LEED e RHEED. A morfologia da superfície do cristal de Cu90Au10(100) e das primeiras monocamadas do filme de cobalto foram determinadas através de medidas de microscopia de varredura por tunelamento (STM). Medidas de magnetometria por efeito Kerr magneto- óptico foram utilizadas para se estabelecer, em caráter preliminar, uma correlação entre a estrutura e o magnetismo dos filmes de Co sobre Cu90Au10(100) Nossos resultados indicam o crescimento de Co com estrutura tetragonal de face centrada (tfc), e uma evolução, com o aumento da espessura de cobalto, de formação de ilhas para crescimento camada a camada. Além disso, nota-se para os filmes de Co uma rápida contração do parâmetro de rede no plano, atingindo aproximadamente 2,5% para ~ 4,0 ML, quando comparado ao substrato de Cu90Au10 (100). Medidas de magnetometria por Efeito Kerr Magneto-ótico indicam magnetização no plano do filme. Este trabalho eminentemente experimental representou um amplo aprendizado no uso e exploração das potencialidades de técnicas múltiplas (LEED, RHEED, XPS, AES, STM e MOKE) para a adequada caracterização e investigação das propriedades estruturais e magnéticas de superfícies e nanoestruturas heteroepitaxiais preparadas em UHV, em condições de epitaxia de feixe molecular (MBE), bem como o primeiro estudo do crescimento de monocamadas de Co depositadas sobre Cu90Au10(100). / The investigation of correlations between structural and magnetic properties of thin and ultrathin films is of great scientific and technological interest presently. Due to importance of their actual and potential applications, films of 3d metals and their alloys are among the most investigated materials. Co is a ferromagnetic 3d metal that in bulk has a hexagonal compact structure (hcp). For Co films or multilayers, the hcp as well as the face-centered (fcc) and bodycentered cubic (bcc) phases can be stabilized at room temperature, depending on the used substrate. It is known that the preparation method can affect decisively the structural and magnetic properties of Co monolayers. There is a big amount of work on Co films grown on different Cu surfaces (fcc; lattice parameter a = 3.615 Å) and other substrates but, to the best of our knowledgement, there is no studies on Co monolayers deposited on Cu90Au10(100), a fcc alloy with lattice parameter of about 3.66 Å. In this work we investigate the epitaxial grow and the structure of Co films with thickness up to 5 atomic monolayers (ML) deposited on Cu90Au10(100). The goal of the study was to investigate the modifications in the magnetic properties of the Co films provided by small distortions in the lattice, since Cu90Au10 presents cfc structure with a lattice parameter ~1% larger than the one of the pure Cu. The sample preparation and the majority of the experimental analysis has been done in ultra high vacuum under molecular beam epitaxy conditions. The studies were conducted in situ, in UHV, by using x-ray photoelectron spectroscopy (XPS), high and low energy electron diffraction (RHEED and LEED), and scanning tunneling microscopy (STM). Preliminary magnetic measurements on the correlation structure - magnetism were conducted by magneto-optical Kerr effect (MOKE). Our results indicate the growth of a tetragonal distorted face centered (fct) Co lattice and an initial formation of islands followed by a layer-by-layer grow starting from 2 ML Co. The lateral lattice parameter shows a fast contraction with increasing thickness when compared to the CuAu substrate, reaching ~ 2.5% at 4 ML Co. Surface magnetometry by Magneto-optical Kerr effect indicated in-plane magnetization of the Co films. This experimental work represented a broad and extensive learning process on preparation and characterization of heteroepitaxial nanostructures by multiple techniques (LEED, RHEED, XPS, AES, STM, and MOKE) under MBE conditions (UHV) and the first investigation of Co monolayers on Cu90Au10(100). SUMÁRIO
143

Structural and magnetic properties of cobalt doped titanium dioxide. / CUHK electronic theses & dissertations collection

January 2008 (has links)
Cobalt doped anatase TiO2 films show room temperature ferromagnetism. Doping was provided by implantation using a MEVVA ion source. The enhancement of ferromagnetic properties was obtained by post-implantation annealing. The microstructure, magnetic properties and the dependence on the annealing conditions have being studied using various characterization techniques. Interestingly, the output referring to the saturation magnetization per Co atom with a value as high as 3.16 muB/Co atom, exceeds considerably that of the bulk cobalt which suggests that contribution to the overall magnetic behavior is not only a function of the concentration of inherently magnetic elements, but there must exist also sources of magnetisms. One of these sources are oxygen vacancies as discussed within this work. It is also interesting that instead of the more commonly observed hcp structure, the Co nanoclusters are found in fcc structure probably being stabilized by the TiO2 matrix. / In this work, we study the properties of cobalt-implanted titanium dioxide, a room temperature dilute ferromagnetic semiconductor discovered in 2001. The ferromagnetic interaction mechanism is however controversial. By using metal vapor vacuum arc (MEVVA) ion source, different doses of cobalt ions were implanted into anatase structures of titanium dioxide (TiO2) thin films. The TiO2 films which were sputtered on SiO2 (100nm)/Si (110) substrates and rutile structure of TiO2. The cobalt implanted TiO2 thin films were prepared with different atomic fraction and then thermally treated at different temperature after ion implantation. The structural properties of the anatase titanium dioxide were also studied as a comparison to rutile titanium dioxide. / Rutherford backscattering spectrometry (RBS) was performed to determine the composition of cobalt. The crystal structure of the thin films and rutile single crystal was mainly anatase as detected in XRD spectra. X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) were also used in sample analysis. Vibrating sample magnetometer (VSM) was employed to study the magnetic properties of the cobalt implanted films. Ferromagnetic behaviors of these films were observed at room temperature. / Semiconductor spintronics is a promising new field of study in the ongoing quest to make electronic devices faster, cheaper, and more efficient. While current spintronics utilize the spin property of electrons to achieve greater functionally, the integration of spintronics into conventional semiconductor electronics will lead to advances optoelectronics, quantum computing, and other emerging fields of technology. This integration relies on effective generation; injection, transport, and detection of spin polarized electron current. To these end, mastering synthesis of room temperature ferromagnetic semiconductors is inevitable. / Luk, Wing Yan. / Adviser: H. P. Ho. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3730. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
144

Precisão em posicionamento de manipulador não condutor acionado por músculos artificiais pneumáticos. / Positioning precision of a non conducting manipulator powered by pneumatic artificial muscles.

Scaff, William 29 September 2015 (has links)
Com o crescimento populacional e a demanda energética crescente, a sociedade contemporânea têm enfrentado novos desafios para se manter. A aplicação da robótica em diversas áreas está cada vez mais comum, contribuindo para suprir estes novos desafios. Contudo, ainda existem casos em que o uso da robótica convencional é proibitivo, como em ambientes com campos elétricos e/ou magnéticos intensos, encontrado, por exemplo, nos sistemas de distribuição de energia elétrica e em máquinas de ressonância magnética. Isto porque os componentes condutores e ferromagnéticos utilizados podem oferecer perigos, causando queimaduras, curtos-circuitos e até lançamento de componentes. Em vista destas dificuldades, este trabalho propõe a construção de um manipulador robótico capaz de atuar nestas condições de campos elétricos e magnéticos elevados. Na construção de tal dispositivo, entretanto, é necessário o estudo da estrutura mecânica, dos atuadores, dos sensores e do controlador. No caso da estrutura mecânica e dos sensores, existem alternativas não condutoras disponíveis. O controlador geralmente é um microcomputador ou um dispositivo eletrônico, portanto condutor. Uma alternativa é manter o controlador distante e isolado do ambiente de risco. Mas para que esta hipótese seja testada, é necessário um atuador não condutor e não ferromagnético. Por isso, este trabalho propõe a construção de um atuador livre de materiais ferromagnéticos e condutores baseado no músculo artificial pneumático de McKibben. Músculos artificiais pneumáticos são disponíveis comercialmente, entretanto possuem materiais metálicos. Além disso, o controle preciso destes atuadores é dificultado pela sua alta não linearidade. Para verificar a viabilidade da aplicação de músculos artificiais em um manipulador não condutor, foram realizados testes com protótipos de músculos artificiais construídos com materiais compatíveis. O projeto e o dimensionamento do músculo artificial é abordado. Finalmente, é realizado o controle PID do músculo para avaliar sua controlabilidade e viabilidade de aplicação para tarefas de precisão em posicionamento. / With the population growth and the evergrowing energy dependency, the contemporary society have been facing new challenges to maintain yourself. The use of robotics in various fields is each time more common, contributing to surpass these new challenges. However, there are still cases where applying conventional robotics is prohibitive, such as in high electric and magnetic field environments, found, for example, in electric energy distribution systems and in magnetic resonance imaging machines. That\'s because conductive and ferromagnetic components can cause serious problems, like burns, short-cuts and even be throwed at high velocities. Knowing these difficulties, this work proposes the construction of a robotic manipulator capable of acting in these high electric and magnetic field environments. To build such manipulator, however, it\'s necessary to study the mechanic structure, the actuators, the sensors and the controller. In the case of the mechanic structure and sensors, there exists non-conductive and non-magnetic alternatives available. The controller is, in general, a microcomputer or an electric device, therefore, conductive. One alternative is to keep the controller far away from the risk environment. But to test this hypothesis, it\'s necessary to have a non-conductive and non-ferromagnetic actuator. Because of that, this work proposes the construction of an actuator free of conductive and magnetic materials, based on the McKibben pneumatic artificial muscle. Pneumatic artificial muscles are available commercially, but they have metallic components. Besides, the accurate control of these actuators is difficult for their high non-linearities. To verify the viability of applying artificial muscles on a non-conductive manipulator, tests were conducted with artificial muscle prototypes built with compatible materials. The design and dimensioning of the artificial muscle are covered. Finally, the PID controller is implemented to evaluate the muscle\'s controllability and its viability for tasks that need position accuracy.
145

Interlayer exchange coupling in Co/Pd-NiFe films studied by Vector Network Analyser Ferromagnetic Resonance

Johansson, August January 2018 (has links)
A greater understanding of precessional dynamics in magnetic systems is central to several emerging technologies. This thesis presents the design, construction and development of a Vector Network Analyser based Ferromagnetic Resonance measurement instrument (VNA-FMR), and its application in characterising dynamic material properties in hybrid anisotropy [CoPd]8-NiFe films, produced by remote plasma sputtering. Potential applications for hybrid films include Spin Torque Oscillators (STOs) or Vortex Oscillators (VO) for use as microwave emitters in, for example in Microwave Assisted Magnetic Recording (MAMR). The VNA-FMR system was first used to measure thin films of NiFe (permalloy) which allowed its capabilities to be quantified and compared to systems reported in the literature. The instrument demonstrated the capability of measuring permalloy films down to a thickness of 3 nm and was used to measure resonance and damping behaviour which agreed well with theory. The results obtained forMs were in agreement with measurement using Vibrating Sample Magnetometry. The effect of interlayer exchange on FMR was explored in hybrid films using a sample series with varying Pd spacer layer thickness, t, [Co/Pd]-Pd(t)-NiFe. As Pd spacer thickness increased, a transition was observed from near complete coupling with a single resonance mode to separate acoustic and optical branches of resonance. As spacing was further increased, the branches converged towards the resonances of the individual component layers of the hybrid films. The results suggest exchange coupling has a range of less than 2 nm, and is completely extinguished at 5 nm, in agreement with previous measurements. However, a change in damping behaviour was observed between 10 and 20 nm spacer thickness, independent of field orientation.
146

Preparation and characterization of bulk amorphous and nanostructured iron-40 nickel-40 phosphorus-14 boron-6 alloys. / Preparation and characterization of bulk amorphous and nanostructural Fe40Ni40P14B6 alloys / CUHK electronic theses & dissertations collection

January 2002 (has links)
"Apr 2002." / The numerals in title is subscript. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
147

Anisotropia magnética em tricamadas epitaxiais Fe/Mn/Fe / Magnetic anisotropy Fe/Mn/Fe trilayers

Pessoa, Marcio Solino 08 April 2010 (has links)
Submitted by Luanna Matias (lua_matias@yahoo.com.br) on 2015-03-03T12:00:09Z No. of bitstreams: 2 Dissertação - Márcio Solino Pessoa - 2010.pdf: 12461291 bytes, checksum: b86ea188061427a6c53a1664bfbc3419 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-04T11:04:51Z (GMT) No. of bitstreams: 2 Dissertação - Márcio Solino Pessoa - 2010.pdf: 12461291 bytes, checksum: b86ea188061427a6c53a1664bfbc3419 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-03-04T11:04:51Z (GMT). No. of bitstreams: 2 Dissertação - Márcio Solino Pessoa - 2010.pdf: 12461291 bytes, checksum: b86ea188061427a6c53a1664bfbc3419 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2010-04-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The ferromagnetic resonance (FMR) technique at the microwave frequencies of X-band (9.79 GHz) and Q-band (34 Ghz) was used to study, at room temperature, the magnetic anisotropy of Fe/Mn/Fe trilayers. The samples studied were grown by molecular beam epitaxy onto MgO substrates at the temperatures of 50 ° C, 150 ° C and 175 ° C, at the pressure of 4 x 10-11 Torr. The thicknesses of the distinct layers were 5 or 10 nm for the bottom Fe layer grown onto the MgO substrate, varied from 0.8 to 1.35 nm, for the Mn spacer layer, and was kept constant and equal to 5 nm, for the top Fe layer. The FMR spectra of the symmetrical trilayer at X and Q-band microwave frequencies show only the uniform resonance mode. Asymmetrical trilayers also show non resonant and/or non aligned modes at X-band frequency, but only the uniform mode at Q-band frequency. For some samples this result gives evidence of a non-collinear coupling between the Fe layers in the presence of low intensity magnetic fields. The out-of-plane angular dependence of the absorption fields show that the magnetization for all trilayers studied is in the plane of the sample. The magnetic anisotropy was deduced from the in-plane angular dependence of the uniform resonance mode at Q-band frequency, taking the free energy of the magnetic system as the result of contributions from Zeeman, demagnetizing, and in-plane cubic magnetocrystalline anisotropy energies. Fourfold in-plane anisotropy fields of 600 Oe and effective magnetizations above 16000 G were observed. The set of results obtained shows the high sensitivity and versatility of the FMR technique to study the magnetic properties of epitaxially grown monocrystalline nanometric structures. / A técnica de Ressonância Ferromagnética (RFM) nas frequências de micro-ondas de banda-X (9.79 GHz) e banda-Q (34 GHz) foi usada para estudar, à temperatura ambiente, a anisotropia magnética de tricamadas de Fe/Mn/Fe. As amostras estudadas foram crescidas por epitaxia de feixe molecular sobre substratos de MgO nas temperaturas de 50° C, 150° C e 175° C, à pressão de 4 x 10-11 Torr. A espessura da camada de Fe crescida sobre o MgO foi de 5 ou 10 nm, variou de 0.8 a 1.35 nm, para a camada separadora de Mn e foi mantida constante e igual a 5 nm, para a camada superior de Fe. Os espectros de RFM para a tricamada simétrica em bandas X e Q apresentam apenas o modo uniforme de ressonância. As tricamadas assimétricas apresentam também modos não ressonantes e/ou não alinhados em banda-X, mas apenas o modo uniforme em Banda-Q. Para algumas amostras, isto implica em um acoplamento não colinear entre as camadas de Fe na presença de campos magnéticos de baixa intensidade. A dependência angular do campo de ressonância fora do plano da amostra indica, para todas as amostras, que a magnetização se encontra no plano do filme. A anisotropia magnética das tricamadas foi deduzida a partir do estudo da dependência angular do campo de ressonância no plano da amostra, em banda-Q, tendo a energia livre do sistema contribuições de energias Zeeman, de desmagnetização e magnetocristalina cúbica. Campos de anisotropia cúbica da ordem de 600 Oe e magnetização efetiva superior a 16000 G foram observados. O conjunto dos resultados obtidos mostra a alta sensibilidade e versatilidade da técnica de RFM para estudar as propriedades magnéticas de estruturas monocristalinas nanométricas crescidas epitaxialmente.
148

Hollow Cathode Deposition of Thin Films

Gustavsson, Lars-Erik January 2006 (has links)
<p>Thin films of metals and compounds have a very wide range of applications today. Many of the deposition methods used for the production of such films utilize plasma to support the growth the film, e.g. by the supply of energy and the enhancement of reactivity. This thesis focuses on the physical vapor deposition (PVD) of thin films by high density plasma sources based on hollow cathodes and aims to increase the understanding of the deposition process and its influence on the film properties.</p><p>Titanium nitride films reactively deposited by the low-pressure hybrid plasma (HYP LP) source exhibited excellent properties and was deposited at considerable higher rates than films deposited by conventional methods.</p><p>An original finding in this work is the influence of substrate material on the deposition process and consequently on the properties of the deposited film. In the deposition of TiN films by the HYP LP source it was found that the substrate temperature was higher for Si substrates than for steel substrates due to a more efficient absorption of microwave power in Si than in steel. Further, it was found that ferromagnetic substrates influence the film growth in magnetized plasma systems. An effect of the ferromagnetic substrates is the enhancement of ion bombardment that increases the growth temperature and affects the texture and morphology of the growing films. It was also found that a DC bias can change the TiN film properties considerably and compensate the effect of ferromagnetic substrates.</p><p>High rate depositions of chromium and chromium nitride films by the RF hollow cathode plasma jet (RHCPJ) source were studied. The performance of the reactive diffuse arc process and the CrN film properties indicates that the process can be transferred from small cylindrical cathodes to linear magnetized hollow cathodes which allow deposition on considerable larger areas and this is important for industrial applications.</p>
149

Broadband Ferromagnetic Resonance Spectrometer : Instrument and Applications

Denysenkov, Vasyl January 2003 (has links)
This thesis compiles results of research in two mutuallydependent parts: 1) development of ferromagnetic resonance(FMR) spectrometer to study microwave properties offerromagnetic materials, and 2) characterization of new irongarnets: pulsed laser deposited Y3Fe5O12and Bi3Fe5O12films and Ce:Y3Fe5O12single crystal. First part describes a novelBroadbandFMRSpectrometerdesigned to characterize thin ferromagneticfilms. The spectrometer uses two probeheads: one is the X-bandmicrowave reflection cavity for room temperature measurementsand the in-cryostat microstrip line probe to perform FMRexperiments in the frequency range from 50 MHz to 40 GHz. Veryuniform and stable magnetic field up to 2.4 T, temperatures 4 Kto 420 K, and continuous frequency scan performed byHP8722Dvector network analyzer provide various modes ofoperation. Both probeheads are equipped with two-circlegoniometers to ensure accurate study of magneticanisotropy. The spectrometer was used to make express-analysis ofquality thus to optimize processing parameters of epitaxialiron garnet films grown by pulsed laser deposition (PLD).Comprehensive study of uniaxial and cubic magnetocrystallineanisotropy has been performed for Ce:Y3Fe5O12bulk crystal as well as for Y3Fe5O12and Bi3Fe5O12films grown on different substrates by PLD andreactive ion beam sputtering techniques. BroadbandFMR-spectroscopy revealed difference in spectra of domain wallresonances: instead of“soft”spin modes in filmsgrown by liquid phase epitaxy, PLD-made films show“diffuse”transformation of domains near thesaturation field. This effect indicates non-uniformity ofsaturation magnetization and field of uniaxial anisotropy inPLD-iron garnets. Spin wave resonances in comparison withuniform FMR have been studied to evaluate“localquality”of ferromagnetic films. The resonance field andFMR linewidth behavior were studied at various crystallographicdirections determined by X-ray diffraction. FMR was used to choose PLD-made YIG films with low losses atmicrowave frequencies and to build magnetostatic surface wavesmicrowave bandpass filter. The filter was designed as a planarfilm structure with a microstrip line for transducers. It is afirst demonstration of feasibility to introduce PLD processingtechnique to magnetostatic wave technology. Magneto-optical study of Ce:Y3Fe5O12single crystal complements results ofFMR-spectroscopy of new garnets. <b>Keywords:</b>ferrites, thin films, ferromagnetic resonance,microwaves, FMR spectrometer, magnetic anisotropy,magnetostatic waves.
150

Hollow Cathode Deposition of Thin Films

Gustavsson, Lars-Erik January 2006 (has links)
Thin films of metals and compounds have a very wide range of applications today. Many of the deposition methods used for the production of such films utilize plasma to support the growth the film, e.g. by the supply of energy and the enhancement of reactivity. This thesis focuses on the physical vapor deposition (PVD) of thin films by high density plasma sources based on hollow cathodes and aims to increase the understanding of the deposition process and its influence on the film properties. Titanium nitride films reactively deposited by the low-pressure hybrid plasma (HYP LP) source exhibited excellent properties and was deposited at considerable higher rates than films deposited by conventional methods. An original finding in this work is the influence of substrate material on the deposition process and consequently on the properties of the deposited film. In the deposition of TiN films by the HYP LP source it was found that the substrate temperature was higher for Si substrates than for steel substrates due to a more efficient absorption of microwave power in Si than in steel. Further, it was found that ferromagnetic substrates influence the film growth in magnetized plasma systems. An effect of the ferromagnetic substrates is the enhancement of ion bombardment that increases the growth temperature and affects the texture and morphology of the growing films. It was also found that a DC bias can change the TiN film properties considerably and compensate the effect of ferromagnetic substrates. High rate depositions of chromium and chromium nitride films by the RF hollow cathode plasma jet (RHCPJ) source were studied. The performance of the reactive diffuse arc process and the CrN film properties indicates that the process can be transferred from small cylindrical cathodes to linear magnetized hollow cathodes which allow deposition on considerable larger areas and this is important for industrial applications.

Page generated in 0.0859 seconds