• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 25
  • 23
  • 20
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 265
  • 58
  • 42
  • 30
  • 30
  • 30
  • 26
  • 23
  • 23
  • 21
  • 21
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Vintage models of spatial structural change

Westin, Lars January 1990 (has links)
In the study a class of multisector network models, suitable for simulation of the interaction between production, demand, trade, and infrastructure, is presented. A characteristic feature of the class is a vintage model of the production system. Hence, the rigidities in existing capacities and the temporary monopolies obtainable from investments in new capacity at favourable locations are emphasized.As special cases, the class contains models in the modelling traditions of "interregional computable general equilibriunT, Hspatial price equilibrium**, "interregional input-output" and transportation networks.On the demand side, a multihousehold spatial linear expenditure system is introduced. This allows for an endogenous representation of income effects of skill-differentiated labour.The models are represented by a set of complementarity problems. This facilitates a comparison of model properties and the choice of an appropriate solution algorithm.The study is mainly devoted to single period models. Such equilibrium models are interpreted as adiabatic approximations of processes in continuous time. A separation by the time scale of the processes and an application of the slaving principle should thus govern the choice of endogenous variables in the equilibrium formulation. / digitalisering@umu
192

Adiabatic pulse preparation for imaging iron oxide nanoparticles

Harris, Steven Scott 26 January 2012 (has links)
Iron oxide nanoparticles are of great interest as contrast agents for research and potentially clinical molecular magnetic resonance imaging (MRI). Biochemically modifying the surface coatings of the particles with proteins and polysaccharides enhances their utility by improving cell receptor specificity, increasing uptake for cell labeling and adding therapeutic molecules. Together with the high contrast they produce in MR images, these characteristics promise an expanding role for iron oxide nanoparticles and molecular MR imaging for studying, diagnosing and treating diseases at the molecular level. However, these contrast agents produce areas of signal loss with traditional MRI sequences that are not specific to the nanoparticles and cannot easily quantify the contrast agent concentration. With the expanding role of iron oxide nanoparticles in molecular imaging, new methods are needed to produce a quantitative contrast that is specific to the iron oxide nanoparticle. This dissertation presents a new method for detecting and quantifying iron oxide nanoparticles using an adiabatic preparation pulse and the failure of the adiabatic condition for spins diffusing near the particles. In the first aim, the theoretical foundation of the work is presented, and a Monte Carlo simulation supporting the proposed mechanism of the contrast is described. Adiabatic pulse prepared imaging sequences are also developed for imaging at 3 Tesla and 9.4 Tesla to highlight the translational potential of the approach for clinical examinations and scientific research, and the linear correlation of the contrast with iron concentration ideal for quantification is presented. Further, the physical characteristics of the nanoparticles and the parameters of the MRI sequence are modified to characterize the approach. In the second aim, the contrast is characterized in more realistic phantoms and in vitro, and a method to more accurately quantify nanoparticle concentration in the presence of magnetization transfer is presented. Finally, accelerated imaging methods are implemented to acquire the adiabatic contrast in a time compatible with in vivo imaging, and the technique is evaluated in an in vivo model of quantitative iron oxide nanoparticle imaging. Together, these aims present a method using an adiabatic preparation pulse to generate an MR contrast based on the microscopic magnetic field gradients surrounding the iron oxide nanoparticles that is suitable for in vivo quantitative, molecular imaging.
193

Optical and Terahertz Energy Concentration on the Nanoscale in Plasmonics

Rusina, Anastasia 01 December 2009 (has links)
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled. We establish the principal limits for the nanoconcentration of the terahertz (THz) radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of vacuum wavelength R λ 300 μm 0 0 ≈ ≈ to the unprecedented final size of R = 100 − 250 nm can be achieved, while the THz radiation intensity is increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses, will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This should find a wide spectrum of applications in science, engineering, biomedical research and environmental monitoring. We also develop a theory of the spoof plasmons propagating at the interface between a dielectric and a real conductor. The deviation from a perfect conductor is introduced through a finite skin depth. The possibilities of guiding and focusing of spoof plasmons are considered. Geometrical parameters of the structure are found which provide a good guiding of such modes. Moreover, the limit on the concentration by means of planar spoof plasmons in case of non-ideal metal is established. These properties of spoof plasmons are of great interest for THz technology.
194

Optical and Terahertz Energy Concentration on the Nanoscale in Plasmonics

Rusina, Anastasia 20 October 2009 (has links)
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled. We establish the principal limits for the nanoconcentration of the terahertz (THz) radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of vacuum wavelength ~300 μm to the unprecedented final size of 100-250 nm can be achieved, while the THz radiation intensity is increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses, will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This should find a wide spectrum of applications in science, engineering, biomedical research and environmental monitoring. We also develop a theory of the spoof plasmons propagating at the interface between a dielectric and a real conductor. The deviation from a perfect conductor is introduced through a finite skin depth. The possibilities of guiding and focusing of spoof plasmons are considered. Geometrical parameters of the structure are found which provide a good guiding of such modes. Moreover, the limit on the concentration by means of planar spoof plasmons in case of non-ideal metal is established. These properties of spoof plasmons are of great interest for THz technology.
195

High dynamic stiffness nano-structured composites for vibration control : A Study of applications in joint interfaces and machining systems

Fu, Qilin January 2015 (has links)
Vibration control requires high dynamic stiffness in mechanical structures for a reliable performance under extreme conditions. Dynamic stiffness composes the parameters of stiffness (K) and damping (η) that are usually in a trade-off relationship. This thesis study aims to break the trade-off relationship. After identifying the underlying mechanism of damping in composite materials and joint interfaces, this thesis studies the deposition technique and physical characteristics of nano-structured HDS (high dynamic stiffness) composite thick-layer coatings. The HDS composite were created by enlarging the internal grain boundary surface area through reduced grain size in nano scale (≤ 40 nm). The deposition process utilizes a PECVD (Plasma Enhanced Chemical Vapour Deposition) method combined with the HiPIMS (High Power Impulse Magnetron Sputtering) technology. The HDS composite exhibited significantly higher surface hardness and higher elastic modulus compared to Poly(methyl methacrylate) (PMMA), yet similar damping property. The HDS composites successfully realized vibration control of cutting tools while applied in their clamping interfaces. Compression preload at essential joint interfaces was found to play a major role in stability of cutting processes and a method was provided for characterizing joint interface properties directly on assembled structures. The detailed analysis of a build-up structure showed that the vibrational mode energy is shifted by varying the joint interface’s compression preload. In a build-up structure, the location shift of vibration mode’s strain energy affects the dynamic responses together with the stiffness and damping properties of joint interfaces. The thesis demonstrates that it is possible to achieve high stiffness and high damping simultaneously in materials and structures. Analysis of the vibrational strain energy distribution was found essential for the success of vibration control.
196

Optimisation et approximation adiabatique

Renaud-Desjardins, Louis R.-D. 12 1900 (has links)
L'approximation adiabatique en mécanique quantique stipule que si un système quantique évolue assez lentement, alors il demeurera dans le même état propre. Récemment, une faille dans l'application de l'approximation adiabatique a été découverte. Les limites du théorème seront expliquées lors de sa dérivation. Ce mémoire à pour but d'optimiser la probabilité de se maintenir dans le même état propre connaissant le système initial, final et le temps d'évolution total. Cette contrainte sur le temps empêche le système d'être assez lent pour être adiabatique. Pour solutionner ce problème, une méthode variationnelle est utilisée. Cette méthode suppose connaître l'évolution optimale et y ajoute une petite variation. Par après, nous insérons cette variation dans l'équation de la probabilité d'être adiabatique et développons en série. Puisque la série est développée autour d'un optimum, le terme d'ordre un doit nécessairement être nul. Ceci devrait nous donner un critère sur l'évolution la plus adiabatique possible et permettre de la déterminer. Les systèmes quantiques dépendants du temps sont très complexes. Ainsi, nous commencerons par les systèmes ayant des énergies propres indépendantes du temps. Puis, les systèmes sans contrainte et avec des fonctions d'onde initiale et finale libres seront étudiés. / The adiabatic approximation in quantum mechanics states that if the Hamiltonian of a physical system evolves slowly enough, then it will remain in the instantaneous eigenstate related to the initial eigenstate. Recently, two researchers found an inconsistency in the application of the approximation. A discussion about the limit of this idea will be presented. Our goal is to optimize the probability to be in the instantaneous eigenstate related to the initial eigenstate knowing the initial and final system, with the total time of the experiment fixed to $T$. This last condition prevents us from being slow enough to use the adiabatic approximation. To solve this problem, we turn to the calculus of variation. We suppose the ideal evolution is known and we add a small variation to it. We take the result, put it in the probability to be adiabatic and expand in powers of the variation. The first order term must be zero. This enables us to derive a criterion which will give us conditions on the ideal Hamiltonian. Those conditions should define the ideal Hamiltonian. Time dependent quantum systems are very complicated. To simplify the problem, we will start by considering systems with time independent energies. Afterward, the general case will be treated.
197

Beyond the adiabatic model for the elastic scattering of composite nuclei

Summers, Neil Christopher January 2001 (has links)
No description available.
198

Synthesis And Characterization Of Monoacetylferrocene Added Sulfonated Polystyrene Ionomers

Buyukyagci, Arzu 01 January 2004 (has links) (PDF)
Incorporation of monoacetylferrocene to the sulfonated polystyrene ionomers imparted some changes in the properties of sulfonated polystyrene. Sulfonation was carried out by acetic anhydride and concentrated sulphuric acid. The sulfonation reaction and the degree of sulfonation were determined by analytical titration and adiabatic bomb calorimeter . For this purpose, sulfonated polystyrene (SPS) samples with varying percentages of sulfonation were prepared between 0.85% and 6.51%. Monoacetyl ferrocene was used in equivalent amount of sulfonation through addition procedure. FTIR Spectroscopy was one of the major techniques used to support the successful addition of AcFe to the SPS samples. Altering the sulfonation degree did not change the characteristic peak positions, but increased the peak intensities with increasing the degrees of sulfonation. Mechanical properties of resultant polymers were investigated. As a result, elastic modulus of polymers decreased by the amount of monoacetylferrocene. Thermal characteristic were found by Differential Scanning Calorimeter (DSC). Thermal analysis revealed that sulfonated polystyrene samples after addition of monoacetylferrocene displayed lower values of Tg. Microscopic analysis were made by Scanning Electron Microscopy (SEM) and single phase for each sample was observed. Besides, energy dispersed micro analysis showed an increase in the intensity of the iron (II) peaks that is related to the amount of monoacetylferrocene added to the SPS samples. Flame retardancy for each polymer was also examined and found that addition of monoacetylferrocene to sulfonated polystyrene does not change the Limiting Oxygen Index value (LOI)(17). However, LOI value for polystyrene is 18.
199

Propagation non-linéaire de paquets d'onde. / Nonlinear propagation of wave packets.

Hari, Lysianne 25 September 2014 (has links)
Les résultats présentés dans cette thèse concernent l'étude, dans la limite semi-classique, de systèmes d'équations de Schrödinger non-linéaires couplées. Selon le potentiel considéré, le système peut, ou non, présenterun couplage linéaire, en plus de celui induit par le terme non-linéaire. Dans ce manuscrit, c'est la propagation d'états cohérents -états localisés dans l'espace des phases, et que l'on va faire vivre dans un niveau d'énergie donné - qui va nous intéresser.Dans le cadre linéaire, plusieurs situations ont été étudiées, certaines préservant l'adiabaticité,et d'autres la brisant, faisant apparaître des transitions entre les niveaux d'énergie.Le rôle de la non-linéarité et l'interaction de ses effets avec un éventuel couplage linéaire sur ces phénomènes est une questionimportante pour comprendre des systèmes qui entrent en jeu dans des problèmes très actuels en physique quantique.Dans un premier temps, le potentiel pris en compte aura des valeurs propres bien séparées par un trou spectral,et nous montrerons un théorème adiabatique pour une non-linéarité qui présente un exposant critique pour le paramètre semi-classique devant la non-linéarité. Un point de vue équivalent est de considérer des données petites de l'ordre d'une puissance positive du paramètre semi-classique.Il s'agit d'un résultat analogue à celui de Carles et Fermanian-Kammerer mais dans un cadre sur-critique L^2.Dans un deuxième temps, nous considèrerons, pour le cas unidimensionnel, un potentiel explicite de taille 2 X 2,qui présente un croisement évité :les deux valeurs propres sont séparées par un paramètre delta - paramètre adiabatique -qui va tendre vers zéro lorsque le paramètre semi-classique va tendre vers zéro. Nous montrerons alors que des transitions entre les modes ont lieu.Il s'agit ici d'une version non-linéaire des travaux d'Hagedorn et Joyeoù une telle transition est démontrée pour des systèmes linéaires. / This thesis is devoted to the study of coupled nonlinear Schrödinger equations in the semi-classical limit.Depending on the potential we consider, the system can present a linear coupling, in addition to the nonlinear one.We will focus on the propagation of coherent states that will be polarized along a given eigenvector of the potential.In the linear setting, several situations have been analyzed; some of them lead to adiabatic theorems whereas the others implytransitions between energy levels. When one adds a nonlinearity, understanding nonlinear effects onthe propagation and the competition between them and the linear coupling becomes a very interesting issue.We first consider a potential with eigenvalues that present a spectral gap and will prove an adiabatic theoremfor a critical nonlinearity in the semi-classical sense. This is a L^2-supercritical result,similar to the one proved by Carles and Fermanian-Kammerer for the one-dimensional case, which is L^2-subcritical.The second part of the thesis deals with an explicit 2 X 2 potential that presents an avoided crossing point :the minimal gap between its eigenvalues becomes smaller as the semiclassical parameter tends to zero. We will prove that this system exhibits transitions between the modes. This result is a nonlinear version of the study performed by Hagedorn and Joye in the linear case.
200

Descrição analítica da magnetização induzida pela metodologia GMAX / Analytical description of the magnetization induced by the GMAX sequence

João Teles de Carvalho Neto 04 April 2003 (has links)
A metodologia GMAX, (Gradient-Modulated Adiabatic Excitation), caracteriza-se pelo uso de pulsos adiabáticos para localização de volumes em espectroscopia e seleção de fatias em MRI. A sua utilidade surge do interessante perfil de inversão da magnetização transversal induzido ao longo da amostra. Entretanto, a interpretação desse comportamento tem sido dada apenas de forma qualitativa, através da utilização da condição de adiabaticidade como ponto de partida. Neste trabalho é apresentada uma descrição analítica partindo da solução em termos da função hipergeométrica para os pulsos sech e tanh. A partir desse procedimento encontramos um conjunto de resultados com os quais é possível inferir analiticamente o comportamento característico da magnetização, tendo como objetivo obter um maior controle da magnetização a partir dos parâmetros da metodologia que proporcionam interpretação física. / The Gradient-Modulated Adiabatic Excitation (GMAX) methodology is characterized by the use of adiabatic pulses for volume localization in spectroscopy and slice selection in MRI. Its use derives from the interesting nodal point transverse magnetization profile induced throughout the sample. Nevertheless, the interpretation of such behavior for the magnetization has been of qualitative purpose only, using the adiabatic condition as a starting point. Here, we present an analytical description, starting from the solution in terms of the hypergeometric functions for sech and tanh pulses. From this procedure we found a set of results with which is possible to infer analytically the characteristic behavior of the magnetization. This is on the purpose of obtaining greater control of the magnetization from parameters of the methodology that carry physical interpretation.

Page generated in 0.0618 seconds