• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 25
  • 23
  • 20
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 265
  • 58
  • 42
  • 30
  • 30
  • 30
  • 26
  • 23
  • 23
  • 21
  • 21
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

A theoretical perspective on photoinduced reactions - based on quantum chemical models and non-adiabatic molecular dynamics.

Das, Sambit January 2023 (has links)
The broad range of applications for photochemical reactions is the result of light-matter interaction at the electronic level. The diverse application of photochemistry in various fields, including photovoltaic materials, molecular switches, and biological systems are due to electronic and structural transformations induced by photoexcitation as well as molecular alteration due to electron and charge transfer. An improved understanding of these photochemical events is dependent on the fundamental theoretical evaluation, to model and analyze the ultrafast processes. The studies discussed in this thesis explore such theoretical implementation in two different frontiers. In the first study, dynamic simulations are performed to model the light-induced bond dissociation of phenyl azide. The surface hopping formalism, implemented under the semiclassical molecular dynamics approach helped in tracing the time evolution of the electronic and structural levels, involved in the photodissociation. In the second study, the time-dependent density functional theory has been applied to generate XA spectra of imidazole solutions. The theoretical assessments support experimental measurements and provide more insight into the core excitations and structural influence on the absorption spectra. / Fotokemiska reaktioner styrs av växelverkan mellan ljus of materia på en elektronisk nivå. I olika fält finns det vitt skilda tillämpningarna av fotokemi. Dessa inkluderar ljusinducerade processer i solceller, molekylära strömbrytare, och biologiska system. Reaktionerna beror av elektroniska och strukturella transformationer som induceras av fotoexcitationen, och kan ge upphov till energi- och laddningsöverföring. För att få utökad förståelse av fotokemiska reaktioner behövs grundläggande teoretiska studier där ultrasnabba processer modelleras och analyseras i jämförelse med experiment. Undersökningar som presenteras i denna avhandling använder sig att teoretiska modeller i två olika områden av fotokemi. I den första studien har vi genomfört dynamiska simuleringar för att modellera ljusinducerad dissociation av fenylazid. Vi have använt en semi-klassisk approximation med hopp mellan olika elektroniska tillstånd vilket gör det möjligt att följa utvecklingen i elektroniska och geometriska frihetsgrader under fotodissociationen. I den andra studien har tidsberoende täthetsfunktionalteori använts för att simulera röntgenabsorptionsspektrum för imidazol i lösning. Genom att utvärdera olika geometriska modeller med teoretiska beräkningar kan vi berika tolkningen av experimentella mätningar, och även få detaljerat insikt i innerskalsexcitationer och hur geometrin påverka röntgenspektrum.
212

Floquet engineering in periodically driven closed quantum systems: from dynamical localisation to ultracold topological matter

Bukov, Marin Georgiev 12 February 2022 (has links)
This dissertation presents a self-contained study of periodically-driven quantum systems. Following a brief introduction to Floquet theory, we introduce the inverse-frequency expansion, variants of which include the Floquet-Magnus, van Vleck, and Brillouin-Wigner expansions. We reveal that the convergence properties of these expansions depend strongly on the rotating frame chosen, and relate the former to the existence of Floquet resonances in the quasienergy spectrum. The theoretical design and experimental realisation (`engineering') of novel Floquet Hamiltonians is discussed introducing three universal high-frequency limits for systems comprising single-particle and many-body linear and nonlinear models. The celebrated Schrieffer-Wolff transformation for strongly-correlated quantum systems is generalised to periodically-driven systems, and a systematic approach to calculate higher-order corrections to the Rotating Wave Approximation is presented. Next, we develop Floquet adiabatic perturbation theory from first principles, and discuss extensively the adiabatic state preparation and the corresponding leading-order non-adiabatic corrections. Special emphasis is thereby put on geometrical and topological objects, such as the Floquet Berry curvature and the Floquet Chern number obtained within linear response in the presence of the drive. Last, pre-thermalisation and thermalisation in closed, clean periodically-driven quantum systems are studied in detail, with the focus put on the crucial role of Floquet many-body resonances for energy absorption.
213

Crystallization of Lipids under High Pressure for Food Texture Development

Zulkurnain, Musfirah 12 December 2017 (has links)
No description available.
214

An Efficient Method for Computing Excited State Properties of Extended Molecular Aggregates Based on an Ab-Initio Exciton Model

Morrison, Adrian Franklin January 2017 (has links)
No description available.
215

Neuartige RET2(Sn,In)-Systeme: Außergewöhnliche magnetische und elektronische Eigenschaften

Gruner, Thomas 22 April 2016 (has links)
Die vorliegenden Dissertation berichtet von der Entdeckung ungewöhnlicher magnetischer, elektronischer und struktureller Eigenschaften in einer Reihe von neuen intermetallischen Verbindungen auf Selten-Erd-Basis. Die untersuchten Systeme vom Typ RET2X bestehen aus den Selten-Erd-Elementen (RE) Yb oder Lu, den Übergangsmetallen (T) Pt oder Pd sowie den weiteren Liganden (X) Sn oder In. Die Synthese der verwendeten Proben, deren kristallografische Analyse und die Untersuchung ihrer physikalischen Eigenschaften werden im Detail vorgestellt. Diese Arbeit liefert Resultate, die sowohl für die Grundlagenforschung als auch für technische Anwendungen eine große Relevanz besitzen. Die Untersuchungen der neuen Verbindungen YbPt2Sn und YbPt2In zeigen, dass die magnetische Kopplung zwischen benachbarten Yb-Ionen extrem schwach ist. Dies führt zu einem riesigen magnetokalorischen Effekt im Bereich von 0.05 K bis 2 K. Damit besitzen beide metallischen Materialien optimale Eigenschaften, um als Kühlkörper in Entmagnetisierungskryostaten Verwendung zu finden. Zwei zu Testzwecken aufgebaute Kühleinsätze auf YbPt2Sn-Basis bestätigen die Eignung dieser Verbindung als metallisches Kühlmaterial. Die Untersuchungen der Substitutionsreihe Lu(Pt1-xPdx)2In offenbaren einen Ladungsdichtewelle (CDW)-Phasenübergang mit außergewöhnlichen Eigenschaften. Im Gegensatz zu Beobachtungen in den meisten anderen bekannten CDW-Systemen ist der Übergang in LuPt2In kontinuierlich, d. h. zweiter Ordnung. Durch Ersetzen von Pt mit isovalenten Pd kann die Übergangstemperatur T_CDW kontinuierlich zum absoluten Temperaturnullpunkt geführt werden. Die beobachteten Eigenschaften zeigen, dass der Phasenübergang dabei zweiter Ordnung bleibt. Damit wird experimentell bewiesen, dass Lu(Pt1-xPdx)2In eines der seltenen Systeme ist, in denen ein CDW quantenkritischer Punkt in Erscheinung tritt. Noch außergewöhnlicher ist die Beobachtung von Supraleitung mit einem ausgeprägten Maximum in der Sprungtemperatur T_c genau am quantenkritischen Punkt. Das deutet auf eine neuartige Kopplung zwischen quantenkritischer CDW und Supraleitung hin.:Einleitung 1 Grundlagen 2 YbPt2Sn und YbPt2In 3 Adiabatische Entmagnetisierung von YbPt2Sn 4 Struktureller quantenkritischer Punkt in Lu(Pt1-xPdx)2In 5 Zusammenfassung und Ausblick
216

On the Aerothermal Flow Field in a Transonic HP Turbine Stage with a Multi-Profile LP Stator Vane

Lavagnoli, Sergio 13 November 2012 (has links)
The quest for higher performances and durability of modern aero-engines requires the understanding of the complex aero-thermal flow experienced in a multi-row environment. In particular, the high and low pressure turbine components have a great impact into the engine overall performance, and improvements in the turbine efficiencies can only be achieved through detailed research on the three-dimensional unsteady aerodynamics and heat transfer. The present thesis presents an experimental study of the aerothermodynamics in one and a half turbine stage, focusing on: the aero-thermal flow in the overtip region of a transonic highly loaded high pressure (HP) rotor, and the aerodynamics and heat transfer of an innovative low pressure (LP) stator with a multi-profile configuration placed downstream of the high pressure turbine, within an s-shaped duct. Advanced instrumentation and measurement techniques were used and developed to perform the experimental investigation in a short-duration turbine test rig where both high spatial and time accuracy is indispensable. The flow field at the rotor shroud was investigated with simultaneous measurements of heat transfer, static pressure and blade tip clearance by using fast response pressure, wall temperature and capacitance probes. Through repeat experiments at the same turbine operating point, the time-averaged and time-resolved adiabatic wall temperature and convective heat transfer coefficient were evaluated. In the frame of new engine architectures, a novel stator for an LP turbine is proposed with a multi-splitter layout that represents a new design solution towards compact, lighter and performing aero-engine turbomachinery. It contains small aero-vanes and large structural aerodynamic airfoils which are used to support the engine shaft and house service devices. The research focuses on the experimental investigation of the global performance, aerodynamics and thermodynamics of this novel HP-LP vane layout. The turbine was / Lavagnoli, S. (2012). On the Aerothermal Flow Field in a Transonic HP Turbine Stage with a Multi-Profile LP Stator Vane [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17799
217

Thermal effects influence on the Diesel injector performance through a combined 1D modelling and experimental approach

Carreres Talens, Marcos 02 November 2016 (has links)
[EN] The injection system is one of the topics that has been paid most attention to by researchers in the field of direct injection diesel engines, due to its key role on fuel atomization, vaporization and air-fuel mixing process, which directly affect fuel consumption, noise irradiation and pollutant emissions. The increasing injection pressures in modern engines have propitiated the need of studying phenomena such as cavitation, compressible flow or the effect of changes in the fuel properties along the process, whose relative importance was lower in early stages of the reciprocating engines development. The small dimensions of the injector ducts, the high velocities achieved through them and the transient nature of the process hinder the direct observation of these facts. Computational tools have then provided invaluable help in the field. The objective of the present thesis is to analyse the influence of the thermal effects on the performance of a diesel injector. To this end, the fuel temperature variation through the injector restrictions must be estimated. The influence of these changes on the fuel thermophyisical properties relevant for the injection system also needs to be assessed, due to its impact on injector dynamics and the injection rate shape. In order to give answer to the previous objectives, both experimental and computational techniques have been employed. A dimensional and a hydraulic experimental characterization of a solenoid-actuated Bosch CRI 2.20 injector has been carried out, including rate of injection measurements at a wide range of operating conditions, with special attention to the fuel temperature control. A 1D computational model of the injector has been implemented in order to confirm and further extend the findings from the experiments. Local variations of fuel temperature and pressure are considered by the model thanks to the assumption of adiabatic flow, for which the experimental characterization of the fuel properties at high pressure also had to be performed. The limits of the validity of this assumption have been carefully assessed in the study. Results show a significant influence of the fuel temperature at the injector inlet on injection rate and duration, attributed to the effect of the variation of the fuel properties and to the fact that the injector remains in ballistic operation for most of its real operating conditions. Fuel temperature changes along the injector control orifices are able to importantly modify its dynamic behaviour. In addition, if the fuel at the injector inlet is at room temperature or above, the temperature at the nozzle outlet has not been proved to importantly change once steady-state conditions are achieved. However, a significant heating may take place for fuel temperatures at the injector inlet typical of cold-start conditions. / [ES] El sistema de inyección es uno de los elementos que más interés ha despertado en la investigación en el campo de los motores diésel de inyección directa, debido a su papel clave en la atomización y vaporización del combustible así como en el proceso de mezcla, que afectan directamente al consumo y la generación de ruido y emisiones contaminantes. Las crecientes presiones de inyección en motores modernos han propiciado la necesidad de estudiar fenómenos como la cavitación, flujo compresible o el efecto de los cambios de las propiedades del combustible a lo largo del proceso, cuya importancia relativa era menor en etapas tempranas del desarrollo de los motores alternativos. Las pequeñas dimensiones de los conductos del inyector, las altas velocidades a través de los mismos y la naturaleza transitoria del proceso dificultan la observación directa en estas cuestiones. Por ello, las herramientas computacionales han proporcionado una ayuda inestimable en el campo. El objetivo de la presente tesis es analizar la influencia de los efectos térmicos en el funcionamiento de un inyector diésel. Para tal fin, se debe estimar la variación de la temperatura del combustible a lo largo de las restricciones internas del inyector. La influencia de estos cambios en las propiedades termofísicas del combustible más relevantes en el sistema de inyección también debe ser evaluada, debido a su impacto en la dinámica del inyector y en la forma de la tasa de inyección. Para dar respuesta a estos objetivos, se han utilizado técnicas experimentales y computacionales. Se ha llevado a cabo una caracterización dimensional e hidráulica de un inyector Bosch CRI 2.20 actuado mediante solenoide, incluyendo medidas de tasa de inyección en un amplio rango de condiciones de operación, para lo que se ha prestado especial atención al control de la temperatura del combustible. Se ha implementado un modelo 1D del inyector para confirmar y extender las observaciones extra\'idas de los experimentos. El modelo considera variaciones locales de presión y temperatura del combustible gracias a la hipótesis de flujo adiabático, para lo cual también se ha tenido que llevar a cabo una caracterización experimental de las propiedades del combustible a alta presión. Los límites de la validez de esta hipótesis se han analizado cuidadosamente en el estudio. Los resultados muestran una influencia significativa de la temperatura del combustible a la entrada del inyector en la tasa y duración de inyección, atribuida al efecto de la variación de las propiedades del combustible y al hecho de que el inyector permanece en operación balística para la mayoría de sus condiciones de funcionamiento. Los cambios en temperatura del combustible a lo largo de los orificios de control del inyector son capaces de modificar su dinámica considerablemente. Además, si el combustible a la entrada del inyector se encuentra a temperatura ambiente o por encima, se ha observado que la temperatura a la salida de la tobera no varía de manera importante una vez se alcanzan condiciones estacionarias. No obstante, un calentamiento significativo puede tener lugar para temperaturas de entrada típicas de las condiciones de arranque en frío. / [CA] El sistema d'injecció és un dels elements que més interés ha despertat en la investigació en el camp dels motors dièsel d'injecció directa, degut al seu paper clau en l'atomització i vaporització del combustible, així com en el procés de mescla, que afecten directament el consum i la generació de soroll i emissions contaminants. Les creixents pressions d'injecció en motors moderns han propiciat la necessitat d'estudiar fenòmens com la cavitació, flux compressible o l'efecte dels canvis de les propietats del combustible al llarg del procés, la importància relativa dels quals era menor en les primeres etapes del desenvolupament dels motors alternatius. Les menudes dimensions dels conductes de l'injector, les altes velocitats a través dels mateixos i la natura transitòria del procés dificulten l'observació directa en estes qüestions. Per això, les ferramentes computacionals han proporcionat una ajuda inestimable en el camp. L'objectiu de la present tesi és analitzar la influència dels efectes tèrmics en el funcionament d'un injector dièsel. Per a tal fi, es deu estimar la variació de la temperatura del combustible al llarg de les restriccions internes de l'injector. La influència d'estos canvis en les propietats termofísiques del combustible més relevants en el sistema d'injecció també ha de ser avaluada, degut al seu impacte en la dinàmica de l'injector i en la forma de la tasa d'injecció. Per tal de donar resposta a estos objectius, s'han utilitzat tècniques experimentals i computacionals. S'ha dut a terme una caracterització dimensional i hidràulica d'un injector Bosch CRI 2.20 actuat mitjançant solenoide, incloent mesures de tasa d'injecció en un ampli rang de condicions d'operació, per al que s'ha prestat especial atenció al control de la temperatura del combustible. S'ha implementat un model 1D de l'injector per tal de confirmar i estendre les observacions extretes dels experiments. El model considera variacions locals de pressió i temperatura del combustible gràcies a la hipòtesi de flux adiabàtic, per la qual cosa també s'ha hagut de dur a terme una caracterització experimental de les propietats del combustible a alta pressió. Els límits de la validesa d'esta hipòtesi s'han analitzat acuradament en l'estudi. Els resultats mostren una influència significativa de la temperatura del combustible a l'entrada de l'injector en la tasa i duració d'injecció, atribuïda a l'efecte de la variació de les propietats del combustible i al fet que l'injector roman en operació balística per a la majoria de les seues condicions de funcionament. Els canvis en temperatura del combustible al llarg dels orificis de control de l'injector són capaços de modificar la seua dinàmica considerablement. A més, si el combustible a l'entrada de l'injector es troba a temperatura ambient o per damunt, s'ha observat que la temperatura a l'eixida de la tobera no varia de manera important una vegada s'han assolit condicions estacionàries. No obstant això, un escalfament significatiu pot tenir lloc per a temperatures d'entrada típiques de les condicions d'arrancada en fred. / Carreres Talens, M. (2016). Thermal effects influence on the Diesel injector performance through a combined 1D modelling and experimental approach [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/73066
218

Simulating the Landau-Zener problem : Derivation, Application & Simulation

Hammarskiöld Spendrup, Axel, Negis, Abdullah January 2024 (has links)
The Landau-Zener-Stückelberg-Majorana (LZSM) problem models diabatic transitions between energy levels in quantum two-level systems with an avoided level-crossing. The diabatic transition is a consequence of quantum tunneling in energy space when the system's Hamiltonian is perturbed with a fast-acting bias. The probability of transition between the energy states for a linear bias is known as the LZSM transition probability. The objective of this work is to investigate the LZSM problem through analytical and numerical lenses. The LZSM transition probability is derived in two ways. The first approach is based on Majorana's solution using contour integrals. The second derivation follows Landau's quasi-classical treatment. The derivations demonstrate methods for transitions in the presence of time-dependent perturbations. The ubiquity of the two-level system is discussed and an application on qubits concerning LSZM interferometry is presented, with the latter arising after considering periodic biases. Lastly, a simulation of the two-level system is conducted using Trotter-decomposed time-evolution operators, perturbation theory, and vectorization. The simulated transition probabilities for linear and periodic biases are obtained for varied parameters. The results show that the simulation achieves an accurate and efficient emulation of the LZSM problem.
219

High Strain Rate Deformation Behavior of Single-Phase and Multi-Phase High Entropy Alloys

Muskeri, Saideep 05 1900 (has links)
Fundamental understanding of high strain rate deformation behavior of materials is critical in designing new alloys for wide-ranging applications including military, automobile, spacecraft, and industrial applications. High entropy alloys, consisting of multiple elements in (near) equimolar proportions, represent a new paradigm in structural alloy design providing ample opportunity for achieving excellent performance in high strain rate applications by proper selection of constituent elements and/or thermomechanical processing. This dissertation is focused on fundamental understanding of high strain-rate deformation behavior of several high entropy alloy systems with widely varying microstructures. Ballistic impact testing of face centered cubic Al0.1CoCrFeNi high entropy alloy showed failure by ductile hole growth. The deformed microstructure showed extensive micro-banding and micro-twinning at low velocities while adiabatic shear bands and dynamic recrystallization were seen at higher velocities. The Al0.7CoCrFeNi and AlCoCrFeNi2.1 eutectic high entropy alloys, with BCC and FCC phases in lamellar morphology, showed failure by discing. A network of cracks coupled with small and inhomogeneous plastic deformation led to the brittle mode of failure in these eutectic alloys. Phase-specific mechanical behavior using small-scale techniques revealed higher strength and strain rate sensitivity for the B2 phase compared to the L12 phase. The interphase boundary demonstrated good stability without any cracks at high compressive strain rates. The Al0.3CoCrFeNi high entropy alloy with bimodal microstructure demonstrated an excellent combination of strength and ductility. Ballistic impact testing of Al0.3CoCrFeNi alloy showed failure by ductile hole growth and demonstrated superior performance compared to all the other high entropy alloy systems studied. The failure mechanism was dominated by micro-banding, micro-twining, and adiabatic shear localization. Comparison of all the high entropy alloy systems with currently used state-of-the-art rolled homogenous armor (RHA) steel showed a strong dependence of failure modes on microstructural features.
220

Material design for OLED lighting applications: Towards a shared computational and photophysical revelation of thermally activated delayed fluorescence

Kleine, Paul 07 December 2019 (has links)
As the third generation of luminescent materials, thermally activated delayed fluorescence (TADF)-type compounds have great potential as emitter molecules in OLEDs allowing for electro-fluorescence with 100 % internal quantum efficiency. For organic electronics, the general wide range of applications from OLEDs, bio-fluorescence imaging to sensor technologies and photonic energy storages roots on the enormous variety of organic materials. Especially in the field of metal- free aromatic designs, the range of possible materials showing diverse triplet harvesting effects is immense, making material development a highly complex task. Firstly, initial efforts in the understanding of the basic concepts behind TADF will be highlighted. A rational design strategy for TADF materials will be illustrated on an innovative material series based on phenylcarbazoles. A reasonable branch of isomers are theoretically constructed and slight stoichiometric modifications are performed to understand how molecular structure and intramolecular steric hindrance affects reverse intersystem crossing (RISC), while simultaneously revealing the strategy for deep blue TADF. The rational design of a bluish green TADF material called 5CzCF3Ph providing CIEy ≤ 0.4 is demonstrated, enabling peak EQE values of 12.1 % with a promising LT50 of 2 hrs at 500 cd∙m-2. Subsequently, the photophysics of five newly designed trimeric donor (D)-acceptor (A)-donor (D) type material compounds, analogue concepts to archetypical TADF designs, highlight the importance of intramolecular electronic couplings between adjacent triplet states for adiabatically-driven TADF, revealing the mechanism of local type triplet state perturbations on 3CT states. The most promising candidate (DMAC-PTO-DMAC) is disclosed and in turn optimized to meet required conditions for deep blue TADF emission. Ultimately, a deep blue luminescent material called isoDMAC-PTO is developed, featuring CIE coordinates of (0.16, 0.14) with an overall quantum yield of (86.4 ± 0.5) %. The focus switches to the fundamental understanding of the underlying mechanism giving rise to TADF in small molecules, leaving the scope of deep blue emission. While investigating the photophysical properties of a synthesized donor (D)-acceptor (A) type thermally activated delayed fluorescence (TADF) emitter named methyl 2-(9,9-dimethylacridin-10-yl)benzoate (DMAC-MB), it is possible to identify the excited state dynamics mediating the spin-flip process and hence the reutilization of non-radiative triplet states allowing for an internal quantum efficiency approaching unity. As experimentally observed by detailed temperature- and time-dependent transient photoluminescence (PL) measurements and consolidated by comprehensive quantum-chemical considerations, excited state configuration interaction by non-adiabatic couplings are anticipated as key property behind triplet up-conversion in the vicinity of conical intersections, contributing to recent research facing the exciton management within the auspicious field of TADF. For the first time, this thesis reports that even a TADF-silent molecule can be converted into efficient TADF systems by increasing the donor π- conjugation length through polymerization of the building block itself. With a total photoluminescence quantum yield up to 71 %, comprehensible research illustrates an efficient thermally activated delayed fluorescence polymer P1, based solely on non-TADF chromophores represented by a model compound 2 (PLQY of 3 % at RT). Finally, as predicted by TDDFT calculations and shown for the first time in the aspiring field of TADF, a thermally activated delayed fluorescence polymer based on a merely radiative, solely phosphorescent repeating unit is demonstrated. Intramolecular π-conjugation is exploited to trigger the charge-transfer excited state energy, revealing a general design tool to provoke TADF, reserved in particular for polymers. While the introduced twisted methyl 2-(9,9-dimethylacridin-10-yl) benzoate (DMAC-MB) reveals efficient thermally activated delayed fluorescence (TADF), a modified analogue 9,9-Dimethyl-5H,9H-quinolino[3,2,1-de]acridin-5-one (DMAC-ACR) shows emerging room temperature phosphorescence (RTP). As for TADF, intramolecular non-adiabatic couplings are unlocked as key feature actuating persistent RTP, linking photophysical analogies between TADF and RTP to structural self-similarities. Last but not least, degradation processes in TADF materials will be addressed. A correlation between theoretically calculated bond-dissociation energies (BDEs) and phenomenological observations reveals that low BDEs, in particular along pronounced charge-transfer bonds, ultimately lead to irreversible TADF material degradation induced by bi-molecular processes comprising TPQ as well as TTA. Finally, this thesis reveals the photophysics of 24 newly designed, synthesized and characterized TADF materials and demonstrates a fundamentally new approach for RTP, based on structural analogues to TADF. Far reaching design principles as conjugation induced TADF in polymers, as well as new design strategies selectively incorporating virbonic couplings yield device performances comprising LT50 of 2 hrs at 500 cd∙m-2 and targeted deep blue emission with CIE (0.16, 0.14). While lighting the way for TADF as future luminescent OLED materials, intrinsic material instabilities due to low bond-dissociation energies are disclosed as key-issues for tomorrows research.

Page generated in 0.0599 seconds