• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 25
  • 23
  • 20
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 264
  • 58
  • 42
  • 30
  • 30
  • 30
  • 26
  • 23
  • 23
  • 21
  • 21
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

The effects of electronic quenching on the collision dynamics of OH(A) with Kr and Xe

Perkins, Thomas Edward James January 2014 (has links)
This thesis presents an experimental and theoretical study of the collision dynamics of OH(A<sup>2</sup>Σ<sup>+</sup>) with Kr and Xe. These two systems both exhibit a significant degree of electronically non-adiabatic behaviour, and a particular emphasis of the work presented here is to characterise the competition and interplay between electronic quenching on the one hand, and electronically adiabatic collisional processes on the other. Quenching takes place close to the bottom of the deepest potential well for both systems. In collisions that remain in the excited electronic state, this same region of the potential is also largely responsible for rotational energy transfer (RET) and the collisional depolarisation of angular momentum. Therefore, the direct competition between these processes suppresses the cross-sections for RET and collisional depolarisation from their expected value in the absence of quenching. To investigate this, experiments were carried out to measure cross-sections for the collisional transfer of electronic, vibrational and rotational energy in OH(A, v=0,1) + Kr and OH(A, v=0) + Xe. In addition, measurements were made of the j-j' correlation -- that is, the relationship between the angular momentum of the OH radical before and after a collision -- in collisions with Kr and Xe, using the experimental technique of Zeeman quantum beat spectroscopy. Collisions with both Kr and Xe tend to effectively depolarise the angular momentum of the OH radical, due to the very anisotropic character of the potential on which the process occurs. Electronic quenching, which plays an essential role in both systems, is more prevalent with xenon as the crossing to the ground state potential is located in a more accessible location. These experimental results were compared with single surface quasi-classical trajectory (QCT) calculations, where the overestimate of rotational energy transfer or collisional depolarisation helps to elucidate the degree to which the presence of quenching suppresses these processes. Surface hopping QCT was then used to account for non-adiabatic transitions in the theory, which led to an improvement in agreement with experiment. However, standard surface hopping QCT theory failed to account for the full extent of quenching in these two systems. A major focus of this work is therefore on the development of an extension to standard surface hopping QCT theory to incorporate rovibronic couplings. In non-linear configurations, the excited state of the OH + Kr, Xe systems has A' symmetry, while the ground state is split into symmetric (A') and antisymmetric (A'') components. For these symmetry reasons, coupling is restricted to the two states of the same symmetry, however a rotation of the correct (A'') symmetry can induce transitions to the A'' state too. Inclusion of all three electronic states, and the relevant couplings between them, is found to be crucial for a proper description of experimental reality.
222

Études spectroscopiques expérimentales et théoriques de complexes de métaux de transition

Lanthier, Etienne 12 1900 (has links)
Cette thèse présente une série d'études qui visent la compréhension de la structure électronique de complexes de métaux de transition en employant diverses méthodes de spectroscopie. L'information sur la structure électronique aide à comprendre et développer des nouveaux matériaux, des nouvelles voies de synthèses, ainsi que des nouveaux modèles théoriques. Habituellement, afin d'explorer la structure électronique d'un système qui comporte en son centre un métal de transition, l'information fournie par les spectres d'un seul composé n'est pas suffisante. On étudie une série de composés similaires, qui ont le même métal de transition à un degré d'oxydation donné, ainsi que des ligands qui forment des liaisons de différentes forces et caractéristiques avec le métal. Cependant, ces changements, bien qu'on les désire de faible impact, créent une grande perturbation de la structure électronique visée par les études. Afin d'étudier en profondeur une seule structure électronique, nous employons une stratégie d'analyse moins perturbante. Nous appliquons une pression hydrostatique sur les complexes de métaux de transition. Cette pression perturbe le système suffisamment pour nous livrer davantage d'informations sur la structure électronique, sans la « dénaturer ». Afin d'étudier précisément ces systèmes perturbés, la technique d'application de pression est conjuguée, dans la littérature, aux diverses techniques de spectroscopie d'absorption UV-visible, de luminescence, ainsi que de diffusion Raman. Pour extraire un maximum d'informations de ces expériences, on emploie des techniques de calculs de structure électronique ainsi que de dynamique des noyaux. Dans cette thèse, on tente de mettre en lumière la structure électronique de composés de molybdène(IV), de platine(II) et palladium(II) à l'aide de la technique de pression couplée aux spectroscopies de luminescence et de diffusion Raman. Dans le chapitre 3, on observe un déplacement de la bande de luminescence de +12 cm-1/kbar entre la pression ambiante et 25 kbar pour le complexe trans-[MoOCl(CN-t-Bu)4]BPh4, dont le centre métallique molybdène(IV)est de configuration électronique 4d2. Il s'agit de la première variation positive observée pour un complexe de type métal-oxo. À des pressions plus élevées, la tendance s'inverse. Le maximum d'énergie de la bande de luminescence se déplace de -8 cm-1/kbar. Ce changement de variation présage d'une compétition interne entre les ligands situés sur les différents axes de l'octaèdre. À l'aide de calculs basés sur la théorie de la fonctionnelle de la densité, on propose un mécanisme pour expliquer ce phénomène. Au cours du chapitre 4, on étudie des complexes de palladium(II) et de platine(II) qui ont les mêmes ligands. Un de ces ligands est le 1,4,7-trithiacyclononane (ttcn). On constate qu'à basse pression le ligand est bidentate. Par contre, lorsque la pression augmente, on constate, par exemple à l'aide du complexe [Pt(ttcn)Cl2], qu'une interaction anti-liante supplémentaire se produit entre le ligand ttcn et le métal, ce qui change la nature de l'orbitale HOMO. On observe un déplacement de la bande de luminescence de -19 cm-1/kbar. Tel que pour le complexe de molybdène(IV), le déplacement de la bande de luminescence dépend de la compétition entre les ligands situés sur les différents axes de l'octaèdre. L'interaction liante entre l'ion platine(II) et l'atome de soufre axial est l'effet le plus plausible qui peut induire un déplacement de la bande de luminescence vers les basses énergies. Ceci nous indique que cette interaction domine. Par contre, pour ce qui est du complexe palladium(II), la compétition est remportée par d'autres effets, car le déplacement de la bande de luminescence est de +6 cm-1/kbar. Encore une fois, des calculs, basés sur la théorie de la fonctionnelle de la densité, aident à explorer les causes de ces observations en suggérant des explications corroborées simultanément par les diverses expériences de spectroscopie. Lors du chapitre 5, une étude plus exacte de la structure électronique ainsi que de la dynamique des noyaux de complexes de métaux de transition est présentée. En effet, les complexes de palladium(II) et de platine(II), de type [M(X)4]2-, ont une structure simple, très symétrique. Le premier état excité de ces molécules subit la distorsion Jahn-Teller. On veut établir un protocole de travail pour les expérimentateurs afin d'analyser des spectres de molécules pour lesquelles l'approximation de Born-Oppenheimer n'est pas valide. On utilise la théorie de la fonctionnelle de la densité dépendante du temps ainsi que le modèle de Heidelberg afin de décrire des effets non adiabatique. On tente d'établir l'influence des effets non adiabatiques sur les spectres de ce type de complexe. / The main goal of this thesis is to study the electronic structure of different transition metal complexes using spectroscopic methods. The detailed knowledge of the electronic structure helps to understand and develop new materials, new synthesis methods as well as new theoretical models. Usually, the information gathered from spectra of a single compound is not sufficient to identify the most important influences determining its electronic structure. Historically, in order to collect more information on transition complexes, series of similar compounds with the same metal center and oxidation state and varying ligands have been explored. This approach allows some trends that are directly related to the electronic structure of the metal center to be identified. The changes induced on the electronic structure by the ligand modifications are often larger than desired. We want to study continuous variations of the electronic structure specific to one compound with an experimental method that only slightly perturbs the structure. Hydrostatic pressure, as reported in the literature, modifies the electronic structure sufficiently to change UV-visible absorption, luminescence and Raman spectra. The changes are revealing electronic information on the compound. In order to analyze these experiments, we are using electronic structure and nuclear dynamics calculations. In this thesis, we explore the electronic structure of molybdenum(IV), platinum(II) and palladium(II) complexes. In chapter 3, we observe a +12 cm-1/kbar shift of the luminescence band from trans-[MoOCl(CN-t-Bu)4]BPh4 between ambient pressure and 25 kbar. The molybdenum(IV) metal ion in this complex has a 4d2 electronic configuration. It is the first time that a positive pressure-induced shift of the d-d luminescence maximum is recorded for a metal-oxo complex. On the same system, at higher pressure, the sign of the shift changes. This behavior is due to the competition between the different ligands of this six-coordinate compound. Density functional calculations are used to rationalize this phenomenon. In chapter 4, we study palladium(II) and platinum(II) complexes having the same ligands. The most important ligand for these complexes is 1,4,7-trithiacyclononane (ttcn). At low pressure, this ligand is bidentate. At high pressure, an additional antibonding interaction between the metal and the axial ttcn sulfur atom in the [Pt(ttcn)Cl2] complex modifies the nature of the HOMO orbital. This is illustrated by the measured red shift of the luminescence band maximum of -19 cm-1/kbar. As in the molybdenum(IV) complex, the shift illustrates the competition in the electronic structure between all ligands. The platinum(II)-sulfur axial interaction is the most plausible cause of the red shift. On the other hand, the corresponding palladium(II) complex exhibits a blue shift of +6 cm-1/kbar. In this case, the axial interaction does not appear to dominate the other interactions. Again electronic structure calculations help to establishing a model that explains the observations from diff erent spectroscopic experiments. Chapter 5 presents a more detailed study of the electronic structure and the nuclear dynamics of palladium(II) and platinum(II) complexes having a simpler structure than the compounds in the previous chapters. The first excited electronic state of these compounds exhibits a Jahn-Teller distortion. We desire to establish a workflow for experimentalists to allow them to analyze spectra in which the Born-Oppenheimer approximation is not valid. Time-dependent density functional theory is combined with the Heidelberg model for nuclear dynamics in order to study the non-adiabatic effects. Our goal is to advance our knowledge of such effects on transition metal complexes.
223

Elimination adiabatique pour systèmes quantiques ouverts / Adiabatic elimination for open quantum systems

Azouit, Rémi 27 October 2017 (has links)
Cette thèse traite du problème de la réduction de modèle pour les systèmes quantiquesouverts possédant différentes échelles de temps, également connu sous le nom d’éliminationadiabatique. L’objectif est d’obtenir une méthode générale d’élimination adiabatiqueassurant la structure quantique du modèle réduit.On considère un système quantique ouvert, décrit par une équation maîtresse deLindblad possédant deux échelles de temps, la dynamique rapide faisant converger lesystème vers un état d’équilibre. Les systèmes associés à un état d’équilibre unique ouune variété d’états d’équilibre ("decoherence-free space") sont considérés. La dynamiquelente est traitée comme une perturbation. En utilisant la séparation des échelles de temps,on développe une nouvelle technique d’élimination adiabatique pour obtenir, à n’importequel ordre, le modèle réduit décrivant les variables lentes. Cette méthode, basée sur undéveloppement asymptotique et la théorie géométrique des perturbations singulières, assureune bonne interprétation physique du modèle réduit au second ordre en exprimant ladynamique réduite sous une forme de Lindblad et la paramétrisation définissant la variétélente dans une forme de Kraus (préservant la trace et complètement positif). On obtientainsi des formules explicites, pour calculer le modèle réduit jusqu’au second ordre, dans lecas des systèmes composites faiblement couplés, de façon Hamiltonienne ou en cascade;des premiers résultats au troisième ordre sont présentés. Pour les systèmes possédant unevariété d’états d’équilibre, des formules explicites pour calculer le modèle réduit jusqu’ausecond ordre sont également obtenues. / This thesis addresses the model reduction problem for open quantum systems with differenttime-scales, also called adiabatic elimination. The objective is to derive a generic adiabaticelimination technique preserving the quantum structure for the reduced model.We consider an open quantum system, described by a Lindblad master equation withtwo time-scales, where the fast time-scale drives the system towards an equilibrium state.The cases of a unique steady state and a manifold of steady states (decoherence-free space)are considered. The slow dynamics is treated as a perturbation. Using the time-scaleseparation, we developed a new adiabatic elimination technique to derive at any orderthe reduced model describing the slow variables. The method, based on an asymptoticexpansion and geometric singular perturbation theory, ensures the physical interpretationof the reduced second-order model by giving the reduced dynamics in a Lindblad formand the mapping defining the slow manifold as a completely positive trace-preserving map(Kraus map) form. We give explicit second-order formulas, to compute the reduced model,for composite systems with weak - Hamiltonian or cascade - coupling between the twosubsystems and preliminary results on the third order. For systems with decoherence-freespace, explicit second order formulas are as well derived.
224

Best practice of extracting magnetocaloric properties in magnetic simulations

Bylin, Johan January 2019 (has links)
In this thesis, a numerical study of simulating and computing the magnetocaloric properties of magnetic materials is presented. The main objective was to deduce the optimal procedure to obtain the isothermal change in entropy of magnetic systems, by evaluating two different formulas of entropy extraction, one relying on the magnetization of the material and the other on the magnet's heat capacity. The magnetic systems were simulated using two different Monte Carlo algorithms, the Metropolis and Wang-Landau procedures. The two entropy methods proved to be comparably similar to one another. Both approaches produced reliable and consistent results, though finite size effects could occur if the simulated system became too small. Erroneous fluctuations that invalidated the results did not seem stem from discrepancies between the entropy methods but mainly from the computation of the heat capacity itself. Accurate determination of the heat capacity via an internal energy derivative generated excellent results, while a heat capacity obtained from a variance formula of the internal energy rendered the extracted entropy unusable. The results acquired from the Metropolis algorithm were consistent, accurate and dependable, while all of those produced via the Wang-Landau method exhibited intrinsic fluctuations of varying severity. The Wang-Landau method also proved to be computationally ineffective compared to the Metropolis algorithm, rendering the method not suitable for magnetic simulations of this type.
225

Vers un modèle vibronique innovant pour les hydrocarbures conjugués / Toward a novel vibronic model for hierarchical conjugated hydrocarbons

Ho, Emmeline 06 July 2018 (has links)
Cette thèse s'intéresse à la rationalisation du mécanisme de transfert d'excitation dans des polyphénylènes éthynylènes (PPE). Une étude statique approfondie a été réalisée en utilisant la TDDFT, permettant de confirmer la localisation des états excités de méta-PPE sur des fragments para, ainsi que la hiérarchie des interactions régissant les propriétés photochimiques des PPE. Des intersections coniques ont été identifiées, de même que les principales composantes de l'espace de branchement. Leur étude a soutenu l'hypothèse d'un transfert d'énergie par conversion interne entre états excités localisés sur des fragments para.D'autre part, nous avons proposé un modèle vibronique multiéchelles pour l'énergie des états électroniques. En particulier, nous avons exprimé les énergies des orbitales frontières de PPE en fonction des énergies des orbitales frontières du benzène et de l'acetylène via un Hamiltonien effectif de type Hückel. Un travail de mapping et d'optimisation nous a permis d'aboutir à une expression pour l'énergie de transition électronique en fonction d'un nombre réduit de coordonnées nucléaires locales. / The present work is focused on the rationalization of the excitation transfer mechanism in polyphenylene ethynylenes (PPEs). A static study was performed using TDDFT, allowing to confirm both the localization of the excited states of meta-PPEs on para building blocks and the hierarchy in the interactions governing the photochemical properties of PPEs. Conical intersections were identified, along with few components of their branching spaces. Studying those supported the assumption of an energy transfer proceeding through internal conversion between excited states localized on different building blocks.In addition, we proposed a multiscale vibronic model for the energy of the eletronic states. In particular, we expressed the energies of the frontier orbitals of PPEs in terms of the energies of the frontier orbitals of benzene and acetylene, using an effective Hückel-type Hamiltonian. Perfoming different optimizations, we achieved to propose an expression for the energy of the electronic transition in terms of a reduced number of local nuclear coordinates.
226

Caractérisation et optimisation d’une méthode de mesure du T1 en IRM cardiaque / Characterization and optimisation of quantitative method for T1 measurements in cardiac MRI

Ferry, Pauline 16 December 2015 (has links)
L’imagerie par résonance magnétique (IRM) est un outil de choix pour la caractérisation tissulaire in vivo. Il est démontré que la mesure d’un temps caractéristique en IRM, appelé « T1 », est corrélée à la composition du tissu. Justesse et reproductibilité sont requises dans la mesure du T1 pour : i) discriminer les valeurs de T1 des tissus sains et fibrosés dont la gamme de valeurs est assez restreinte, ii) permettre la mesure avant et après injection d’agent de contraste et iii) comparer les valeurs de T1 entre sites et constructeurs. A ce jour, aucune des techniques publiées n’est en mesure de fournir une mesure de T1 « idéale ». L’objectif principal de cette thèse est d’optimiser et de valider une technique de mesure du T1 sur le myocarde, qui se propose d’allier ces deux qualités. Pour atteindre cet objectif, nous avons travaillé la séquence appelée « SMART1Map » basée sur le principe d’échantillonnage d’une courbe de saturation-récupération. Des essais sur objets tests et sur volontaires à 1,5T et 3T ont d’abord été réalisés. Bien que les valeurs moyennes de T1 mesurées chez 7 sujets étaient justes et correspondaient à la littérature (1150 ± 84 ms à 1,5T), les résultats ont montré une faible reproductibilité imputable en partie à un manque de robustesse de la séquence vis-à-vis des inhomogénéités de champ magnétique particulièrement importantes à 3T. L’optimisation (simulation, implémentation et tests) de l’impulsion radiofréquence de saturation constitutive de la séquence a été mise en œuvre à 3T, sur objets fantômes, puis sur volontaires sains. Ces travaux ouvrent la voie à la mise en place de mesure de biomarqueur IRM de la fibrose / Cardiac Magnetic Resonance Imaging (MRI) has experienced growing interest due to its great potential in myocardial tissue characterization. Myocardium T1 values can be considered a useful imaging biomarker. Although many different T1 mapping techniques already exist, accurate and precise myocardial T1 quantification remains a desired yet challenging goal. Cardiac T1 mapping necessitates high precision to: i) discriminate values within the relatively short range of T1 values in healthy and diseased tissues, ii) allow both pre and post contrast agent injection T1 assessment, which is mandatory to compute the ECV and iii) allow comparison across platforms and hospitals. It should also provide a T1 value independent of heart rate. Among published methods, not any of them offer an “ideal” T1 quantification method. The main aim of this work is to optimize and to validate a precise and accurate quantitative T1 mapping technique. In order to achieve this goal, the sequence called « SMART1Map » based on the saturation recovery curve sampling was used. The first step consisted in performing T1 measurements on phantoms and healthy volunteers at 1,5T and 3T. Although this study allowed to assess accurate myocardium T1 values close to literature ones (1150 ± 84 ms), the sequence showed a poor precision likely due to a lack of robustness to magnetic field inhomogeneties and frequency offsets. Optimization (including simulation, implementation and tests) of the saturation RF pulse used in the sequence was carried out in phantoms then on healthy subjects at 3T. From this development, fibrosis detection through T1 measurements in clinical studies can now be started at 1.5T and 3T
227

Lasers inp sur circuits silicium pour applications en telecommunications / Hybrid III-V on silicon lasers for telecommunication applications

Lamponi, Marco 15 March 2012 (has links)
La photonique du silicium a connu un développent massif pendant les dix derniers années. Presque toutes les briques technologiques de base ont été réalisées et ont démontrées des performances remarquables. Cependant, le manque d’une source laser intégrée en silicium a conduit les chercheurs à développer de composants basés sur l’intégration entre le silicium et les matériaux III-V.Dans cette thèse je décris la conception, la fabrication et la caractérisation des lasers hybrides III-V sur silicium basés sur cette intégration. Je propose un coupleur adiabatique qui permet de transférer intégralement le mode optique du guide silicium au guide III-V. Le guide actif III-V au centre du composant fourni le gain optique et les coupleurs, des deux cotés, assurent le transfert de la lumière dans les guides silicium.Les lasers mono longueur d’onde sont des éléments fondamentaux des communications optiques. Je décris les différentes solutions permettant d’obtenir un laser mono-longueur d’onde hybride III-V sur silicium. Des lasers mono longueur d’onde ont été fabriqués et caractérisés. Ils démontrent un seuil de 21 mA, une puissance de sortie qui dépasse 10 mW et une accordabilité de 45 nm. Ces composants représentent la première démonstration d’un laser accordable hybride III-V sur silicium. / Silicon photonics knew an impressive development in the last ten years. Almost all the fundamental building blocks have been demonstrated and reveal competitive performances. However, the lack of an efficient silicon integrated laser source has led the researchers to develop heterogeneous integration of III-V materials on silicon.In this thesis I describe the design, the fabrication and the performances of these hybrid III-V on silicon lasers. I propose the use of an adiabatic coupler that totally transfers the optical mode between the III-V and the silicon waveguides. The active waveguide on III-V materials at the center of the device provides the optical gain, while, on both side, adiabatic couplers allow a loss-less transfer of the optical mode to the silicon waveguide. Single wavelength emitting lasers are fundamental elements for high bandwidth optical links. I review all the effective solutions enabling single waveguide hybrid III-V on SOI lasers. DBR, microring based, DFB and AWG laser solutions were analysed. Single wavelength operating lasers have been fabricated and characterized. A laser threshold of only 21 mA, an output power of more than 10 mW and tunability over 45 nm with a SMSR of 45 dB have been measured. These devices represent the first demonstration of a monolithically integrated hybrid III-V/Si tunable laser made by wafer bonding technique.
228

Four-Body Treatment of the Hydrogen-Antihydrogen System

Stegeby, Henrik January 2012 (has links)
This thesis presents a nonadiabatic (4-body) description of the hydrogen-antihydrogen system at a nonrelativistic level. The properties of the system, the rearrangement processes and the possible existence of resonance states are investigated by using a variational method for coupled arrangement channels, the Gaussian Expansion Method, and the stabilization method. The 4-body basis set is optimized by means of prediagonalization of 2-body fragments. In paper I, a mass-scaling procedure of the Born-Oppenheimer potential is introduced for the description of the relative motion between hydrogen and antihydrogen. The nonadiabaticity of the system is investigated in paper II.
229

Quantum Information Processing By NMR : Quantum State Discrimination, Hadamard Spectroscopy, Liouville Space Search, Use Of Geometric Phase For Gates And Algorithms

Gopinath, T 07 1900 (has links)
The progess in NMRQIP can be outlined in to four parts.1) Implementation of theoretical protocols on small number of qubits. 2) Demonstration of QIP on various NMR systems. 3) Designing and implementing the algorithms for mixed initial states. 4) Developing the techniques for coherent and decoherent control on higher number(up to 15) of qubits. This thesis contains some efforts in the direction of first three points. Quantum-state discrimination has important applications in the context of quantum communication and quantum cryptography. One of the characteristic features of quantum mechanics is that it is impossible to devise a measurement that can distinguish nonorthogonal states perfectly. However, one can distinguish them with a finite probability by an appropriate measurement strategy. In Chapter 2, we describe the implementation of a theoretical protocol of programmable quantum-state discriminator, on a two-qubit NMR System. The projective measurement is simulated by adding two experiments. This device does the unambiguous discrimination of a pair of states of the data qubit that are symmetrically located about a fixed state. The device is used to discriminate both linearly polarized states and eillipitically polarized states. The maximum probability of successful discrimination is achieved by suitably preparing the ancilla quubit. The last step of any QIP protocol is the readout. In NMR-QIP the readout is done by using density matrix tomography. It was first proposed by Ernst and co-workers that a two-dimensional method can be used to correlate input and output states. This method uses an extra (aniclla) qubit, whose transitions indicate the quantum states of the remaining qubits. The 2D spectrum of ancilla qubit represent the input and output states along F1 and F2 dimensions respectively. However the 2D method requires several t1 increments to achieve the required spectral width and resolution in the indirect dimension, hence leads to large experimental time. In chapter 3, the conventional 2D NMRQIP method is speeded-up by using Hadamard spectroscopy. The Hadamard method is used to implement various two-, three-qubit gates and qutrit gates. We also use Hadamard spectroscopy for information storage under spatial encoding and to implement a parallel search algorithm. Various slices of water sample can be spatially encoded by using a multi-frequency pulse under the field gradient. Thus the information of each slice is projected to the frequency space. Each slice represents a classical bit, where excitation and no excitation corresponds to the binary values 0 and 1 respectively. However one has to do the experiment for each binary information, by synthesizing a suitable multi-frequency pulse. In this work we show that by recording the data obtained by various Hadamard encoded multi-frequency pulses, one can suitably decode it to obtain any birnary information, without doing further experiments. Geometric phases depend only on the geometry of the path executed in the projective Hilbert space, and are therefore resilient to certain types of errors. This leads to the possibility of an intrinsically fault-tolerant quantum computation. In liquid state NMRQIP. Controlled phase shift gates are achieved by using qubit selective pulses and J evolutions, and also by using geometir phases. In order to achieve higher number of qubits in NMR, one explores dipolar couplings which are larger in magnitude, yielding strongly coupled spectra. In such systems since the Hamiltonian consists of terms, it is difficult to apply qubit selective pulses. However such systems have been used for NMRQIP by considering 2n eigen states as basis states of an n-qubit system. In chapter 4, it is shown that non-adiabatic geometric phases can be used to implement controlled phase shift gates in strongly dipolar coupled systems. A detailed theoretical explanation of non-adiabatic geometric phases in NMR is given, by using single transition operators. Using such controlled phase shift gates, the implementation of Deutsch-Jozsa and parity algorithms are demonstrated. Search algorithms play an important role in the filed of information processing. Grovers quantum search algorithm achieves polynomial speed-up over the classical search algorithm. Bruschweiler proposed a Liouville space search algorithm which achieve polymonial speed-up. This algorithm requires a weakly coupled system with a mixed initial state. In chapter 5 we modified the Bruschweiler’s algorithm, so that it can be implemented on a weakly as well as strongly coupled system. The experiments are performed on a strongly dipolar coupled four-qubit system. The experiments from four spin-1/2 nuclei of a molecule oriented in a liquid crystal matrix. Chapter 6 describes the implementation of controlled phase shift gates on a quadrupolar spin-7/2 nucleus, using non-adiabatic geometric phases. The eight energy levels of spin-7/2 nucleus, form a three qubit system. A general procedure is given, for implementing a controlled phase shift gate on a system consisting of any number of energy levels. Finally Collin’s version of three-qubit DJ algorithm using multi-frequency pulses, is implemented in the spin-7/2 system.
230

On Quantum Simulators and Adiabatic Quantum Algorithms

Mostame, Sarah 22 January 2009 (has links) (PDF)
This Thesis focuses on different aspects of quantum computation theory: adiabatic quantum algorithms, decoherence during the adiabatic evolution and quantum simulators. After an overview on the area of quantum computation and setting up the formal ground for the rest of the Thesis we derive a general error estimate for adiabatic quantum computing. We demonstrate that the first-order correction, which has frequently been used as a condition for adiabatic quantum computation, does not yield a good estimate for the computational error. Therefore, a more general criterion is proposed, which includes higher-order corrections and shows that the computational error can be made exponentially small – which facilitates significantly shorter evolution times than the first-order estimate in certain situations. Based on this criterion and rather general arguments and assumptions, it can be demonstrated that a run-time of order of the inverse minimum energy gap is sufficient and necessary. Furthermore, exploiting the similarity between adiabatic quantum algorithms and quantum phase transitions, we study the impact of decoherence on the sweep through a second-order quantum phase transition for the prototypical example of the Ising chain in a transverse field and compare it to the adiabatic version of Grover’s search algorithm. It turns out that (in contrast to first-order transitions) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins/qubits), which might limit the scalability of the system. Finally, we propose the use of electron systems to construct laboratory systems based on present-day technology which reproduce and thereby simulate the quantum dynamics of the Ising model and the O(3) nonlinear sigma model.

Page generated in 0.0555 seconds