• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 8
  • 8
  • 8
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Asymptotic solutions and resonances for Klein-Gordon and Schrödinger operators

AMAR-SERVAT, Emmanuelle 18 December 2002 (has links) (PDF)
Mon travail de thèse se situe dans le cadre de l'analyse semi-classique. Il se divise en trois parties. Dans la première, j'ai étudié l'opérateur de Klein-Gordon semi-classique en dimension un. Dans la zone où le potentiel reste sous le niveau d'énergie, il existe pour cet opérateur des constructions de solutions WKB, similaires à celles développées pour l'opérateur de Schrödinger. Sous certaines hypothèses, on a prolongé ces solutions hors de cette zone, grâce aux méthodes utilisées près des points tournants pour l'opérateur de Schrödinger. On a ensuite étudié un exemple pour lequel on peut faire des calculs explicites. Enfin, en dimension quelconque, on a obtenu une nouvelle majoration des fonctions propres, lorsque la distance d'Agmon associée à cet opérateur a un gradient lipschitzien. La deuxième partie concerne l'opérateur de Schrödinger et l'étude des résonances en dimension un. Lorsque le potentiel présente deux puits et une mer pour les niveaux d'énergies considérés, on a obtenu des conditions de non croisement des résonances ainsi que leur graphe, grâce à la construction de modes. En présence d'un nombre quelconque de puits, cela permet également de calculer une estimation de la partie imaginaire des résonances dans le cas d'une interaction simple. Enfin, dans la troisième partie, on considère un opérateur de Schrödinger dont le potentiel présente un maximum non dégénéré. On a étudié les résonances générées par une courbe homocline qui passe par ce maximum. En dimension un, on a obtenu une condition de quantification, et par suite les résonances recherchées. En dimension quelconque, on a construit une solution asymptotique sortante le long de cette courbe, en adaptant la méthode de B. Helffer et J. Sjöstrand pour le fond de puits non résonnant. Une transformation FBI permet ensuite de conjecturer un premier niveau de résonances.
2

Mécanique statistique des champs gaussiens / Statistical mechanics of Gaussian fields

Rivera, Alejandro 23 November 2018 (has links)
Dans cette thèse, on étudie les ensembles de niveau de champs gaussiens lisses, ou fonctions lisses aléatoires. On explore plusieurs directions, certaines liées à la géométrie spectrale, d’autres à la mécanique statistique.L’attention est d’abord portée sur une famille de champs gaussiens sur des variétés riemanniennes compactes définis comme des combinaisons linéaires de fonctions propres du laplacien avec des points gaussiens indépendants. Dans certains cas particuliers, cette famille donne l’ensemble à bande limitée qui a été très étudié ces dernières années, mais elle donne aussi le champ libre gaussien coupé en fréquence, qui est la projection du champ libre gaussien sur les premiers espaces propres du laplacien. On étudie la fonction de covariance de ces champs, l’espérance du nombre de composantes connexes de leur lieu d’annulation et, dans le cas du champ libre gaussien, on en déduit une estimation précise des grandes déviation de l’événement que le champ est positif sur un ensemble fixé quand la limite de fréquence tend vers l’infini.Puis on étudie la percolation des sur-niveaux de champs stationnaires sur le plan en utilisant des techniques de percolation de Bernoulli. On prouve d’abord un résultat de mélange sur la topologie des ensembles nodaux pour des champs gaussiens planaires. Puis on prouve un résultat de transition de phase pour le champ de Bargmann-Fock. / In this thesis, we study the level sets of smooth Gaussian fields, or random smooth functions. Several directions are explored, some linked to spectral theory, some to statistical mechanics.The first object of focus is a family of Gaussian fields on compact Riemannian manifolds defined as linear combinations of eigenfunctions of the Laplacian with independent Gaussian weights. In special cases, this family specializes to the band-limited ensemble which has received a lot of attention in recent years, but also to the cut-off Gaussian Free Field, which is the projection of the Gaussian Free Field on the first eigenspaces of the Laplacian. We study the covariance function of these fields, the expected number of connected components of their zero set, and, in the case of the cut-off Gaussian Free Field, derive a precise large deviation estimate on the event that the field is positive on a fixed set when the energy cut-off tends to infinity.Next, we study percolation of excursion sets of stationary fields on the plane using techniques from Bernoulli precolation. We first derive a mixing bound for the topology of nodal sets of planar Gaussian fields. Then, we prove a sharp phase transition result for the Bargmann-Fock random field.
3

Analyse spectrale et analyse semi-classique pour l'étude de la métastabilité en dynamique moléculaire / Spectral analysis and semi-classical analysis for metastability in molecular dynamics

Nectoux, Boris 20 November 2017 (has links)
Dans cette thèse, nous étudions le comportement asymptotique précis à basse température de l’événement de sortie d'un domaine métastable $Omegasubset mathbb R^d$ (point de sortie et temps de sortie) pour le processus de Langevin sur amorti. En pratique, le processus de Langevin sur amorti peut par exemple simuler l'évolution des positions des atomes d'une molécule ou la diffusion d'impuretés interstitielles dans un cristal. Nos résultats principaux concernent le comportement asymptotique précis de la distribution de la loi du point de sortie de $Omega$. Dans la limite d'une petite température, ces résultats permettent de justifier l'utilisation de la formule d'Eyring-Kramers pour modéliser les événements de sortie de $Omega$. La loi d'Eyring-Kramers est par exemple utilisée pour calculer les taux de transition entre les états d'un système dans un algorithme de Monte-Carlo cinétique afin de simuler efficacement les différents états visités par le système. L'analyse repose de manière essentielle sur la distribution quasi stationnaire associée au processus de Langevin sur amorti dans $Omega$. Nos preuves utilisent des outils d'analyse semi-classique. La thèse se décompose en trois chapitres indépendants. Le premier chapitre (rédigé en français) est une introduction aux résultats obtenus. Les deux autres chapitres (rédigées en anglais) sont consacrés aux énoncés mathématiques / This thesis is dedicated to the study of the sharp asymptotic behaviour in the low temperature regime of the exit event from a metastable domain $Omegasubset mathbb R^d$ (exit point and exit time) for the overdamped Langevin process. In practice, the overdamped Langevin dynamics can be used to describe for example the motion of the atoms of a molecule or the diffusion of interstitial impurities in a crystal. The obtention of sharp asymptotic approximations of the first exit point density in the small temperature regime is the main result of this thesis. These results justify the use of the Eyring-Kramers law to model the exit event. The Eyring-Kramers law is used for example to compute the transition rates between the states of a system in a kinetic Monte-Carlo algorithm in order to sample efficiently the state-to-state dynamics. The cornerstone of our analysis is the quasi stationary distribution associated with the overdamped Langevin dynamics in $Omega$. The proofs are based on tools from semi-classical analysis. This thesis is divided into three independent chapters. The first chapter (in French) is dedicated to an introduction to the mathematical results. The other two chapters (in English) are devoted to the precise statements and proofs
4

Propagation non-linéaire de paquets d'onde. / Nonlinear propagation of wave packets.

Hari, Lysianne 25 September 2014 (has links)
Les résultats présentés dans cette thèse concernent l'étude, dans la limite semi-classique, de systèmes d'équations de Schrödinger non-linéaires couplées. Selon le potentiel considéré, le système peut, ou non, présenterun couplage linéaire, en plus de celui induit par le terme non-linéaire. Dans ce manuscrit, c'est la propagation d'états cohérents -états localisés dans l'espace des phases, et que l'on va faire vivre dans un niveau d'énergie donné - qui va nous intéresser.Dans le cadre linéaire, plusieurs situations ont été étudiées, certaines préservant l'adiabaticité,et d'autres la brisant, faisant apparaître des transitions entre les niveaux d'énergie.Le rôle de la non-linéarité et l'interaction de ses effets avec un éventuel couplage linéaire sur ces phénomènes est une questionimportante pour comprendre des systèmes qui entrent en jeu dans des problèmes très actuels en physique quantique.Dans un premier temps, le potentiel pris en compte aura des valeurs propres bien séparées par un trou spectral,et nous montrerons un théorème adiabatique pour une non-linéarité qui présente un exposant critique pour le paramètre semi-classique devant la non-linéarité. Un point de vue équivalent est de considérer des données petites de l'ordre d'une puissance positive du paramètre semi-classique.Il s'agit d'un résultat analogue à celui de Carles et Fermanian-Kammerer mais dans un cadre sur-critique L^2.Dans un deuxième temps, nous considèrerons, pour le cas unidimensionnel, un potentiel explicite de taille 2 X 2,qui présente un croisement évité :les deux valeurs propres sont séparées par un paramètre delta - paramètre adiabatique -qui va tendre vers zéro lorsque le paramètre semi-classique va tendre vers zéro. Nous montrerons alors que des transitions entre les modes ont lieu.Il s'agit ici d'une version non-linéaire des travaux d'Hagedorn et Joyeoù une telle transition est démontrée pour des systèmes linéaires. / This thesis is devoted to the study of coupled nonlinear Schrödinger equations in the semi-classical limit.Depending on the potential we consider, the system can present a linear coupling, in addition to the nonlinear one.We will focus on the propagation of coherent states that will be polarized along a given eigenvector of the potential.In the linear setting, several situations have been analyzed; some of them lead to adiabatic theorems whereas the others implytransitions between energy levels. When one adds a nonlinearity, understanding nonlinear effects onthe propagation and the competition between them and the linear coupling becomes a very interesting issue.We first consider a potential with eigenvalues that present a spectral gap and will prove an adiabatic theoremfor a critical nonlinearity in the semi-classical sense. This is a L^2-supercritical result,similar to the one proved by Carles and Fermanian-Kammerer for the one-dimensional case, which is L^2-subcritical.The second part of the thesis deals with an explicit 2 X 2 potential that presents an avoided crossing point :the minimal gap between its eigenvalues becomes smaller as the semiclassical parameter tends to zero. We will prove that this system exhibits transitions between the modes. This result is a nonlinear version of the study performed by Hagedorn and Joye in the linear case.
5

Contrôle et stabilisation pour des équations hyperboliques et dispersives / Control and stablization of some hyperbolic and dispersive equations

Sun, Chenmin 04 July 2018 (has links)
Dans cette thèse, nous étudions la contrôlabilité et la stabilisation pour des équation hyperboliques et dispersives. La première partie de cette thèse est consacrée à la stabilisation du système de Stokes hyperbolique. La propagation des singularités pour le système de Stokes semi-classique est établie dans chapitre 1. La preuve repose sur la stratégie de Ivrii et Melrose-Sjöstrand.Cependant, par rapport à l’opérateur de Laplace, la difficulté est causée par la pression qui a un effet non trivial pour les solutions concentrées au bord. Nous utilisons la paramétrix des solutions près d’un point elliptique ou hyperbolique. Ensuite, on traite les solutions concentrées près de l’ensemble «glancing» par une décomposition micro-locale. L’effet de la pression est alors bien contrôlé grâce à la géométrie. Finalement on utilise un argument récurrence pour terminer la preuve. Par conséquent, nous prouvons la stabilisation du système de Stokes hyperbolique dans le chapitre 2 sous la condition de contrôle géométrique sur le support de l’amortissement.La deuxième partie est consacrée à la contrôlabilité et la stabilisation de l’équation de Kadomtsev-Petviashvili (KP en bref). Dans le chapitre 3, en utilisant l’analyse semi-classique, nous avons prouvé la contrôlabilité verticale pour des données dans L^2 (T). De plus, un résultat négatif concernant la contrôlabilité horizontale est aussi obtenu. Dans le chapitre 4, nous considérons la contrôlabilité de l’équation de KP-I linéaire. C’est un modèle intéressant dans lequel la vitesse de groupe peut être dégénéré. Plus général, on a obtenu le plus petit ordre requis pour assurer l’observabilité des équations de KP-I fractionnaire linéaire. Finalement dans le chapitre 5, nous avons montré la contrôlabilité et la stabilisation des ’equations de KP-II et 5KP-II avec grandes données initiales dans l’espace de Sobolev, si la donnée initiale satisfait certaines hypothèses de compacité partielles. Ceci généralise la contrôlabilité des solutions de KP-II avec données petites dans le chapitre 3. / In this thesis, we deal with the control and stabilization for certain hyperbolic and dispersive partial differential equations. The first part of this work is devoted to the stabilization of hyperbolic Stokes equation. The propagation of singularity for semi-classical Stokes system is established in Chapter 1. This will be done by adpating the strategy of Ivrii and Melrose-Sjöstrand. However,compared to the Laplace operator, the difficulty is caused by the pressure term which has non-trivial impact to solutions concentrated near the boundary. We apply parametrix construction to resolve the issue in elliptic and hyperbolic regions. We next adapte a fine micro-local decomposition for solutions concentrated near the glancing set. The impact of pressure to the solution is then well controled by geometric considerations. As a consequence of the main theorem in Chapter 1, we prove the stabilization of hyperbolic Stokes equation under geometric control condition in Chapter 2. The second part is devoted to the controllability of Kadomtsev–Petviashvili(KP in short) equations. In Chapter 3, the controllability in L 2 (T) from vertical strip is proved using semi-classical analysis. Additionally, a negative result for the controllability in L^2 (T) from horizontal strip is also showed. In Chapter 4, we prove the exact controllability of linear KP-I equation if the control input is added on a vertical domain. It is an interesting model in which the group velocity may degenerate. More generally, we have obtained the least dispersion needed to insure observability for fractional linear KP I equation. Finally in Chapter 5, we prove exact controllability and stabilization of KP-II equation and fifth order KP-II equation for any size of initial data in Sobolev spaces with additional partial compactness conditions. This extends the exact controllability for small data obtained in Chapter 3.compactness condition. This extends the exact controllability for small data obtained in Chapter 3.
6

Ergodicité et fonctions propres du laplacien sur les grands graphes réguliers / Ergodicity and eigenfunctions of the Laplacian on large regular graphs

Le Masson, Etienne 24 September 2013 (has links)
Dans cette thèse, nous étudions les propriétés de concentration des fonctions propres du laplacien discret sur des graphes réguliers de degré fixé dont le nombre de sommets tend vers l'infini. Cette étude s'inspire de la théorie de l'ergodicité quantique sur les variétés. Par analogie avec cette dernière, nous développons un calcul pseudo-différentiel sur les arbres réguliers : nous définissons des classes de symboles et des opérateurs associés, et nous prouvons un certain nombre de propriétés de ces classes de symboles et opérateurs. Nous montrons notamment que les opérateurs sont bornés dans L², et nous donnons des formules de l'adjoint et du produit. Nous nous servons ensuite de cette théorie pour montrer un théorème d'ergodicité quantique pour des suites de graphes réguliers dont le nombre de sommets tend vers l'infini. Il s'agit d'un résultat de délocalisation de la plupart des fonctions propres dans la limite des grands graphes réguliers. Les graphes vérifient une hypothèse d'expansion et ne comportent pas trop de cycles courts, deux hypothèses vérifiées presque sûrement par des suites de graphes réguliers aléatoires. / N this thesis, we study concentration properties of eigenfunctions of the discrete Laplacian on regular graphs of fixed degree, when the number of vertices tend to infinity. This study is made in analogy with the Quantum Ergodicity theory on manifolds. We construct a pseudo-differential calculus on regular trees by defining symbol classes and associated operators and proving some properties of these classes of symbols and operators. In particular we prove that the operators are bounded on L² and give adjoint and product formulas. We then use this theory to prove a Quantum Ergodicity theorem on large regular graphs. This is a property of delocalization of most eigenfunctions in the large scale limit. We consider expander graphs with few short cycles (for instance random large regular graphs). These hypothesis are almost surely satisfied by sequences of random regular graphs.
7

Le modèle de Ginzburg-Landau avec champ magnétique variable / The Ginzburg-Landau model with a variable magnetic field

Attar, Kamel 16 June 2015 (has links)
La thèse de doctorat comporte trois parties rédigées en anglais. Les deux premières parties correspondent principalement à l'étude de l'énergie de l'état fondamental. La dernière partie est consacrée à l'analyse de l'effet de pinning dans la supraconductivité.Dans une première partie de cette thèse, nous considérons la fonctionnelle de Ginzburg -Landau avec un champ magnétique variable appliqué dans un domaine borné et régulier de dimension 2. Nous déterminons le comportement asymptotique du paramètre d'ordre dans le régime o\`u le paramètre de Ginzburg-Landau et le champ magnétique sont grands et de même ordre. Comme conséquence, nous montrons que le paramètre d'ordre est localisé asymptotiquement dans la région où le profil du champ magnétique appliqué est petit.Dans une autre partie, nous considérons la fonctionnelle de Ginzburg -Landau avec un champ magnétique variable appliqué dans un domaine borné et régulier de dimension 2. Le profil du champ magnétique appliqué varie régulièrement et peut s'annuler exactement à l'ordre 1 le long d'une courbe. En supposant que la l'intensité du champ magnétique appliqué varie entre deux échelles caractéristiques, et que le paramètre de Ginzburg- Landau tend vers l'infini, nous déterminons une formule asymptotique précise pour minimiser l'énergie et montrer que les minimiseurs de l'énergie ont des vortex. Nous mettons en évidence que la présence d'un champ magnétique variable implique que la distribution de la vorticité dans l'échantillon n'est pas uniforme.Dans la dernière partie, nous étudions l'énergie de Ginzburg-Landau d'un supraconducteur avec un champ magnétique variable et un terme de pinning dans un domaine borné et régulier de dimension 2. En supposant que le paramètre de Ginzburg-Landau et l'intensité du champ magnétique sont grands et de même ordre, nous déterminons une formule asymptotique précise pour l'énergie. De plus, nous discutons l'existence des solutions non-triviales et déterminons le comportement asymptotique du troisième champ critique de la supraconductivité. / The PHD thesis has three parts, the first and the second part correpond mainly to study the groundstate energy, the last one being devoted to the analysis of the pinning effect in superconductivity.In a first part of this thesis, we consider the Ginzburg-Landau functional with a variable applied magnetic field in a bounded and smooth two-dimensional domain. We determine an accurate asymptotic formula for the minimizing energy when the Ginzburg-Landau parameter and the magnetic field are large and of the same order. As a consequence, it is shown how bulk superconductivity decreases in average as the applied magnetic field increases.In another part, we consider the Ginzburg-Landau functional with a variable applied magnetic field in a bounded and smooth two-dimensional domain. The profile of the applied magnetic field varies smoothly and is allowed to vanish non-degenerately along a curve. Assuming that the strength of the applied magnetic field varies between two characteristic scales, and that the Ginzburg-Landau parameter tends to , we determine an accurate asymptotic formula for the minimizing energy and show that the energy minimizers have vortices. The new aspect in the presence of variable magnetic field is that the distribution of vortices in the sample is not uniform.In the final part, we study the Ginzburg-Landau energy of a superconductor with a variable magnetic field and a pinning term in a bounded and smooth two-dimensional domain . Supposing that the Ginzburg-Landau parameter and the intensity of magnetic field are large and of the same order, we determine an accurate asymptotic formula for the minimizing energy. Also, we discuss the existence of non-trivial solutions and prove an asymptotics of the third critical field.
8

Conditions de quantification de Bohr-Sommerfeld pour des opérateurs semi-classiques non auto-adjoints / Bohr-Sommerfeld quantization conditions for non self-adjoint semi-classical operators

Rouby, Ophélie 29 November 2016 (has links)
On s'intéresse à la théorie spectrale d'opérateurs semi-classiques non auto-adjoints en dimension un et plus précisément aux développements asymptotiques des valeurs propres. Ces derniers font intervenir des objets géométriques issus de la mécanique classique dans l'espace des phases complexifié et correspondent à une généralisation des conditions de quantification de Bohr-Sommerfeld au cadre non auto-adjoint. Plus précisément, dans un premier temps, on étudie le spectre de perturbations non auto-adjointes d'opérateurs pseudo-différentiels auto-adjoints en dimension un à l'aide de techniques d'analyse microlocale analytique et en corollaire, on établit que pour des perturbations PT-symétriques d'opérateurs auto-adjoints, le spectre est réel. Ensuite, on présente des conditions de quantification de Bohr-Sommerfeld pour des perturbations non auto-adjointes d'opérateurs de Berezin-Toeplitz du plan complexe auto-adjoints. Dans un second temps, on s'intéresse aux différentes quantifications du tore et plus précisément à la quantification de Berezin-Toeplitz du tore, à la quantification de Weyl classique du tore et à la quantification de Weyl complexe du tore. On établit des liens entre ces différentes quantifications notamment grâce à la transformée de Bargmann, puis à l'aide de simulations numériques, on met en évidence une conjecture sur des conditions de quantification de Bohr-Sommerfeld pour des perturbations non auto-adjointes d'opérateurs de Berezin-Toeplitz du tore auto-adjoints. / We interest ourselves in the spectral theory of non self-adjoint semi-classical operators in dimension one and in asymptotic expansions of eigenvalues. These expansions are written in terms of geometrical objects in a complex phase space coming from classical mechanics and correspond to a generalization of Bohr-Sommerfeld quantization conditions in the non self-adjoint case. First, we study non self-adjoint perturbations of self-adjoint pseudo-differential operators in dimension one by using techniques of analytic microlocal analysis. As a corollary, we establish for PT-symmetric perturbations of self-adjoint operators, that the spectrum is real. Then we show Bohr-Sommerfeld quantization conditions for non self-adjoint perturbations of self-adjoint Berezin-Toeplitz operators of the complex plane. In the second part, we look into quantizations of the torus, namely the Berezin-Toeplitz, the classical Weyl and the complex Weyl quantizations of the torus. We establish links between these different quantizations using Bargmann transform. We propose a conjecture, supported by numerical simulations, on Bohr-Sommerfeld quantization conditions for non self-adjoint perturbations of self-adjoint Berezin-Toeplitz operators of the torus.

Page generated in 0.0806 seconds