• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur les déformations des systèmes complètement intégrables classiques et semi-classiques

ROY, Nicolas 16 September 2003 (has links) (PDF)
Dans un premier temps, on considère un hamiltonien complètement intégrable régulier sur une variété symplectique et on cherche à caractériser les perturbations de ce hamiltonien qui sont des déformations, i.e qui restent complètement intégrables après l'ajout de la perturbation. Après avoir explicité la classe d'hamiltoniens non-dégénérés considérée et conjecturé la forme générale des déformations régulières, on donne les conditions formelles dans le paramètre de perturbation pour que le hamiltonien reste complètement intégrable régulier ou singulier. Dans un deuxième temps, on considère un système complètement intégrable semi-classique décrit par un opérateur pseudo-différentiel sur le tore et on étudie le spectre d'une perturbation de cet opérateur. On utilise pour cela une méthode de forme normale qui met l'opérateur sous une forme simple près de chaque résonance. Cette forme normale est ensuite utilisée pour construire des quasimodes de l'opérateur perturbé
2

Extension of the canonical trace and associated determinants

Ouedraogo, Marie-Françoise 22 October 2009 (has links) (PDF)
Cette thèse est consacrée à l'étude de la trace canonique et de deux types de déterminants : d'une part un déterminant associé à la trace canonique sur une classe d'opérateurs pseudodifférentiels et d'autre part des déterminants associés à des traces régularisées. Dans une première partie, en dimension impaire, nous revisitons l'unicité de la trace canonique sur l'espace des opérateurs pseudodifférentiels classiques de classe impaire avant de l'étendre aux opérateurs log-polyhomogènes de classe impaire. Nous classifions les traces sur l'algèbre des opérateurs pseudodifférentiels classiques de classe impaire d'ordre zéro. Dans la 2e partie, nous établissons la localité de l'anomalie multiplicative du déterminant pondéré et du déterminant zeta. Ces résultats sont obtenus grâce à l'étude de la localité de la trace pondérée de l'opérateur L(A,B). Nous déduisons alors de ces résultats l'expression locale de ces anomalies multiplicatives en fonction du résidu noncommutatif. Enfin, nous classifions les déterminants multiplicatifs en utilisant la classification des traces sur les opérateurs pseudodifférentiels de classe impaire et d'ordre zéro en dimension impaire. Nous définissons aussi le déterminant symétrisé obtenu de la trace canonique aplliquée au logarithme symétrisé en dimension impaire. Nous montrons la multiplicativité de ce déterminant sous certaines restrictions sur les coupures spectrales des opérateurs.
3

Systèmes intégrables semi-classiques: du local au global

VU NGOC, San 10 December 2003 (has links) (PDF)
Ce mémoire a pour but de présenter un panorama des recherches que j'ai effectuées depuis la soutenance de ma thèse en 1998. J'en ai également profité pour réordonner mes résultats et émailler le texte de réflexions parfois nouvelles afin de tenter de combiner l'introduction au sujet avec la synthèse de mes recherches. Il sera question de systèmes hamiltoniens complètement intégrables, de leur étude locale, de leurs singularités, de leurs aspects globaux et de certains liens qu'il entretiennent avec les variétés toriques, tout ceci du point de vue de la mécanique classique ainsi que de celui de leur quantification semi-classique. Une étude détaillée des singularités dites non-dégénérées sera présentée.
4

Construction et analyse de conditions aux limites artificielles pour des équations de Schrödinger avec potentiels et non linéarités

Klein, Pauline 03 November 2010 (has links) (PDF)
La résolution numérique de l'équation de Schrödinger en domaine extérieur nécessite l'utilisation de conditions aux limites appropriées sur la frontière du domaine de calcul. Les conditions aux limites à utiliser sont directement reliées à la fonction de potentiel intervenant dans l'équation. Pour l'équation à potentiel nul, la condition aux limites exacte est connue, ainsi que des méthodes efficaces de discrétisation et d'implémentation numérique. L'objectif de cette thèse est d'étendre les méthodes mises en jeu à potentiel nul dans le cas d'un potentiel aussi général que possible, à l'image des situations physiques variées faisant intervenir un potentiel, linéaire ou non linéaire. Nous prenons le parti de renoncer à établir des conditions aux limites exactes, au profit d'une plus grande généralité de la méthode et d'une bonne adaptation à une implémentation numérique. En se basant sur le calcul pseudodifférentiel, on propose alors une recherche détaillée de méthodes permettant de prendre en compte le potentiel dans une condition aux limites artificielle (CLA). Cette thèse traite le cas de l'équation en dimension un ou deux avec potentiel linéaire ou non linéaire, ainsi que de l'équation stationnaire en dimension un. La construction de ces CLA repose sur l'analyse microlocale et le calcul symbolique associé aux opérateurs pseudodifférentiels fractionnaires. La discrétisation en temps est effectuée à l'aide de convolutions discrètes ou d'approximants de Padé, et la discrétisation en espace repose sur des éléments finis linéaires. On utilise la méthode de relaxation de Besse pour résoudre l'équation non linéaire. L'analyse mathématique des conditions construites dans cette thèse permet de démontrer dans certains cas des estimations a priori, sur le plan continu et sur le plan semi-discret. De nombreuses simulations numériques permettent de tester l'efficacité des conditions aux limites proposées et de les comparer entre elles.
5

Ergodicité et fonctions propres du laplacien sur les grands graphes réguliers

Le Masson, Etienne 24 September 2013 (has links) (PDF)
Dans cette thèse, nous étudions les propriétés de concentration des fonctions propres du laplacien discret sur des graphes réguliers de degré fixé dont le nombre de sommets tend vers l'infini. Cette étude s'inspire de la théorie de l'ergodicité quantique sur les variétés. Par analogie avec cette dernière, nous développons un calcul pseudo-différentiel sur les arbres réguliers : nous définissons des classes de symboles et des opérateurs associés, et nous prouvons un certain nombre de propriétés de ces classes de symboles et opérateurs. Nous montrons notamment que les opérateurs sont bornés dans L², et nous donnons des formules de l'adjoint et du produit. Nous nous servons ensuite de cette théorie pour montrer un théorème d'ergodicité quantique pour des suites de graphes réguliers dont le nombre de sommets tend vers l'infini. Il s'agit d'un résultat de délocalisation de la plupart des fonctions propres dans la limite des grands graphes réguliers. Les graphes vérifient une hypothèse d'expansion et ne comportent pas trop de cycles courts, deux hypothèses vérifiées presque sûrement par des suites de graphes réguliers aléatoires.
6

Ergodicité et fonctions propres du laplacien sur les grands graphes réguliers / Ergodicity and eigenfunctions of the Laplacian on large regular graphs

Le Masson, Etienne 24 September 2013 (has links)
Dans cette thèse, nous étudions les propriétés de concentration des fonctions propres du laplacien discret sur des graphes réguliers de degré fixé dont le nombre de sommets tend vers l'infini. Cette étude s'inspire de la théorie de l'ergodicité quantique sur les variétés. Par analogie avec cette dernière, nous développons un calcul pseudo-différentiel sur les arbres réguliers : nous définissons des classes de symboles et des opérateurs associés, et nous prouvons un certain nombre de propriétés de ces classes de symboles et opérateurs. Nous montrons notamment que les opérateurs sont bornés dans L², et nous donnons des formules de l'adjoint et du produit. Nous nous servons ensuite de cette théorie pour montrer un théorème d'ergodicité quantique pour des suites de graphes réguliers dont le nombre de sommets tend vers l'infini. Il s'agit d'un résultat de délocalisation de la plupart des fonctions propres dans la limite des grands graphes réguliers. Les graphes vérifient une hypothèse d'expansion et ne comportent pas trop de cycles courts, deux hypothèses vérifiées presque sûrement par des suites de graphes réguliers aléatoires. / N this thesis, we study concentration properties of eigenfunctions of the discrete Laplacian on regular graphs of fixed degree, when the number of vertices tend to infinity. This study is made in analogy with the Quantum Ergodicity theory on manifolds. We construct a pseudo-differential calculus on regular trees by defining symbol classes and associated operators and proving some properties of these classes of symbols and operators. In particular we prove that the operators are bounded on L² and give adjoint and product formulas. We then use this theory to prove a Quantum Ergodicity theorem on large regular graphs. This is a property of delocalization of most eigenfunctions in the large scale limit. We consider expander graphs with few short cycles (for instance random large regular graphs). These hypothesis are almost surely satisfied by sequences of random regular graphs.
7

Monodromie d'opérateurs non auto-adjoints

Quang Sang, Phan 28 June 2012 (has links) (PDF)
Nous proposons de construire dans cette thèse un invariant combinatoire, appelée la "monodromie spectrale" à partir du spectre d'un seul opérateur h-pseudo-différentiel (non auto-adjoint) à deux degrés de liberté dans la limite semi-classique. Notre inspiration est issue de la monodromie quantique qui est définie pour le spectre conjoint d'un système intégrable de n opérateurs h-pseudo-différentiels auto-adjoints qui commutent, donnée par S. Vu Ngoc. Le premier cas simple traité dans ce travail est celui d'un opérateur normal. Dans ce cas, son spectre discret peut être identifié au spectre conjoint d'un système quantique intégrable. Le deuxième cas plus complexe que nous proposons est une petite perturbation d'un opérateur auto-adjoint en supposant une propriété d'intégrabilité classique. Nous montrons que son spectre discret (dans une petite bande autour de l'axe réel) possède également une monodromie combinatoire. La difficulté ici est qu'on ne connaît pas la description du spectre partout, mais seulement dans un ensemble de type Cantor. De plus, nous montrons aussi que cette monodromie peut être identifiée à la monodromie classique (qui est définie par J. Duistermaat). Ce sont les résultats principaux de cette thèse.
8

Conditions de quantification de Bohr-Sommerfeld pour des opérateurs semi-classiques non auto-adjoints / Bohr-Sommerfeld quantization conditions for non self-adjoint semi-classical operators

Rouby, Ophélie 29 November 2016 (has links)
On s'intéresse à la théorie spectrale d'opérateurs semi-classiques non auto-adjoints en dimension un et plus précisément aux développements asymptotiques des valeurs propres. Ces derniers font intervenir des objets géométriques issus de la mécanique classique dans l'espace des phases complexifié et correspondent à une généralisation des conditions de quantification de Bohr-Sommerfeld au cadre non auto-adjoint. Plus précisément, dans un premier temps, on étudie le spectre de perturbations non auto-adjointes d'opérateurs pseudo-différentiels auto-adjoints en dimension un à l'aide de techniques d'analyse microlocale analytique et en corollaire, on établit que pour des perturbations PT-symétriques d'opérateurs auto-adjoints, le spectre est réel. Ensuite, on présente des conditions de quantification de Bohr-Sommerfeld pour des perturbations non auto-adjointes d'opérateurs de Berezin-Toeplitz du plan complexe auto-adjoints. Dans un second temps, on s'intéresse aux différentes quantifications du tore et plus précisément à la quantification de Berezin-Toeplitz du tore, à la quantification de Weyl classique du tore et à la quantification de Weyl complexe du tore. On établit des liens entre ces différentes quantifications notamment grâce à la transformée de Bargmann, puis à l'aide de simulations numériques, on met en évidence une conjecture sur des conditions de quantification de Bohr-Sommerfeld pour des perturbations non auto-adjointes d'opérateurs de Berezin-Toeplitz du tore auto-adjoints. / We interest ourselves in the spectral theory of non self-adjoint semi-classical operators in dimension one and in asymptotic expansions of eigenvalues. These expansions are written in terms of geometrical objects in a complex phase space coming from classical mechanics and correspond to a generalization of Bohr-Sommerfeld quantization conditions in the non self-adjoint case. First, we study non self-adjoint perturbations of self-adjoint pseudo-differential operators in dimension one by using techniques of analytic microlocal analysis. As a corollary, we establish for PT-symmetric perturbations of self-adjoint operators, that the spectrum is real. Then we show Bohr-Sommerfeld quantization conditions for non self-adjoint perturbations of self-adjoint Berezin-Toeplitz operators of the complex plane. In the second part, we look into quantizations of the torus, namely the Berezin-Toeplitz, the classical Weyl and the complex Weyl quantizations of the torus. We establish links between these different quantizations using Bargmann transform. We propose a conjecture, supported by numerical simulations, on Bohr-Sommerfeld quantization conditions for non self-adjoint perturbations of self-adjoint Berezin-Toeplitz operators of the torus.

Page generated in 0.0721 seconds