Spelling suggestions: "subject:"conlinear codels"" "subject:"conlinear 2models""
291 |
Factorial linear model analysisBrien, Christopher James January 1992 (has links)
This thesis develops a general strategy for factorial linear model analysis for experimental and observational studies. It satisfactorily deals with a number of issues that have previously caused problems in such analyses. The strategy developed here is an iterative, four-stage, model comparison procedure as described in Brien (1989); it is a generalization of the approach of Nelder (1965a,b). The approach is applicable to studies characterized as being structure-balanced, multitiered and based on Tjur structures unless the structure involves variation factors when it must be a regular Tjur structure. It covers a wide range of experiments including multiple-error, change-over, two-phase, superimposed and unbalanced experiments. Examples illustrating this are presented. Inference from the approach is based on linear expectation and variation models and employs an analysis of variance. The sources included in the analysis of variance table is based on the division of the factors, on the basis of the randomization employed in the study, into sets called tiers. The factors are also subdivided into expectation factors and variation factors. From this subdivision models appropriate to the study can be formulated and the expected mean squares based on these models obtained. The terms in the expectation model may be nonorthogonal and the terms in the variation model may exhibit a certain kind of nonorthogonal variation structure. Rules are derived for obtaining the sums of squares, degrees of freedom and expected mean squares for the class of studies covered. The models used in the approach make it clear that the expected mean squares depend on the subdivision into expectation and variation factors. The approach clarifes the appropriate mean square comparisons for model selection. The analysis of variance table produced with the approach has the advantage that it will reflect all the relevant physical features of the study. A consequence of this is that studies, in which the randomization is such that their confounding patterns differ, will have different analysis of variance tables. / Thesis (Ph.D.)--Department of Plant Science, 1992.
|
292 |
Second-order least squares estimation in regression models with application to measurement error problemsAbarin, Taraneh 21 January 2009 (has links)
This thesis studies the Second-order Least Squares (SLS) estimation method in regression models with and without measurement error. Applications of the methodology in general quasi-likelihood and variance function models, censored models, and linear and generalized linear models are examined and strong consistency and asymptotic normality are established. To overcome the numerical difficulties of minimizing an objective function that involves multiple integrals, a simulation-based SLS estimator is used and its asymptotic properties are studied. Finite sample performances of the estimators in all of the studied models are investigated through simulation studies. / February 2009
|
293 |
Applied State Space Modelling of Non-Gaussian Time Series using Integration-based Kalman-filteringFrühwirth-Schnatter, Sylvia January 1993 (has links) (PDF)
The main topic of the paper is on-line filtering for non-Gaussian dynamic (state space) models by approximate computation of the first two posterior moments using efficient numerical integration. Based on approximating the prior of the state vector by a normal density, we prove that the posterior moments of the state vector are related to the posterior moments of the linear predictor in a simple way. For the linear predictor Gauss-Hermite integration is carried out with automatic reparametrization based on an approximate posterior mode filter. We illustrate how further topics in applied state space modelling such as estimating hyperparameters, computing model likelihoods and predictive residuals, are managed by integration-based Kalman-filtering. The methodology derived in the paper is applied to on-line monitoring of ecological time series and filtering for small count data. (author's abstract) / Series: Forschungsberichte / Institut für Statistik
|
294 |
The effects of gifted programming on student achievement: differential results by race/ethnicity and incomeDean, Kelley M. 21 January 2011 (has links)
The central research question is the extent to which gifted programming effects student academic outcomes of gifted as compared to not-gifted students and how this differs by race/ethnicity and/or poverty status. Since the identification of elementary school students as gifted is not random, propensity score matching is used to remove this bias in the estimates of the effects. A matched sample of North Carolina middle school students based on individual level data of both gifted and not-gifted students of varied racial/ethnic groups and income levels is used for this analysis. This enables a comparison of sixth, seventh, and eighth grade student achievement to determine the extent to which participating in gifted programming differentiates effects by race/ethnicity and poverty status. I show the additional test score gain, if any, from being in gifted programming compared to students not participating in gifted programs. Variations in gifted program effects across race/ethnicity and income are assessed. This research adds empirical evidence to the more qualitatively focused gifted debate by analyzing differences in student outcomes between gifted and not-gifted students in North Carolina. Since black and lower income students are less likely to participate in gifted programs, they disproportionately encounter less experienced teachers, lower expectations, and fewer resources. The extent to which these additional learning supports translate to differences in student outcomes are analyzed.
|
295 |
Integration-based Kalman-filtering for a Dynamic Generalized Linear Trend ModelSchnatter, Sylvia January 1991 (has links) (PDF)
The topic of the paper is filtering for non-Gaussian dynamic (state space) models by approximate computation of posterior moments using numerical integration. A Gauss-Hermite procedure is implemented based on the approximate posterior mode estimator and curvature recently proposed in 121. This integration-based filtering method will be illustrated by a dynamic trend model for non-Gaussian time series. Comparision of the proposed method with other approximations ([15], [2]) is carried out by simulation experiments for time series from Poisson, exponential and Gamma distributions. (author's abstract) / Series: Forschungsberichte / Institut für Statistik
|
296 |
A GLM framework for item response theory models. Reissue of 1994 Habilitation thesis.Hatzinger, Reinhold January 2008 (has links) (PDF)
The aim of the monograph is to contribute towards bridging the gap between methodological developments that have evolved in the social sciences, in particular in psychometric research, and methods of statistical modelling in a more general framework. The first part surveys certain special psychometric models (often referred to as Rasch family of models) that share common properties: separation of parameters describing qualities of the subject under investigation and parameters related to properties of the situation under which the response of a subject is observed. Using conditional maximum likelihood estimation, both types of parameters may be estimated independently from each other. In particular, the Rasch model, the rating scale model, the partial credit model, hybrid types, and linear extensions thereof are treated. The second part reviews basic ideas of generalized linear models (GLMs) as an an excellent framework for unifying different approaches and providing a natural, technical background for model formulation, estimation and testing. This is followed by a short introduction to the software package GLIM chosen to illustrate the formulation of psychometric models in the GLM framework. The third part is the main part of this monograph and shows the application of generalized linear models to psychometric approaches. It gives a unified treatment of Rasch family models in the context of log-linear models and contains some new material on log-linear longitudinal modelling. The last part of the monograph is devoted to show the usefulness of the latent variable approach in a variety of applications, such as panel, cross-over, and therapy evaluation studies, where standard statistical analysis does not necessarily lead to satisfactory results. (author´s abstract) / Series: Research Report Series / Department of Statistics and Mathematics
|
297 |
Second-order least squares estimation in regression models with application to measurement error problemsAbarin, Taraneh 21 January 2009 (has links)
This thesis studies the Second-order Least Squares (SLS) estimation method in regression models with and without measurement error. Applications of the methodology in general quasi-likelihood and variance function models, censored models, and linear and generalized linear models are examined and strong consistency and asymptotic normality are established. To overcome the numerical difficulties of minimizing an objective function that involves multiple integrals, a simulation-based SLS estimator is used and its asymptotic properties are studied. Finite sample performances of the estimators in all of the studied models are investigated through simulation studies.
|
298 |
Second-order least squares estimation in regression models with application to measurement error problemsAbarin, Taraneh 21 January 2009 (has links)
This thesis studies the Second-order Least Squares (SLS) estimation method in regression models with and without measurement error. Applications of the methodology in general quasi-likelihood and variance function models, censored models, and linear and generalized linear models are examined and strong consistency and asymptotic normality are established. To overcome the numerical difficulties of minimizing an objective function that involves multiple integrals, a simulation-based SLS estimator is used and its asymptotic properties are studied. Finite sample performances of the estimators in all of the studied models are investigated through simulation studies.
|
299 |
Aspectes metodològics i aplicacions de la modelització del temps de supervivència multivariant mitjançant models mixtesRenart i Vicens, Gemma 15 June 2009 (has links)
Els estudis de supervivència s'interessen pel temps que passa des de l'inici de l'estudi (diagnòstic de la malaltia, inici del tractament,...) fins que es produeix l'esdeveniment d'interès (mort, curació, millora,...). No obstant això, moltes vegades aquest esdeveniment s'observa més d'una vegada en un mateix individu durant el període de seguiment (dades de supervivència multivariant). En aquest cas, és necessari utilitzar una metodologia diferent a la utilitzada en l'anàlisi de supervivència estàndard. El principal problema que l'estudi d'aquest tipus de dades comporta és que les observacions poden no ser independents. Fins ara, aquest problema s'ha solucionat de dues maneres diferents en funció de la variable dependent. Si aquesta variable segueix una distribució de la família exponencial s'utilitzen els models lineals generalitzats mixtes (GLMM); i si aquesta variable és el temps, variable amb una distribució de probabilitat no pertanyent a aquesta família, s'utilitza l'anàlisi de supervivència multivariant. El que es pretén en aquesta tesis és unificar aquests dos enfocs, és a dir, utilitzar una variable dependent que sigui el temps amb agrupacions d'individus o d'observacions, a partir d'un GLMM, amb la finalitat d'introduir nous mètodes pel tractament d'aquest tipus de dades. / Survival research is interested in the time that passes from the beginning of the study until the event of interest occurs. However, it is very common to find individuals who experience this event more than once during the period of study. In this case, a different methodology needs to be used to that of the standard univariate survival analysis.In this case, the duration between recurrences could be correlated due to the presence of unobserved individual factors. This type of event is normally dealt with by introducing individual random effects in the model, resulting in a multivariate model. The random effects represent the individual "frailty" and the variance of these effects measures the unobserved heterogeneity between individuals. Until recently, the most common way of dealing with this type of situation in survival analysis was by using marginal models such as the robust covariance matrix estimation in the Andersen-Gill approximation; the Wei, Lin and Weissfeld method or the Prentice, Williams and Peterson method; or using the conditional models such as the frailty models (EM algorhthym). The aim of this study is to model multivariate survival data, based on generalised linear mixed models (GLMM).
|
300 |
Akarsu akımlarının lineer ve non-lineer parametrik zaman serileriyle modellenmesi /Tongal ,Hakan. Güldal, Veysel. January 2008 (has links) (PDF)
Tez (Yüksek Lisans) - Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, 2008. / Bibliyografya var.
|
Page generated in 0.0797 seconds