• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 53
  • 9
  • Tagged with
  • 181
  • 156
  • 71
  • 59
  • 39
  • 37
  • 33
  • 31
  • 28
  • 28
  • 24
  • 22
  • 22
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Infrared thermographic data processing with deep learning and explainable AI

Wei, Ziang 05 November 2024 (has links)
La thermographie pulsée (PT), importante méthode de contrôle non destructif, a suscité un intérêt croissant ces dernières années, en raison de sa rapidité de mesure, de son excellente mobilité et de sa haute résolution. Son champ d'application s'étend à divers matériaux, tels que les métaux et les matériaux composites. Les données thermographiques consistent en des séquences infrarouges bidimensionnelles représentant l'évolution de la température de surface de l'échantillon testé. Même pour les professionnels qualifiés, il est difficile d'identifier avec précision tous les types de défauts. En outre, la caractérisation des défauts peut être encore plus difficile à décider. Bien que l'apprentissage profond soit devenu une approche populaire du traitement automatisé des données ces dernières années, il existe quelques problèmes communs lorsqu'ils sont appliqués à l'analyse de séquences d'images thermographiques. Tout d'abord, les approches d'apprentissage profond sont généralement gourmandes en données, alors que les données thermographiques sont rares, la préparation des essais étant généralement fastidieuse. Deuxièmement, le ressuage étant axé sur la détection des défauts sous la surface, il est souvent très difficile d'obtenir l'emplacement exact des défauts. Cependant, la caractérisation précise des défauts est cruciale pour l'entraînement des réseaux neuronaux profonds. Troisièmement, contrairement au domaine de la vision par ordinateur, où il existe de nombreux ensembles de données bien préparés pour l'évaluation comparative de différents algorithmes, il n'existe que quelques ensembles de données de ressuage accessibles au public. Cependant, ces ensembles de données sont essentiels pour faire progresser les algorithmes de traitement des données thermographiques. Quatrièmement, les modèles d'apprentissage profond, malgré leurs bonnes performances, sont souvent considérés comme des « boîtes noires ». Cela constitue un obstacle à leur déploiement dans l'industrie pour l'assurance qualité, car il est très difficile de gagner la confiance de l'utilisateur final, qui est responsable de la qualité du produit. La présente étude se penche sur les questions susmentionnées. Pour remédier à la pénurie de données et au nombre limité d'ensembles de données de référence, deux ensembles de données de PT ont été préparés et mis à la disposition du public, l'un pour la segmentation des défauts et l'autre pour l'estimation et la localisation de la profondeur des défauts. Ce dernier ensemble de données est étiqueté à l'aide des images CAO correspondantes. Cela permet d'améliorer la précision des informations d'étiquetage. En outre, pour améliorer l'explicabilité des modèles profonds utilisés pour le traitement des données infrarouges, trois méthodes d'IA explicables sont étudiées, notamment la méthode de visualisation de la carte d'activation, la méthode d'attribution des caractéristiques et la méthode d'occlusion des caractéristiques. La méthode de visualisation de la carte d'activation montre le processus de prise de décision du modèle profond, qui est similaire à la perception humaine. La méthode d'attribution des caractéristiques et la méthode d'occlusion des caractéristiques ont généré des cartes thermiques similaires, démontrant que les modèles utilisent les caractéristiques correctes pour prendre les décisions finales. La crise de confiance du modèle profond peut donc être atténuée. / Pulsed thermography (PT), as an important nondestructive testing method, has attracted increasing attention in recent years, due to its rapid measurement speed, excellent mobility, and high resolution. Its applicability spans across various materials, such as metal and composite materials. The thermographic data consist of two-dimensional infrared sequences representing the evolution of the surface temperature of the test specimen. Even for skilled professionals, it is challenging to accurately identify all kinds of defects. Furthermore, the characterization for the defects can be even more difficult to decide. Although deep learning has become a popular automated data processing approach in recent years, there are some common issues when they are applied to the analysis of thermographic image sequences. First, deep learning approaches are typically data-hungry, whereas thermographic data are scarce as the preparation for testing is usually tedious. Second, as PT focuses on the detection of subsurface defects, it is often quite challenging to obtain the exact location of the defects. However, the accurate characterization of the defects is crucial for the training of deep neural networks. Third, unlike the computer vision field, where there are numerous well-prepared datasets for benchmarking different algorithms, there are only a few such publicly accessible PT datasets. However, these datasets are fundamental for advancing algorithms in thermographic data processing. Fourth, the deep learning models, despite their good performance, are often considered "black boxes". This presents an obstacle to their deployment in the industry for quality assurance due to the significant challenge of earning the trust of the end user who bears the responsibility for the product's quality. This study investigates the aforementioned issues. To address the scarcity of data and the limited benchmark datasets, two PT datasets are prepared and made publicly available, one is for defect segmentation and the other is for defect depth estimation and localization. The latter dataset is labeled using the corresponding CAD images. This enhances the accuracy of the labeling information. Furthermore, to enhance the explainability of the deep models used for infrared data processing, three explainable AI methods are investigated, including the activation map visualization method, feature attribution method, and feature occlusion method. The activation map visualization method shows the decision-making process of the deep model, which is similar to human perception. The feature attribution method and feature occlusion method generated similar heat maps, demonstrating that the models use the correct features to make final decisions. The trust crisis of the deep model can therefore be mitigated.
22

3D modeling of large elongated structures for non-destructive testing and inspection

Hesabi, Somayeh 24 April 2018 (has links)
Selon un rapport de l’Agence centrale de renseignement (CIA) ¹, présenté dans un journal NDT ², il y avait un total de 3.3 millions km de pipelines dans 120 pays du monde en 2014. Cela signifie que les pipelines ont un rôle important à jouer dans l’infrastructure de l’énergie pour le transport de liquides ou du gaz naturel. Bien que les pipelines représentent le plus efficace et le plus fiable pour transporter divers liquides allant de l’eau à l’huile, ils sont vulnérables aux défauts externes et internes. Heureusement, une inspection périodique des pipelines peut augmenter leur sécurité et leur fonctionnalité et réduire les catastrophes environnementales ainsi que les pertes économiques causées par les potentielles explosions ou autres dysfonctionnements. Considérant les avantages des capteurs 3D qui permettent de créer une réplique numérique précise de la surface des objets réels en plus des avantages de la technologie d’Evaluation Non Destructive (END) qui fournit un suivi des défauts sous la surface, la présente recherche propose une solution visant à construire un modèle 3D d’un pipeline ou d’autres structures allongées pour suivre leur état. Dans ce but, nous mesurons d’abord la géométrie du pipeline avec des capteurs 3D portables et construisons le modèle 3D de la structure. Ensuite, les informations des défauts sous la surface qui sont estimées efficacement par des approches développées par d’autres membres de l’équipe en utilisant la thermographie infrarouge sont intégrées au modèle 3D reconstruit. Le manuscrit étudie différents défis liés à la modélisation 3D précise de grandes structures allongées et la répétabilité de l’approche de modélisation à des fins de contrôle de qualité et d’entretien à long terme. 1. The World Factbook, updated 18 May 2015. 2. Materials Evaluation (M.E.), vol. 73, no. 7, July 2015 / According to a Central Intelligence Agency (CIA) report ¹ presented in a flagship NDT journal ², there were a total of 3.3 million km of pipelines present in 120 countries in the world in 2014. This means that pipelines play an important role in the energy infrastructure in order to safely transport liquid or natural gas. Although pipelines are the most efficient and reliable way to carry various liquids ranging from water to oil, they are vulnerable to external and internal damages. Fortunately, a periodic inspection of pipelines can increase their functionality and decrease the environmental disasters as well as economic losses caused by potential spills, explosions or other malfunctions. In this context of the exploitation of pipelines and other similar elongated structures and considering the benefits of 3D sensors which allow us to create an accurate digital replica of the surface of physical objects in addition to the advantages of Non-Destructive Testing (NDT) technology which provides the ability of under-surface monitoring, our research proposes a solution to build a 3D model of pipeline or other elongated structures to monitor their status. For this purpose, we first measure the geometry of the pipeline by handheld 3D scanners and construct the 3D model of the structure. Then, the information of subsurface defects that is estimated efficiently by approaches developed by other team members using infrared thermography is integrated to the reconstructed 3D model. The manuscript investigates different challenges related to the 3D modeling of large elongated structures with high accuracy and repeatability for quality control purposes as well as for long-term maintenance. 1. The World Factbook, updated 18 May 2015. 2. Materials Evaluation (M.E.), vol. 73, no. 7, July 2015
23

Détection des défauts du bois franc et du bois mou par effet trachéïde

Rivet-Sabourin, Geoffroy 05 July 2019 (has links)
L’augmentation de productivité et de capacité de production est aujourd’hui au coeur des problématiques industrielles. Ceci touche particulièrement l’industrie forestière qui cherche depuis de nombreuses années à accroître sa productivité par, entre autres, des méthodes d’automatisation appliquées à leur processus de transformation du bois. Pour automatiser les méthodes d’inspection industrielle, plusieurs voies ont été empruntées jusqu’à ce jour : photométrie, ultrason, rayon-X, thermographie, etc . La technique présentée ici, l’effet trachéïde, utilise les caractéristiques de diffusion d’un laser dans les fibres de bois pour faire ressortir la densité et la direction du grain du bois. Cette technique produit rapidement une image en tons de gris de la pièce. À partir de cette image plusieurs méthodes ont été développées afin de faire ressortir les défauts sur la pièce. Une méthode de fusion des données a été mise au point afin de faire le regroupement des résultats des différentes techniques de détection. Finalement, une méthode de détection de contours adaptée à la détection des noeuds a été explorée. / Québec Université Laval, Bibliothèque 2019
24

Etude de la réponse acoustique des collages directs et temporaires / Acoustic response study of direct bonding

Dekious, Ali 12 December 2016 (has links)
Le collage direct est maintenant utilisé par un nombre croissant d'applications en microélectronique (Elaboration de SOI, technologie imager Back Side Illumination, technologies 3D...). C'est une technique d'assemblage permettant de coller deux surfaces sans apport de matière adhésive. Principalement utilisée pour le collage de wafers, elle vient en complément de techniques telles que l'épitaxie ou le dépôt de couches minces. Ce collage s'effectue sous certaines conditions : il faut que les surfaces soient suffisamment propres, planes et lisses pour qu'il y ait une adhésion spontanée à température et pression ambiante. Enfin, un traitement thermique est appliqué pour augmenter l'énergie d'adhérence. Pendant le processus de fabrication, il peut apparaître des défauts de collage qui sont essentiellement dus à un piégeage de particules. Ces défauts se présentent sous la forme de bulles d'air. Finalement, les défauts de collage et l'énergie de collage sont les deux caractéristiques à partir desquelles est déduite une qualité de collage.Aujourd'hui, la technique utilisée pour la mesure d'énergie de collage est le clivage au coin. C'est une technique qui consiste dans un premier temps à séparer partiellement deux wafers par une lame, et dans un second temps, à calculer l'énergie de collage à partir d'une équation comportementale qui intègre la longueur de décollement. Mis à part le fait qu'elle permette la mesure d'énergie seulement sur quelques points, il se trouve que c'est une technique destructive. Un contrôle non destructif serait très intéressant pour l'industrie microélectronique et spécialement pour les lignes d'inspection. De plus, les procédés de fabrication microélectronique n'étant pas uniforme, avoir la possibilité d'obtenir une cartographie d'énergie de collage serait un atout majeur. A ce jour, aucune technique respectant ces deux exigences n'est connue. L'objectif de cette étude est d'utiliser la microscopie acoustique pour mesurer l'énergie de collage.Dans cette étude, un modèle inspiré de la "méthode des matrices hybrides" a été développé afin de modéliser des collages de différentes qualités. Le résultat de la modélisation montrera que le coefficient de réflexion acoustique de la structure collée est influencé par la qualité d'interface. En se plaçant dans des conditions précises, une méthode expérimentale est alors réalisée pour la mesure de la qualité d'interface. En parallèle, des wafers de Silicium réalisés par collage direct ont été spécialement conçus pour valider la méthode. Sur ce principe, des cartographies bidimensionnelles d'énergie de collage sont réalisées.Dans un second temps, la technique est améliorée afin d'augmenter la résolution latérale. Pour cela, un transducteur ayant une lentille est utilisé pour focalisé les ondes ultrasonores en points du collage. Une étude théorique est tout d'abord menée en utilisant le modèle du "spectre angulaire" afin de simuler la diffraction par la lentille. Enfin, des cartographies expérimentales confirmeront la faisabilité de mesures d'énergie de collage hautes résolutions. / Direct bonding is used for many applications in microelectronics (SOI Silicon-On-Insulator technology, imager back side illumination technology, 3D technology...). It is a processes that consists in an assembly of two surfaces without any adhesive material. It is primarily used to bond silicon wafers and it is complementary with other microelectronics technique such as epitaxy, thin film deposition... Bonding requires special wafer surface conditions and preparations. The surfaces have to be clean, flat and smooth to obtain a spontaneous adhesion at ambient temperature and atmospheric pressure. A heat treatment is applied to increase the adherence energy. During the manufacturing process, bonding defects may appear which are due to trapping of particles. These bonding defects are essentially formed of air. Finally, bonding defects and bonding energy are the two main characteristics from which is deduced the bonding quality.Nowadays, the main technique that is used to measure the direct bonding energy is the double cantilever beam (DCB). The method consists in firstly partially separating the two wafers by a blade, and secondly calculating the bonding energy from an equation that integrates the debonding lenght. The major disadvantage of this technique is its destructiveness. Furthermore it is only possible to make measurements on few points.Thus a non-destructive characterisation could be very interesting especially for an industrial in-line inspection. Moreover, having the possibility to obtain a mapping of the bonding energy could lead to interesting development. Up to know, no technique can reach the both requirements. The aim of this work is to use the acoustic microscopy to measure the direct bonding energy.In this study, a model based on "hybrid matrix method" has been developed to model bonding with different qualities. The results of the modelling show that the acoustic reflection coefficient of the bonded structure is influenced by the quality of the interface. From these results, an experimental method is proposed to perform quality of the interface measurements from the reflection coefficients acquired under normal incidence. In parallel, silicon wafers have been bonded to validate the method. Finally, once the method validated, two-dimensional mappings of the interface quality are realised.Secondly, the technique is improved to increase the lateral resolution. For this, a transducer having a lens is used to focus the ultrasonic waves on the bonded structure. A theoretical study is conducted using the model of the "angular spectrum" to simulate the diffraction lens. Finally, experimental mapping confirm the feasibility of measuring bonding energy of high resolutions.
25

Influence des conditions d'interfaces d'un milieu poreux saturé sur la propagation des ondes ultrasonores : analyses acoustique et diélectrique / Influence of the interface conditions of a saturated porous medium on the propagation of ultrasonic waves : acoustic and dielectric analysis

Graja, Fatma 16 October 2017 (has links)
Ce travail de thèse rentre dans le cadre d'une collaboration entre l'université de Sfax et l'université du Maine. La thèse intitulée "Influence des conditions d’interfaces d’un milieu poreux saturé sur la propagation des ondes ultrasonores : analyse acoustique et diélectrique". Le travail présenté dans ce mémoire de thèse étudie les mécanismes pouvant se reproduire dans un milieu poreux saturé par un fluide incompressible, lorsqu'il est soumis à un gradient de pression pour l'étude acoustique, et un gradient de champs électromagnétique pour l'analyse diélectrique.De ce fait le présent mémoire s'intéresse à présenter deux techniques de caractérisation :i) La caractérisation acoustique où la théorie de Biot a été adoptée pour comprendre les mécanismes de la propagation des ondes ultrasonores dans les matériaux poreux saturés et étudier l'influence de changement des conditions d'interfaces sur les coefficients de réflexion et de transmission. Le cas de présence d'un défaut plan dans le volume du matériau a été traité. Dans le même objectif, l'étude de l'influence de la présence de plusieurs inclusions sphériques sur lamodification des lignes de champs de vitesses a été présentée en proposant un modèle de tortuosité adapté selon la nature de l'inclusion et le milieu poreux hôte (homogénéité et l'anisotropie).ii) L'analyse diélectrique qui permet de décrire la structure interne et l'interaction entre le solide et le fluide saturant. Des mesures diélectriques ont été effectuées sur des céramiques de silice poreuse identiques à celle utilisée lors de la caractérisation ultrasonore, afin d’étudier l'influence de l'état des surfaces latérales de l'échantillon sur l'interaction entre le fluide saturant et les surfaces intérieures de la structure poreuse.Les résultats permettent de mettre en évidence une analogie entre les comportements de l'inclusion dans le champ de vitesse du fluide et celui d'une sphère diélectrique dans un champs électrique uniforme. Des expériences acoustiques et des mesures diélectriques (spectroscopie) ont été réalisées et comparées aux simulations numériques et aux modèles théoriques dans les deux parties d'étude. / This work is part of a collaboration between the University of Sfax and the University of Maine. The thesis entitled "Influence of the interface conditions of a saturated porous medium on the propagation of ultrasonic waves: acoustic and dielectric analysis". The work presented in this dissertation examines theme chanisms that can be reproduced in a porous medium saturated by an incompressible fluid when subjected to a pressure gradient for the acoustic studyand an electromagnetic field gradient for the dielectricstudy. Consequently, the present paper is interested in presenting two techniques of characterization:i) Acoustic characterization where Biot's theory was adopted to understand the mechanisms of propagation of ultrasonic waves in saturated porous materials and to study the influence of changing interface conditions onreflection and transmission coefficients. The presence of a flat defect in the volume of the material has be entreated. The study of the influence of the presence of several spherical inclusions on the modification of the lines of velocity fields was presented by proposing a model of tortuosity adapted according to the nature of the inclusion and the porous medium host (homogeneityand anisotropy).ii) The dielectric analysis which allows to describe the internal structure and the interaction between the solidand the saturating fluid. Dielectric measurements were carried out on porous silica ceramics identical to thoseused in ultrasonic characterization in order to study the influence of the state of the lateral surfaces of the sample on the interaction between the saturating fluid and the surfaces of the porous structure.The results make it possible to demonstrate an analogy between the behavior of the inclusion in the velocity field of the fluid and that of a dielectric sphere in a uniformelectric field. Acoustic experiments and dielectric measurements (spectroscopy) were carried out and compared with numerical simulations and theoretical models in both parts of the study.
26

Comparative study of infrared thermography, ultrasonic C-scan, X-ray computed tomography and terahertz imaging on composite materials

Zhang, Hai 23 September 2019 (has links)
L’évaluation non destructive (NDT) des matériaux composites est compliquée en raison de la vaste gamme de défauts rencontrés (y compris délaminage, microfissuration, fracture de la fibre, retrait des fibres, fissuration matricielle, inclusions, vides et dommages aux chocs). La capacité de caractériser quantitativement le type, la géométrie et l’orientation des défauts est essentielle. La thermographie infrarouge (IRT), en tant que technique de diagnostic d’image, peut satisfaire le besoin industriel croissant de NDT&E. Dans la thèse, la thermographie par excitation optique et mécanique a été utilisée pour étudier différents matériaux composites, dont 1) des préformes sèches en fibres de carbone, 2) des composites de fibres naturelles, 3) des composites hybrides de basalte-fibres de carbone soumis à une charge d’impact (séquence de type sandwich et séquence d’empilement intercalé), 4) des défauts micro-dimensionnés dans un composite polymère renforcé de fibre de carbone (CFRP) en 3D avec une couture de type « joint en T », et 5) des peintures sur toile qui peuvent être considérées comme des matériaux composites. Une nouvelle technique IRT de thermographie de ligne par micro-laser (micro-LLT) a été proposée pour l’évaluation des porosités submillimétriques dans le CFRP. La microscopie de points par micro-laser (micro-LST) et la micro-vibrothermographie (micro-VT) ont également été présentées avec l’utilisation de microlentilles. La thermographie pulsée (PT) et la thermographie modulée « à verrouillage » (LT) ont été comparées à la tomographie par rayons X (TC) pour validation. Le C-scan ultrasonore (UT) et l’imagerie par ondes tera-hertziennes en onde continue (CW THz) ont également été réalisés à des fins comparatives. L’inspection par techniques thermographiques est une question ouverte à discuter pour le public scientifique. En fait, la thermographie par impulsions (PPT) basée sur la transformation de phase a été utilisée pour estimer la profondeur des dommages. Pour traiter les données thermographiques, on a également utilisé la reconstruction de signal thermographique de base (B-TSR), la thermographie des composants principaux (PCT) et la thermographie des moindres carrés partiels (PLST). Enfin, une analyse complète et comparative basée sur le diagnostic d’images thermographiques a été menée en vue d’applications industrielles potentielles. / Non-destructive testing (NDT) of composite materials is complicated due to the wide range off laws encountered (including delamination, micro-cracking, fiber fracture, fiber pullout, matrix cracking, inclusions, voids, and impact damage). The ability to quantitatively characterize the type, geometry, and orientation of flaws is essential. Infrared thermography (IRT), as an image diagnostic technique, can satisfy the increasing industrial need for NDT&E. In the thesis, optical and mechanical excitation thermography were used to investigate different composite materials, including 1) carbon fiber dry preforms, 2) natural fiber composites, 3) basalt-carbon fiber hybrid composites subjected to impact loading (sandwich-like and intercalated stacking sequence), 4) micro-sized flaws in a stitched T-joint 3D carbon fiber reinforced polymer composite (CFRP), and 5) paintings on canvas which can be considered as composite materials. Of particular interest, a new IRT technique micro-laser line thermography (micro-LLT) was proposed for the evaluation of submillimeter porosities in CFRP. Micro-laser spot thermography (micro-LST) and micro-vibrothermography (micro-VT) were also presented with the usage of a micro-lens. Pulsed thermography (PT) and lock-in thermography (LT) were compared with x-ray computed tomography (CT) for validation. Ultrasonic C-scan (UT) and continuous wave terahertz imaging (CW THz) were also conducted for the comparative purpose. The inspection by thermographic techniques is an open matter to be discussed for the scientific audience. In fact, pulse phase thermography (PPT) based on phase transform was used to estimate the damage depth. Basic thermographic signal reconstruction (B-TSR), principal component thermography (PCT) and partial least squares thermography (PLST) (another more recent advanced image processing technique) were also used to pro-cess the thermographic data. Finally, a comprehensive and comparative analysis based on thermographic image diagnostics was conducted in view of potential industrial applications.
27

Development of IRT NDT technique for the inspection of composites materials for aerospace and other industries

Ebrahimi, Samira 13 December 2023 (has links)
Thèse ou mémoire avec insertion d’articles / De nos jours, les industries se concentrent davantage sur le développement de matériaux respectueux de l'environnement pour améliorer la sécurité, réduire le poids, augmenter l'efficacité énergétique et réduire la contamination. La fibre de carbone renforce les plastiques (CFRP) en raison de ses caractéristiques uniques telles qu'un rapport résistance / poids élevé, une bonne résistance à la corrosion et une résistance élevée à la fatigue elle fait partie des matériaux préférables dans l'industrie. En tant qu'outil de contrôle de la qualité et de gestion de l'assurance de la qualité, les Contrôle non destructif (CND) jouent un rôle vital dans des secteurs tels que l'aérospatiale, les pipelines et les ponts, car ils peuvent aider à prévenir les défaillances susceptibles de nuire à la sécurité, à la fiabilité et à l'environnement. La thermographie pulsée active (PT) est une technique de test non destructif pour l'inspection des matériaux et des structures dans la science et l'industrie. Plusieurs algorithmes de traitement ont été développés pour améliorer et valoriser les données thermographiques captées afin de détecter les anomalies et de les caractériser précisément. L'analyse robuste en composantes principales (RPCA) via la décomposition en matrices de faible rang et clairsemées présente un cadre puissant pour de nombreuses applications telles que le traitement d'images, le traitement vidéo et la vision par ordinateur 3D. Le Robust-PCA proposé est une approche de réduction de dimensionnalité et surpasse la méthode PCA. De plus, la matrice de bas rang extraite de Robust-PCA utilisant un multiplicateur de Lagrange augmenté inexact (IALM) réduit le bruit des données brutes. Différentes approches de traitement sont proposées pour détecter et caractériser les irrégularités des structures produites lors de la fabrication et en service. Robust-PCA via IALM peut être utilisé comme pré-traitement et post-traitement sur des approches de pointe (c'est-à-dire PCT, PPT et PLST) pour réduire le bruit sur les données thermographiques. Le contraste au bruit (CNR) et le coefficient de similarité s'améliorent nettement lorsque le RPCA est utilisé comme prétraitement. Cependant, le post-traitement sur la sortie PLST montre une amélioration des résultats finaux. En outre, des modèles d'apprentissage automatique tels que les auto-encodeurs (AE) pour la surveillance de données non linéaires complexes ont été étudiés. L'application d'un auto-encodeur sous-complet avec un accent sur la détection de défauts montre des résultats comparables aux approches traditionnelles, c'est-à-dire PCA. Afin d'augmenter la fiabilité et l'applicabilité de l'Thermographie Infrarouge pour une inspection structurelle efficace, la classification des défauts existants et l'estimation de la profondeur, le bag-of-feature (BoF) a été utilisé. Les résultats ont représenté que la méthode proposée peut avoir une estimation raisonnable des défauts et une classification parmi trois types de trous à fond plat, d'insert en Téflon et d'extraction. / Nowadays, industries are more focused on developing environmentally friendly materials to improve safety, reduce weight, increase fuel efficiency, and lower contamination. Carbon fiber reinforces plastics (CFRP) due to its unique features such as high strength-to-weight ratio, good corrosion resistance, and high fatigue resistance is among the preferable material in the industry. As a quality control and quality assurance management tool, NDT plays a vital role in industries such as aerospace, pipelines, and bridges, as it can help prevent failures that could harm safety, reliability, and the environment. Active pulsed thermography (PT) is a non-destructive testing technique for material and structure inspection in science and industry. Several processing algorithms have been developed to improve and enhance the captured thermographic data to detect anomalies and characterize them precisely. Robust principal component analysis (RPCA) via decomposition into low-rank and sparse matrices present a powerful framework for many applications such as image processing, video processing, and 3-D computer vision. The proposed Robust-PCA is a dimensionality reduction approach and outperforms the PCA method. Moreover, the extracted low-rank matrix from Robust-PCA using inexact augmented Lagrange multiplier (IALM) reduces the noise of raw data. Different processing approaches are proposed to detect and characterize the irregularities in structures produced during manufacturing and in-service. Robust-PCA via IALM can be used as pre-processing and post-processing on state-of-the-art approaches (i.e., PCT, PPT, and PLST) to reduce the noise on thermographic data. The contrast-to-noise ratio (CNR) and similarity coefficient clearly improve when RPCA is employed as pre-processing. However, post-processing on PLST output shows improvement in final results. Furthermore, machine learning models like autoencoders (AEs) for monitoring complex nonlinear data have been investigated. The application of an undercomplete-autoencoder with a focus on fault detection shows comparable results with traditional approaches, i.e., PCA. In order to increase the reliability and applicability of IRT for effective structural inspection, classification of existing defects, and depth estimation, bag-of-feature (BoF) has been utilized. Results have represented that the proposed method can have a reasonable estimation of defects and classification among three types of flat-bottom-hole, Teflon-insert, and pull-out.
28

Comparative study of infrared thermography, ultrasonic C-scan, X-ray computed tomography and terahertz imaging on composite materials

Zhang, Hai 20 September 2019 (has links)
L’évaluation non destructive (NDT) des matériaux composites est compliquée en raison de la vaste gamme de défauts rencontrés (y compris délaminage, microfissuration, fracture de la fibre, retrait des fibres, fissuration matricielle, inclusions, vides et dommages aux chocs). La capacité de caractériser quantitativement le type, la géométrie et l’orientation des défauts est essentielle. La thermographie infrarouge (IRT), en tant que technique de diagnostic d’image, peut satisfaire le besoin industriel croissant de NDT&E. Dans la thèse, la thermographie par excitation optique et mécanique a été utilisée pour étudier différents matériaux composites, dont 1) des préformes sèches en fibres de carbone, 2) des composites de fibres naturelles, 3) des composites hybrides de basalte-fibres de carbone soumis à une charge d’impact (séquence de type sandwich et séquence d’empilement intercalé), 4) des défauts micro-dimensionnés dans un composite polymère renforcé de fibre de carbone (CFRP) en 3D avec une couture de type « joint en T », et 5) des peintures sur toile qui peuvent être considérées comme des matériaux composites. Une nouvelle technique IRT de thermographie de ligne par micro-laser (micro-LLT) a été proposée pour l’évaluation des porosités submillimétriques dans le CFRP. La microscopie de points par micro-laser (micro-LST) et la micro-vibrothermographie (micro-VT) ont également été présentées avec l’utilisation de microlentilles. La thermographie pulsée (PT) et la thermographie modulée « à verrouillage » (LT) ont été comparées à la tomographie par rayons X (TC) pour validation. Le C-scan ultrasonore (UT) et l’imagerie par ondes tera-hertziennes en onde continue (CW THz) ont également été réalisés à des fins comparatives. L’inspection par techniques thermographiques est une question ouverte à discuter pour le public scientifique. En fait, la thermographie par impulsions (PPT) basée sur la transformation de phase a été utilisée pour estimer la profondeur des dommages. Pour traiter les données thermographiques, on a également utilisé la reconstruction de signal thermographique de base (B-TSR), la thermographie des composants principaux (PCT) et la thermographie des moindres carrés partiels (PLST). Enfin, une analyse complète et comparative basée sur le diagnostic d’images thermographiques a été menée en vue d’applications industrielles potentielles. / Non-destructive testing (NDT) of composite materials is complicated due to the wide range off laws encountered (including delamination, micro-cracking, fiber fracture, fiber pullout, matrix cracking, inclusions, voids, and impact damage). The ability to quantitatively characterize the type, geometry, and orientation of flaws is essential. Infrared thermography (IRT), as an image diagnostic technique, can satisfy the increasing industrial need for NDT&E. In the thesis, optical and mechanical excitation thermography were used to investigate different composite materials, including 1) carbon fiber dry preforms, 2) natural fiber composites, 3) basalt-carbon fiber hybrid composites subjected to impact loading (sandwich-like and intercalated stacking sequence), 4) micro-sized flaws in a stitched T-joint 3D carbon fiber reinforced polymer composite (CFRP), and 5) paintings on canvas which can be considered as composite materials. Of particular interest, a new IRT technique micro-laser line thermography (micro-LLT) was proposed for the evaluation of submillimeter porosities in CFRP. Micro-laser spot thermography (micro-LST) and micro-vibrothermography (micro-VT) were also presented with the usage of a micro-lens. Pulsed thermography (PT) and lock-in thermography (LT) were compared with x-ray computed tomography (CT) for validation. Ultrasonic C-scan (UT) and continuous wave terahertz imaging (CW THz) were also conducted for the comparative purpose. The inspection by thermographic techniques is an open matter to be discussed for the scientific audience. In fact, pulse phase thermography (PPT) based on phase transform was used to estimate the damage depth. Basic thermographic signal reconstruction (B-TSR), principal component thermography (PCT) and partial least squares thermography (PLST) (another more recent advanced image processing technique) were also used to pro-cess the thermographic data. Finally, a comprehensive and comparative analysis based on thermographic image diagnostics was conducted in view of potential industrial applications.
29

Probability of detection analysis for infrared nondestructive testing and evaluation with applications including a comparison with ultrasonic testing

Duan, Yuxia 20 April 2018 (has links)
La fiabilité d'une technique d’Évaluation Non-Destructive (END) est l'un des aspects les plus importants dans la procédure globale de contrôle industriel. La courbe de la Probabilité de Détection (PdD) est la mesure quantitative de la fiabilité acceptée en END. Celle-ci est habituellement exprimée en fonction de la taille du défaut. Chaque expérience de fiabilité en END devrait être bien conçue pour obtenir l'ensemble de données avec une source valide, y compris la technique de Thermographie Infrarouge (TI). La gamme des valeurs du rapport de l'aspect de défaut (Dimension / profondeur) est conçue selon nos expériences expérimentales afin d’assurer qu’elle vient du rapport d’aspect non détectable jusqu’à celui-ci soit détectable au minimum et plus large ensuite. Un test préliminaire est mis en œuvre pour choisir les meilleurs paramètres de contrôle, telles que l'énergie de chauffage, le temps d'acquisition et la fréquence. Pendant le processus de traitement des images et des données, plusieurs paramètres importants influent les résultats obtenus et sont également décrits. Pour la TI active, il existe diverses sources de chauffage (optique ou ultrason), des formes différentes de chauffage (pulsé ou modulé, ainsi que des méthodes différentes de traitement des données. Diverses approches de chauffage et de traitement des données produisent des résultats d'inspection divers. Dans cette recherche, les techniques de Thermographie Pulsée (TP) et Thermographie Modulée(TM) seront impliquées dans l'analyse de PdD. Pour la TP, des courbes PdD selon différentes méthodes de traitement de données sont comparées, y compris la Transformation de Fourier, la Reconstruction du Signal thermique, la Transformation en Ondelettes, le Contraste Absolu Différentiel et les Composantes Principales en Thermographie. Des études systématiques sur l'analyse PdD pour la technique de TI sont effectuées. Par ailleurs, les courbes de PdD en TI sont comparées avec celles obtenues par d'autres approches traditionnelles d’END. / The reliability of a Non-Destructive Testing and Evaluation (NDT& E) technique is one of the most important aspects of the overall industrial inspection procedure. The Probability of Detection (PoD) curve is the accepted quantitative measure of the NDT& E reliability, which is usually expressed as a function of flaw size. Every reliability experiment of the NDT& E system must be well designed to obtain a valid source data set, including the infrared thermography (IRT) technique. The range of defect aspect ratio (Dimension / depth) values is designed according to our experimental experiences to make sure it is from non-detectable to minimum detectable aspect ratio and larger. A preliminary test will be implemented to choose the best inspection parameters, such as heating energy, the acquisition time and frequency. In the data and image processing procedure, several important parameters which influence the results obtained are also described. For active IRT, there are different heating sources (optical or ultrasound), heating forms (pulsed or lock-in) and also data processing methods. Distinct heating and data processing manipulations produce different inspection results. In this research, both optical Pulsed Thermography (PT) and Lock-in Thermography (LT) techniques will be involved in the PoD analysis. For PT, PoD curves of different data processing methods are compared, including Fourier Transform (FT), 1st Derivative (1st D) after Thermal Signal Reconstruction (TSR), Wavelet Transform (WT), Differential Absolute Contrast (DAC), and Principal Component Thermography (PCT). Systematic studies on PoD analysis for IRT technique are carried out. Additionally, constructed PoD curves of IRT technique are compared with those obtained by other traditional NDT& E approaches.
30

Modélisation du contrôle par méthodes électromagnétiques de défauts réalistes de type fissuration / Efficient modeling of eddy-current testing signal in layered half-space affected by realistic cracks

Miorelli, Roberto 20 November 2012 (has links)
Le contrôle non destructif (CND) par Courants de Foucault (CF) de défauts de fissuration est l’une des techniques les plus répandues dans de nombreux secteurs industriels. L’utilisation d’outils de modélisation adaptés permet d’améliorer les procédés de contrôle et la compréhension des données expérimentales observées. Ce travail de thèse, réalisé au CEA LIST et sous la direction de D. Lesselier (Laboratoire des Signaux et Systèmes), a pour objectif de proposer une approche de modélisation semi-analytique dédiée à la simulation du CND CF de défauts fins ou très fins dans une pièce plane conductrice composée de plusieurs couches. Il a fait l’objet d’une collaboration, dans le cadre du projet CIVAMONT, avec l’équipe Meander de l’University of Western Macedonia (Grèce), dirigée par le professeur T. Theodoulidis.Du point de vue de la simulation, la complexité du problème à traiter est liée aux particularités des défauts de fissuration : une ouverture très fine, un profil complexe et la possibilité d’avoir des ponts de conductivité entre les deux faces latérales du défaut. Ces caractéristiques expliquent la difficulté qu’ont les méthodes de simulation classiques, semi-analytiques ou purement numériques, à traiter efficacement ce type de configuration. Pour ces raisons, une approche dédiée aux défauts fins, fondée sur la méthode des éléments de frontière, a été développée. Elle présente l’avantage majeur de ne requérir qu’une discrétisation surfacique du défaut, en traitant analytiquement le calcul dans la direction de son ouverture. Après la résolution, avec la Méthode des Moments, de l’équation intégrale décrivant les interactions entre le champ d’excitation et le défaut, la réponse de la sonde est calculée en appliquant le théorème de réciprocité. Les développements théoriques réalisés dans cette thèse ont abouti à la mise en place d’une formulation générale permettant la prise en compte d’un nombre quelconque de défauts fins, d’orientations et des géométries différentes, pouvant être situés dans des couches différentes de la pièce. Par la suite, cette méthode innovante a été implémentée au sein de la plateforme de simulation CIVA, développée au CEA LIST, et a été validée expérimentalement à plusieurs reprises. Une extension de cette méthode a également permis la mise en place d’une approche la couplant à une modélisation volumique standard pour la simulation de configurations complexes comme le contrôle de fissures au voisinage d’un alésage. Ce travail, qui a fait l’objet d’une diffusion internationale affirmée, a permis de lever avec succès un certain nombre de difficultés théoriques et pratiques liées à la modélisation du CND CF de défauts fins. / Non Destructive Testing (NDT) with Eddy Current (EC) techniques are is widely employed in several industrial sectors for cracks detection. Numerical simulation tools are largely used in order to design sensors, understand the signals collected during the measurements process and to provide a support in expertise. This work has been accomplished inside CEA LIST in collaboration with L2S-Supélec. It is also a part of the CIVAMONT 2012 project, with the active participation of MEANDER laboratory members from University of Western Macedonia (Greece) and Technological Educational Institute of Western Macedonia (Greece). The main goal of our work has consisted in to developing a semi-analytical modeling approach, devoted to Eddy Current Testing (ECT) of multiple narrow cracks in planar multilayered structures. From the numerical point of view, simulation of multiple narrow cracks problems is a difficult task for classical methods, like for example the Volume Integral Method (VIM) or the Finite Element Method (FEM). The main issues reside in geometrical characteristics of narrow crack themselves. Indeed, a narrow crack presents a small opening as well as complex profile and a complex shape, with possible electrical contacts inside it. All these features increase enormously, with classical methods, the difficulty to simulate in rapid and/or precise way problems involving narrow cracks. We have tackled the narrow crack issue by developing a Boundary Element Method (BEM) dedicated to ECT signal modeling, starting from an approach presented in literature. Then, we have extended its capability to more realistic and challenging cases, such as the ECT of multilayered structures affected by complex narrow cracks. The principle of this method is to introduce additional assumptions, leading to the description of the crack perturbation as the effect of a dipole distribution, oriented toward the crack opening. Numerically speaking, such a description makes it possible to largely reduce, compared to the VIM, the number of unknowns that one needs to properly solve the problem. A particular attention has been devoted to the analytical formulation, in order to achieve generality, accuracy and efficiency. A precise derivation of the spectral-domain Dyadic Green Function (DGF) associated to our problem has first been developed. In this work, analytical expressions of the spectral-domain DGF have been obtained via the Discrete Complex Image Method (DCIM). Then, an accurate approximation of the spectral-domain DGF has been achieved via the Generalized Pencil of Function (GPOF) method. Therefore, the closed-form of the spectral-domain DGF, expressed under the form of Sommerfeld Integrals (SIs), has been calculated analytically. Finally, the integral equation(s) associate to the electromagnetic problem is solved by applying the Method of Moments (MoM).Validations with respect to experiments and commercial simulation software have been performed to test the model. A large set of configurations have been chosen in order to address realistic configurations involving multiple narrow cracks embedded in different layers of a given multilayered structure. The model proposed has shown its promising performance in terms of computational time compared with the VIM and the FEM. Moreover, a very good agreement with respect to the experimental data has always been observed. In the last and very recent part of our work, a coupled approach between BEM and VIM has been studied and developed in order to address, in a efficient way, problems where narrow cracks appear in the vicinity of with volumetric flaws (for example the simulation of fastener sites inspections). Comparisons with experimental measures have shown that the coupled approach is capable to achieve, overall, better results than the VIM and saves a lot of computational time.

Page generated in 0.1068 seconds