Spelling suggestions: "subject:"nonduality"" "subject:"uniduality""
101 |
Large deviations of the KPZ equation, Markov duality and SPDE limits of the vertex modelsLin, Yier January 2021 (has links)
The Kardar-Parisi-Zhang (KPZ) equation is a stochastic PDE describing various objects in statistical mechanics such as random interface growth, directed polymers, interacting particle systems. We study large deviations of the KPZ equation, both in the short time and long time regime. We prove the first short time large deviations for the KPZ equation and detects a Gaussian - 5/2 power law crossover in the lower tail rate function. In the long-time regime, we study the upper tail large deviations of the KPZ equation starting from a wide range of initial data and explore how the rate function depends on the initial data.
The KPZ equation plays a role as the weak scaling limit of various models in the KPZ universality class. We show the stochastic higher spin six vertex model, a class of models which sit on top of the KPZ integrable systems, converges weakly to the KPZ equation under certain scaling. This extends the weak universality of the KPZ equation. On the other hand, we show that under a different scaling, the stochastic higher spin six vertex model converges to a hyperbolic stochastic PDE called stochastic telegraph equation. One key tool behind the proof of these two stochastic PDE limits is a property called Markov duality.
|
102 |
Finite Dualities and Map-Critical Graphs on a Fixed SurfaceNešetřil, Jaroslav, Nigussie, Yared 01 January 2012 (has links)
Let K be a class of graphs. A pair (F,U) is a finite duality in K if U∈K, F is a finite set of graphs, and for any graph G in K we have G≤U if and only if F≤≰G for all F∈F, where "≤" is the homomorphism order. We also say U is a dual graph in K. We prove that the class of planar graphs has no finite dualities except for two trivial cases. We also prove that the class of toroidal graphs has no 5-colorable dual graphs except for two trivial cases. In a sharp contrast, for a higher genus orientable surface S we show that Thomassen's result (Thomassen, 1997 [17]) implies that the class, G(S), of all graphs embeddable in S has a number of finite dualities. Equivalently, our first result shows that for every planar core graph H except K1 and K4, there are infinitely many minimal planar obstructions for H-coloring (Hell and Nešetřil, 1990 [4]), whereas our later result gives a converse of Thomassen's theorem (Thomassen, 1997 [17]) for 5-colorable graphs on the torus.
|
103 |
Relationship Between Chief Executive Officer Compensation, Duality, and Return on EquityRescigno, Elizabeth 01 January 2018 (has links)
Poor decisions and conflicts of interest by members of company boards of directors have been a factor in the dramatic rise in chief executive officer (CEO) compensation, resulting in a lower return on equity (ROE) for shareholders. The purpose of this correlational study was to examine the relationship between CEO compensation, CEO duality, and ROE after controlling for CEO age, CEO tenure, and firm size, as measured by total assets. Agency theory was the theoretical framework for this study. The study examined whether a statistically significant relationship existed between CEO compensation, CEO duality, and ROE, after controlling for CEO age, CEO tenure, and firm size. Archival data were collected and analyzed from a sample of publicly traded firms in the United States listed on the 2016 Standard & Poor's 500 Index. Hierarchical multiple regression techniques were used to test the relationship between variables. The results indicated that there was not a statistically significant relationship between CEO compensation, CEO duality, and ROE after controlling for CEO age, CEO tenure, and firm size. The study may contribute to positive social change by increasing the potential for board of directors' members to implement best practices, contributing to reduced shareholder conflicts, less litigation, higher ROE, and enhanced investor confidence benefiting emerging economies and local communities.
|
104 |
The Discrete Hodge Star Operator and Poincaré DualityArnold, Rachel Florence 16 May 2012 (has links)
This dissertation is a uniïfication of an analysis-based approach and the traditional topological-based approach to Poincaré duality. We examine the role of the discrete Hodge star operator in proving and in realizing the Poincaré duality isomorphism (between cohomology and homology in complementary degrees) in a cellular setting without reference to a dual cell complex. More specifically, we provide a proof of this version of Poincaré duality over R via the simplicial discrete Hodge star defined by Scott Wilson in [19] without referencing a dual cell complex. We also express the Poincaré duality isomorphism over both R and Z in terms of this discrete operator. Much of this work is dedicated to extending these results to a cubical setting, via the introduction of a cubical version of Whitney forms. A cubical setting provides a place for Robin Forman's complex of nontraditional differential forms, defined in [7], in the uniïfication of analytic and topological perspectives discussed in this dissertation. In particular, we establish a ring isomorphism (on the cohomology level) between Forman's complex of differential forms with his exterior derivative and product and a complex of cubical cochains with the discrete coboundary operator and the standard cubical cup product. / Ph. D.
|
105 |
A Meeting of Land and WaterHall, Vernon Anthony 09 July 2008 (has links)
What is the opportunity afforded by a distinction in geography? Can a building respond to a threshold, or meeting point between two distinct geographical conditions? In particular, the duality of land and water and the moment when these two elements meet, could indicate and influence form and structure. What is a potential response to such a condition in geography, what are the mechanisms and means by which a building could respond to such a condition? This project seeks to highlight and celebrate the distinction between land and water, a meeting point where land ends and a river begins. The building's form, structure, and material are a reaction to the geographic condition. / Master of Architecture
|
106 |
Tinkertoys for Gaiotto dualityChacaltana Alarcon, Oscar Chacaltana 28 September 2011 (has links)
We describe a procedure for classifying 4D N=2 superconformal theories of the type introduced by Davide Gaiotto. Any punctured curve, C, on which the 6D (2,0) SCFT is compactified, may be decomposed into 3-punctured spheres, connected by cylinders. The 4D theories, which arise, can be characterized by listing the ``matter" theories corresponding to 3-punctured spheres, the simple gauge group factors, corresponding to cylinders, and the rules for connecting these ingredients together. Different pants decompositions of C correspond to different S-duality frames for the same underlying family of 4D \mathcal{N}=2 SCFTs. We developed such a classification for the A_{N-1} and the D_N series of 6D (2,0) theories. We outline the procedure for general A_{N-1} and D_N, and construct, in detail, the classification through A_4 and D_4, respectively. / text
|
107 |
A matrix-free linear programming duality theoryVillela, Paulo Arruda. January 1979 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Mathematics, 1979 / Bibliography: leaf 61. / by Paulo Arruda Villela. / M.S. / M.S. Massachusetts Institute of Technology, Department of Mathematics
|
108 |
Farkas - type results for convex and non - convex inequality systemsHodrea, Ioan Bogdan 22 January 2008 (has links) (PDF)
As the title already suggests the aim of the present work is to present Farkas -
type results for inequality systems involving convex and/or non - convex functions.
To be able to give the desired results, we treat optimization problems which involve
convex and composed convex functions or non - convex functions like DC functions
or fractions.
To be able to use the fruitful Fenchel - Lagrange duality approach, to the primal
problem we attach an equivalent problem which is a convex optimization problem.
After giving a dual problem to the problem we initially treat, we provide weak
necessary conditions which secure strong duality, i.e., the case when the optimal
objective value of the primal problem coincides with the optimal objective value of
the dual problem and, moreover, the dual problem has an optimal solution.
Further, two ideas are followed. Firstly, using the weak and strong duality
between the primal problem and the dual problem, we are able to give necessary
and sufficient optimality conditions for the optimal solutions of the primal problem.
Secondly, provided that no duality gap lies between the primal problem and its
Fenchel - Lagrange - type dual we are able to demonstrate some Farkas - type
results and thus to underline once more the connections between the theorems of
the alternative and the theory of duality. One statement of the above mentioned
Farkas - type results is characterized using only epigraphs of functions.
We conclude our investigations by providing necessary and sufficient optimality
conditions for a multiobjective programming problem involving composed convex
functions. Using the well-known linear scalarization to the primal multiobjective
program a family of scalar optimization problems is attached. Further to each of
these scalar problems the Fenchel - Lagrange dual problem is determined. Making
use of the weak and strong duality between the scalarized problem and its dual the
desired optimality conditions are proved. Moreover, the way the dual problem of
the scalarized problem looks like gives us an idea about how to construct a vector
dual problem to the initial one. Further weak and strong vector duality assertions
are provided.
|
109 |
Farkas - type results for convex and non - convex inequality systemsHodrea, Ioan Bogdan 13 December 2007 (has links)
As the title already suggests the aim of the present work is to present Farkas -
type results for inequality systems involving convex and/or non - convex functions.
To be able to give the desired results, we treat optimization problems which involve
convex and composed convex functions or non - convex functions like DC functions
or fractions.
To be able to use the fruitful Fenchel - Lagrange duality approach, to the primal
problem we attach an equivalent problem which is a convex optimization problem.
After giving a dual problem to the problem we initially treat, we provide weak
necessary conditions which secure strong duality, i.e., the case when the optimal
objective value of the primal problem coincides with the optimal objective value of
the dual problem and, moreover, the dual problem has an optimal solution.
Further, two ideas are followed. Firstly, using the weak and strong duality
between the primal problem and the dual problem, we are able to give necessary
and sufficient optimality conditions for the optimal solutions of the primal problem.
Secondly, provided that no duality gap lies between the primal problem and its
Fenchel - Lagrange - type dual we are able to demonstrate some Farkas - type
results and thus to underline once more the connections between the theorems of
the alternative and the theory of duality. One statement of the above mentioned
Farkas - type results is characterized using only epigraphs of functions.
We conclude our investigations by providing necessary and sufficient optimality
conditions for a multiobjective programming problem involving composed convex
functions. Using the well-known linear scalarization to the primal multiobjective
program a family of scalar optimization problems is attached. Further to each of
these scalar problems the Fenchel - Lagrange dual problem is determined. Making
use of the weak and strong duality between the scalarized problem and its dual the
desired optimality conditions are proved. Moreover, the way the dual problem of
the scalarized problem looks like gives us an idea about how to construct a vector
dual problem to the initial one. Further weak and strong vector duality assertions
are provided.
|
110 |
A duality approach to gap functions for variational inequalities and equilibrium problemsLkhamsuren, Altangerel 03 August 2006 (has links) (PDF)
This work aims to investigate some applications of the
conjugate duality for scalar and vector optimization problems to
the construction of gap functions for variational inequalities and
equilibrium problems. The basic idea of the approach is to
reformulate variational inequalities and equilibrium problems into
optimization problems depending on a fixed variable, which allows
us to apply duality results from optimization problems.
Based on some perturbations, first we consider the conjugate
duality for scalar optimization. As applications, duality
investigations for the convex partially separable optimization
problem are discussed.
Afterwards, we concentrate our attention on some applications of
conjugate duality for convex optimization problems in finite and
infinite-dimensional spaces to the construction of a gap function
for variational inequalities and equilibrium problems. To verify
the properties in the definition of a gap function weak and strong
duality are used.
The remainder of this thesis deals with the extension of this
approach to vector variational inequalities and vector equilibrium
problems. By using the perturbation functions in analogy to the
scalar case, different dual problems for vector optimization and
duality assertions for these problems are derived. This study
allows us to propose some set-valued gap functions for the vector
variational inequality. Finally, by applying the Fenchel duality
on the basis of weak orderings, some variational principles for
vector equilibrium problems are investigated.
|
Page generated in 0.0617 seconds