• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1930
  • 582
  • 307
  • 237
  • 150
  • 48
  • 38
  • 34
  • 25
  • 23
  • 21
  • 21
  • 15
  • 15
  • 12
  • Tagged with
  • 4265
  • 1169
  • 1042
  • 973
  • 612
  • 603
  • 599
  • 594
  • 478
  • 457
  • 421
  • 408
  • 369
  • 325
  • 318
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

A statistical approach to parallel sorting and selection algorithms design

Loo, Alfred January 2000 (has links)
No description available.
222

Real time transmission line modelling of the vocal tract using multiple digital signal processors

Loasby, J. M. January 1996 (has links)
No description available.
223

The theory and applications of ringtree networks

Xie, Hong January 1994 (has links)
No description available.
224

GPU-Based Acceleration on ACEnet for FDTD Method of Electromagnetic Field Analysis

Sun, Dachuan 21 November 2013 (has links)
Graphics Processing Unit (GPU) programming techniques have been applied to a range of scientific and engineering computations. In computational electromagnetics, uses of the GPU technique have dramatically increased since the release of NVIDIA’s Compute Unified Device Architecture (CUDA), a powerful and simple-to-use programmer environment that renders GPU computing easy accessibility to developers not specialized in computer graphics. The focus of recent research has been on problems concerning the Finite-Difference Time-Domain (FDTD) simulation of electromagnetic (EM) fields. Traditional FDTD methods sometimes run slowly due to large memory and CPU requirements for modeling electrically large structures. Acceleration methods such as parallel programming are then needed. FDTD algorithm is suitable for multi-thread parallel computation with GPU. For complex structures and procedures, high performance GPU calculation algorithms will be crucial. In this work, we present the implementation of GPU programming for acceleration of computations for EM engineering problems. The speed-up is demonstrated through a few simulations with inexpensive GPUs and ACEnet, and the attainable efficiency is illustrated with numerical results. Using C, CUDA C, Matlab GPU, and ACEnet, we make comparisons between serial and parallel algorithms and among computations with and without GPU and CUDA, different types of GPUs, and personal computers and ACEnet. A maximum of 26.77 times of speed-up is achieved, which could be further boosted with development of new hardware in the future. The acceleration in run time will make many investigations possible and will pave the way for studies of large-scale computational electromagnetic problems that were previously impractical. This is a field that definitely invites more in-depth studies. / This is the thesis of my Master of Applied Science work at Dalhousie University.
225

A parallel process model and architecture for a Pure Logic Language

Jelly, Innes E. January 1990 (has links)
The research presented in this thesis has been concerned with the use of parallel logic systems for the implementation of large knowledge bases. The thesis describes proposals for a parallel logic system based on a new logic programming language, the Pure Logic Language. The work has involved the definition and implementation of a new logic interpreter which incorporates the parallel execution of independent OR processes, and the specification and design of an appropriate non shared memory multiprocessor architecture. The Pure Logic Language which is under development at JeL, Bracknell, differs from Prolog in its expressive powers and implementation. The resolution based Prolog approach is replaced by a rewrite rule technique which successively transforms expressions according to logical axioms and user defined rules until no further rewrites are possible. A review of related work in the field of parallel logic language systems is presented. The thesis describes the different forms of parallelism within logic languages and discusses the decision to concentrate on the efficient implementation of OR parallelism. The parallel process model for the Pure Logic Language uses the same execution technique of rule rewriting but has been adapted to implement the creation of independent OR processes and the required message passing operations. The parallelism in the system is implemented automatically and, unlike many other parallel logic systems there are no explicit program annotations for the control of parallel execution. The spawning of processes involves computational overheads within the interpreter: these have been measured and results are presented. The functional requirements of a multiprocessor architecture are discussed: shared memory machines are not scalable for large numbers of processing elements, but, with no shared memory, data needed by offspring processors must be copied from the parent or else recomputed. The thesis describes an optimised format for the copying of data between processors. Because a one-to-many communication pattern exits between parent and offspring processors a broadcast architecture is indicated. The development of a system based on the broadcasting of data packets represents a new approach to the parallel execution of logic languages and has led to the design of a novel bus based multiprocessor architecture. A simulation of this multiprocessor architecture has been produced and the parallel logic interpreter mapped onto it: this provides data on the predicted performance of the system. A detailed analysis of these results is presented and the implications for future developments to the proposed system are discussed.
226

Expressing mobility in process algebras : first-order and higher-order paradigms

Sangiorgi, Davide January 1993 (has links)
We study mobile systems, i.e. systems with a dynamically changing communication topology, from a process algebras point of view. Mobility can be introduced in process algebras by allowing names or terms to be transmitted. We distinguish these two approaches as first-order and higher-order. The major target of the thesis is the comparison between them. The prototypical calculus in the first-order paradigm is the π-calculus. By generalising its sort discipline we derive an w-order extension called Higher-Order π-calculus (HOπ). We show that such an extension does not add expressiveness to the π-calculus: Higher-order processes can be faithfully compiled down to first-order, and respecting the behavioural equivalence we adopted in the calculi. Such an equivalence is based on the notion of bisimulation, a fundamental concept of process algebras. Unfortunately, the standard definition of bisimulation is unsatisfactory in a higher-order calculus because it is over-discriminating. To overcome the problem, we propose barbed bisimulation. Its advantage is that it can be defined uniformly in different calculi because it only requires that the calculus possesses an interaction or reduction relation. As a test for barbed bisimulation, we show that in CCS and π-calculus, it allows us to recover the familiar bisimulation-based equivalences. We also give simpler characterisations of the equivalences utilised in HOπ. For this we exploit a special kind of agents called triggers, with which it is possible to reason fairly efficiently in a higher-order calculus notwithstanding the complexity of its transitions. Finally, we use the compilation from HOπ to π-calculus to investigate Milner's
227

Adaptive parallelism mapping in dynamic environments using machine learning

Emani, Murali Krishna January 2015 (has links)
Modern day hardware platforms are parallel and diverse, ranging from mobiles to data centers. Mainstream parallel applications execute in the same system competing for resources. This resource contention may lead to a drastic degradation in a program’s performance. In addition, the execution environment composed of workloads and hardware resources, is dynamic and unpredictable. Efficient matching of program parallelism to machine parallelism under uncertainty is hard. The mapping policies that determine the optimal allocation of work to threads should anticipate these variations. This thesis proposes solutions to the mapping of parallel programs in dynamic environments. It employs predictive modelling techniques to determine the best degree of parallelism. Firstly, this thesis proposes a machine learning-based model to determine the optimal thread number for a target program co-executing with varying workloads. For this purpose, this offline trained model uses static code features and dynamic runtime information as input. Next, this thesis proposes a novel solution to monitor the proposed offline model and adjust its decisions in response to the environment changes. It develops a second predictive model for determining how the future environment should be, if the current thread prediction was optimal. Depending on how close this prediction was to the actual environment, the predicted thread numbers are adjusted. Furthermore, considering the multitude of potential execution scenarios where no single policy is best suited in all cases, this work proposes an approach based on the idea of mixture of experts. It considers a number of offline experts or mapping policies, each specialized for a given scenario, and learns online the best expert that is optimal for the current execution. When evaluated on highly dynamic executions, these solutions are proven to surpass default, state-of-art adaptive and analytic approaches.
228

Real-time sound synthesis on a multi-processor platform

Itagaki, Takebumi January 1998 (has links)
Real-time sound synthesis means that the calculation and output of each sound sample for a channel of audio information must be completed within a sample period. At a broadcasting standard, a sampling rate of 32,000 Hz, the maximum period available is 31.25 μsec. Such requirements demand a large amount of data processing power. An effective solution for this problem is a multi-processor platform; a parallel and distributed processing system. The suitability of the MIDI [Music Instrument Digital Interface] standard, published in 1983, as a controller for real-time applications is examined. Many musicians have expressed doubts on the decade old standard's ability for real-time performance. These have been investigated by measuring timing in various musical gestures, and by comparing these with the subjective characteristics of human perception. An implementation and its optimisation of real-time additive synthesis programs on a multi-transputer network are described. A prototype 81-polyphonic-note- organ configuration was implemented. By devising and deploying monitoring processes, the network's performance was measured and enhanced, leading to an efficient usage; the 88-note configuration. Since 88 simultaneous notes are rarely necessary in most performances, a scheduling program for dynamic note allocation was then introduced to achieve further efficiency gains. Considering calculation redundancies still further, a multi-sampling rate approach was applied as a further step to achieve an optimal performance. The theories underlining sound granulation, as a means of constructing complex sounds from grains, and the real-time implementation of this technique are outlined. The idea of sound granulation is quite similar to the quantum-wave theory, "acoustic quanta". Despite the conceptual simplicity, the signal processing requirements set tough demands, providing a challenge for this audio synthesis engine. Three issues arising from the results of the implementations above are discussed; the efficiency of the applications implemented, provisions for new processors and an optimal network architecture for sound synthesis.
229

The Effects of Stress and Executive Functions on Decision Making in an Executive Parallel Task

McGuigan, Brian January 2016 (has links)
The aim of this study was to investigate the effects of acute stress on parallel task performance with the Game of Dice Task (GDT) to measure decision making and the Stroop test.  Two previous studies have found that the combination of stress and a parallel task with the GDT and an executive functions task preserved performance on the GDT for a stress group compared to a control group.  The purpose of this study was to create and use a new parallel task with the GDT and the stroop test to elucidate more information about the executive function contributions from the stroop test and to ensure that this parallel task preserves performance on the GDT for the stress group.  Sixteen participants (Mean Age: 26.88) were randomly assigned to either a stress group with the Trier Social Stress Test (TSST) or the control group with the placebo-TSST.  The Positive and Negative Affect Schedule (PANAS) and the State-Trait Anxiety Inventory (STAI) were given before and after the TSST or placebo-TSST and were used as stress indicators.  The results showed a trend towards the stress group performing marginally better than the control group on the GDT but not significantly.  There were no significant differences between the groups for accuracy on the Stroop test trial types.  However, the stress group had significantly slower mean response times on the congruent trial type of the Stroop test, p < .05, though.  This study has shown further evidence that stress and a parallel task together preserve performance on the GDT.
230

A survey of data flow machine architectures

Mead, David Anthony January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries

Page generated in 0.06 seconds