• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deformation theory of a birationally commutative surface of Gelfand-Kirillov dimension 4

Campbell, Chris John Montgomery January 2016 (has links)
Let K be the field of complex numbers. In this thesis we construct new examples of noncommutative surfaces of GK-dimension 4 using the language of formal and infinitesimal deformations as introduced by Gerstenhaber. Our approach is to find families of deformations of a certain well known GK-dimension 4 birationally commutative surface defined by Zhang and Smith in unpublished work cited in [YZ06], which we call A. Let B* and K* be respectively the bar and Koszul complexes of a PBW algebra C = KhV / (R) . We construct a graph whose vertices are elements of the free algebra KhV i and edges are relations in R. We define a map m2 : B2 ! K2 that extends to a chain map m* : B* → K*. This map allows the Gerstenhaber bracket structure to be transferred from the bar complex to the Koszul complex. In particular, m2 provides a mechanism for algorithmically determining the set of infinitesimal deformations with vanishing primary obstruction. Using the computer algebra package 'Sage' [Dev15] and a Python package developed by the author [Cam], we calculate the degree 2 component of the second Hochschild cohomology of A. Furthermore, using the map m2 we describe the variety U ⊆ HH2/2 (A) of infinitesimal deformations with vanishing primary obstruction. We further show that U decomposes as a union of 3 irreducible subvarieties Vg, Vq and Vu. More generally, let C be a Koszul algebra with relations R, and let E be a localisation of C at some (left and right) Ore set. Since R is homogeneous in degree two, there is an embedding R ,↪ C⊗C and in the following we identify R with its (nonzero) image under this map. We construct an injective linear map ~⋀ : HH²(C) → HH²(E) and prove that if f ∈ HH²(E) satisfies f(R) ⊆ C then f ∈ Im(~⋀). In this way we describe a relationship between infinitesimal deformations of C with those of E. Rogalski and Sierra [RS12] have previously examined a family of deformations of A arising from automorphism of the surface P1 X P1. By applying our understanding of the map ~⋀ we show that these deformations correspond to the variety of infinitesimal deformations Vg. Furthermore, we show that deformations defined similarly by automorphisms of other minimal rational surfaces also correspond to infinitesimal deformations lying in Vg. We introduce a new family of deformations of A, which we call Aq. We show that elements of this family have families of deformations arising from certain quantum analogues of geometric automorphisms of minimal rational surfaces, as defined by Alev and Dumas. Furthermore, we show that after taking the semi-classical limit q → 1 we obtain a family of deformations of A whose infinitesimal deformation lies in Vq. Finally, we apply a heuristic search method in the space of Hochschild 2-cocycles of A. This search yields another new family of deformations of A. We show that elements of this family are non-noetherian PBW noncommutative surfaces with GK-dimension 4. We further show that elements of this family can have as function skew field the division ring of the quantum plane Kq(u; v), the division ring of the first Weyl algebra D1(K) or the commutative field K(u; v).
2

Cocycle twists of algebras

Davies, Andrew Phillip January 2014 (has links)
No description available.
3

On maps preserving products

Catalano, Louisa 13 July 2020 (has links)
No description available.
4

A dimensão de Gelfand-Kirillov de certas álgebras / The Gelfand-Kirillov dimension of certain algebras

Galvão, Lucas 02 September 2014 (has links)
A dimensão de Gelfand-Kirillov mede a taxa de crescimento assintótico de álgebras. Como fornece informações importantes sobre a sua estrutura, este invariante se tornou uma das ferramentas padrão no estudo de álgebras de dimensão infinita. Neste trabalho apresentamos as propriedades básicas da dimensão de Gelfand-Kirillov de álgebras e de módulos, e também mostramos o cálculo da dimensão de Gelfand-Kirillov de algumas álgebras e módulos, sendo o exemplo mais importante o cálculo da dimensão de Gelfand-Kirillov da álgebra de Weyl An. / The Gelfand-Kirillov dimension measures the asymptotic rate of growth of algebras. Since it provides important structural information, this invariant has become one of the standard tools in the study of innite dimensional algebras. In this work we present the basic properties of the Gelfand-Kirillov dimension of algebras and modules, and we also show the calculation of the Gelfand-Kirillov dimension of some algebras and modules, being the most important example the calculation of the Gelfand-Kirillov dimension of the Weyl algebra An.
5

Algebras graduadas e identidades polinomiais graduadas / Granded algebras and graded polynomial identities

Silva, Diogo Diniz Pereira da Silva e 31 July 2007 (has links)
Orientador: Plamen Emilov Kochloukov / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T17:42:03Z (GMT). No. of bitstreams: 1 Silva_DiogoDinizP_M.pdf: 729460 bytes, checksum: d3bd0f5d35d357ca516d80c06f0ee23f (MD5) Previous issue date: 2007 / Resumo: Neste trabalho estudamos algebras graduadas e identidades polinomiais graduadas. Foram abordados dois tipos de problemas: determinar as possíveis graduações de uma determinada algebra; encontrar uma base para as identidades graduadas de uma algebra. Começamos com as definiçõese resultados básicos de álgebras,álgebras graduadas, identidades polinomiais (graduadas), etc. Em seguida fornecemos uma descrição das possíveis graduações da algebra das matrizes n x n sobre um corpo algebricamente fechado, e da algebra das matrizes triangulares superiores quando o corpo é algebricamente fechado, de característica 0 e o grupo é abeliano e fnito. Depois estudamos as identidades graduadas da álgebra das matrizes n x n sobre um corpo K e das álgebras M11(E) e E ? E onde E é a álgebra exterior (ou de Grassmann) de dimensão infinita / Abstract: In this work we study graded algebras and graded polynomial identities. We study two types of problems: finding the possible gradings on a given algebra, and finding a basis forthe graded identities of a given algebra. We begin with the basic definitions and results onalgebras, graded algebras, (graded) polynomial identities, etc. We give a description of thepossible gradings on the matrix algebra over an algebraically closed filed, and of the upper triangular matrices when the field is algebraically closed of characteristic 0, and the group is abelian and finite. Then we study the graded identities of the matrix algebra over a field K and of the algebras M11(E) and E ? E where E is the infinite dimensional Grassmann (or exterior) algebra / Mestrado / Matematica / Mestre em Matemática
6

A dimensão de Gelfand-Kirillov de certas álgebras / The Gelfand-Kirillov dimension of certain algebras

Lucas Galvão 02 September 2014 (has links)
A dimensão de Gelfand-Kirillov mede a taxa de crescimento assintótico de álgebras. Como fornece informações importantes sobre a sua estrutura, este invariante se tornou uma das ferramentas padrão no estudo de álgebras de dimensão infinita. Neste trabalho apresentamos as propriedades básicas da dimensão de Gelfand-Kirillov de álgebras e de módulos, e também mostramos o cálculo da dimensão de Gelfand-Kirillov de algumas álgebras e módulos, sendo o exemplo mais importante o cálculo da dimensão de Gelfand-Kirillov da álgebra de Weyl An. / The Gelfand-Kirillov dimension measures the asymptotic rate of growth of algebras. Since it provides important structural information, this invariant has become one of the standard tools in the study of innite dimensional algebras. In this work we present the basic properties of the Gelfand-Kirillov dimension of algebras and modules, and we also show the calculation of the Gelfand-Kirillov dimension of some algebras and modules, being the most important example the calculation of the Gelfand-Kirillov dimension of the Weyl algebra An.
7

A Noncommutative Catenoid

Holm, Christoffer January 2017 (has links)
Noncommutative geometry generalizes many geometric results from such fields as differential geometry and algebraic geometry to a context where commutativity cannot be assumed. Unfortunately there are few concrete non-trivial examples of noncommutative objects. The aim of this thesis is to construct a noncommutative surface <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathcal%7BC%7D_%5Chbar" /> which will be a generalization of the well known surface called the catenoid. This surface will be constructed using the Diamond lemma, derivations will be constructed over <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathcal%7BC%7D_%5Chbar" /> and a general localization will be provided using the Ore condition.
8

Identidades polinomiais em algebras T-primas / Polynomial identities in T-prime algebras

Fidelis, Marcello 14 August 2018 (has links)
Orientador: Plamen Emilov Koshlukov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-14T13:33:07Z (GMT). No. of bitstreams: 1 Fidelis_Marcello_D.pdf: 592299 bytes, checksum: dea5983279c32bbe6e1ffd7e1372fcf4 (MD5) Previous issue date: 2005 / Resumo: Neste trabalho estudamos os produtos tensoriais de T-ideais T-primos sobre corpos infinitos. O comportamento destes produtos tensoriais sobre corpos de caracteristica zero foi descrito por Kemer. Primeiramente mostramos, usando os m'etodos introduzidos por Regev, que tal descri¸cao vale se nos restringirmos apenas aos polinomios multilineares. Num segundo momento, aplicando identidades graduadas, mostramos que o Teorema sobre o Produto Tensorial 'e falso para os T-ideais das 'algebras M1,1(E) e E E, onde E 'e a 'algebra de Grassmann com dimensao infinita; M1,1(E) consiste das matrizes 2 × 2 sobre E tendo somente elementos pares (i.e. centrais) de E na diagonal principal, e a outra diagonal consistindo de elementos 'impares (anticomutitativos) de E. Entao voltamos nossa atencao para outros produtos tensoriais e estudamos suas respectivas identidades graduadas. Obtivemos novas demonstracoes de alguns dos casos do Teorema sobre o Produto Tensorial de Kemer. Note que estas demonstracoes nao dependem da teoria sobre a estrutura dos T-ideais, mas sao "elementares". Finalmente, usando outra vez identidades polinomiais graduadas, mostramos que o Teorema sobre o Produto Tensorial nao 'e valido em mais um caso: quando o corpo base possui caracteristica positiva. Isto vem para mostrar novamente que a teoria sobre a estrutura dos T-ideais e, essencialmente, uma teoria sobre identidades polinomiais multilineares. / Abstract: In this work we study tensor products of T-prime T-ideals over infinite fields. The behaviour of these tensor products over a field of characteristic zero was described by Kemer. First we show, using methods due to Regev, that such a description holds if one restricts oneself to multilinear polynomials only. Second, applying graded polynomial identities, we prove that the Tensor Product Theorem fails for the T-ideals of the algebras M1,1(E) and E E where E is the infinite dimensional Grassmann algebra; M1,1(E) consists of the 2×2 matrices over E having even (i.e. central) elements of E in the main diagonal, and the other diagonal consisting of odd (anticommuting) elements of E. Then we pass to other tensor products and study the respective graded identities. We obtain new proofs of some cases of Kemer's Tensor Product Theorem. Note that these proofs do not depend on the structure theory of T-ideals but are "elementary" ones. Finally, using graded polynomial identities once again, we show that the Tensor Product Theorem fails in one more case when the base field is of positive characteristic. All this comes to show once more that the structure theory of T-ideals is essentially about the multilinear polynomial identities / Doutorado / Matematica / Doutor em Matemática
9

Identidades graduadas em álgebras não-associativas / Granded identities in non associative algebras

Silva, Diogo Diniz Pereira da Silva e 17 August 2018 (has links)
Orientador: Plamen Emilov Kochloukov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-17T03:42:15Z (GMT). No. of bitstreams: 1 Silva_DiogoDinizPereiradaSilvae_D.pdf: 1168055 bytes, checksum: 49c676076235e3eef6f8a27594f092f7 (MD5) Previous issue date: 2010 / Resumo: Neste trabalho apresentamos um estudo sobre identidades polinomiais graduadas em álgebras não associativas. Mais precisamente estudamos as identidades polinomiais graduadas da álgebra de Lie das matrizes de ordem 2 com traço zero com as três graduações naturais, a Z2-graduação, a Z2 _ Z2-graduação e a Z-graduação, neste caso conseguimos uma nova demonstração baseada em métodos elementares dos resultados de [27] que não se baseia em resultados da Teoria de Invariantes, estes resultados foram publicados em [30]. Estudamos também as identidades graduadas da álgebra de Jordan das matrizes simétricas de ordem 2, neste caso obtivemos bases para as identidades graduadas dessa álgebra de Jordan em todas as possíveis graduações, obtivemos também bases para as identidades fracas para os pares (Bn; Jn) e (B; J), onde Bn e B denotam as álgebras de Jordan de uma forma bilinear simétrica não degenerada nos espaços vetoriais Vn e V respectivamente, onde Vn tem dimensão n e V tem dimensão 1, esses resultados estão no artigo [29], aceito para publicação / Abstract: In this thesis we study graded identities in non associative algebras. Namely we study graded polynomial identities for the Lie algebra of the 2_2 matrices with trace zero with it's three natural gradings, the Z2-grading, the Z2_Z2-grading and the Z-grading, in this case we obtained a new proof of the results of [27] that doesn't involve use of Invariant Theory, this results were published in [30]. We also studied the graded identities of the Jordan algebra of the symmetric matrices of order two, we obtained basis for the graded identities of this Jordan algebra in all possible gradings, we also obtained basis for the weak identities of the pairs (Bn; Jn) and (B; J), where Bn and B are the Jordan algebras of a symmetric bilinear form in a the vector spaces Vn and V respectively, where Vn has dimension n and V has countable dimension, this results are in the article [29], accepted for publication / Doutorado / Álgebra Não-Comutativa / Doutor em Matemática
10

Identidades polinomiais em álgebras de matrizes / Polynomial identities in matrix algebras

Yasumura, Felipe Yukihide, 1991- 24 August 2018 (has links)
Orientador: Plamen Emilov Kochloukov / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação / Made available in DSpace on 2018-08-24T08:22:37Z (GMT). No. of bitstreams: 1 Yasumura_FelipeYukihide_M.pdf: 1764013 bytes, checksum: e6eeb3b9e9fd697e59dce7509c017213 (MD5) Previous issue date: 2014 / Resumo: Nesta dissertação, será apresentada noções básicas da teoria de álgebras com identidades polinomiais (denominados de PI-álgebras), e, seguindo o trabalho de Razmyslov, provaremos a propriedade de Specht para a álgebra de Lie de matrizes 2x2 de traço zero; e acharemos uma base minimal de identidades da álgebra associativa de matrizes 2x2, baseado nos trabalhos de Drensky. Para esses objetivos, serão desenvolvidas noções da linguagem e teoria de álgebra não-comutativa clássica; serão desenvolvidas técnicas em representações do grupo simétrico e geral linear; e será abordada noções básicas de matrizes genéricas. Na demonstração da propriedade de Specht para a álgebra de Lie de matrizes 2x2 de traço zero, utilizaremos uma ténica desenvolvida por Razmyslov (identidades fracas), e utilizaremos teoria de estrutura de PI-álgebras (teoria de álgebra não comutativa aplicada em PI-álgebras - a maioria dos resultados apresentados sobre este assunto são devido a Amitsur). Determinar uma base minimal de identidades para a álgebra de matrizes 2x2 utilizará fortemente a teoria de representações, e os resultados apresentados neste trabalho foram desenvolvidos principalmente por Drensky. Na medida do possível, toda a linguagem e resultados necessários para a apresentação e demonstração dos teoremas principais serão apresentados neste trabalho, e espero que um leitor deste trabalho possa ter noções de alguns tópicos de álgebra não comutativa, noções da teoria básica de PI-álgebras e noções da importância e simplificação de contas das técnicas de representações e matrizes genéricas / Abstract: In this dissertation, will be presented basic notions of the theory of algebras with polynomial identity (named PI-algebras), and, following the works of Razmyslov, we'll prove the Specht property for the Lie algebra of matrices 2x2 with nulltrace; and we'll find a minimal basis of identities of the matrix algebra 2x2, based in the works of Dresnky. For these objectives, we'll develop basic notions of language and theory of classic non-commutative algebra; we'll develop techniques in representations of symmetric group and general linear group; and we'll approach basic notions of generic matrices. In the proof of Specht property for the Lie algebra of 2x2 matrices with nulltrace, we'll use a technique developed by Razmyslov (weak identities), and we'll use theory of structure of PI-algebras (theory of non-commutative algebras applied on PI-algebras - the most results in this subject are due to Amitsur). Determining a minimal basis of identities of the matrix algebra 2x2 will use strongly the representation theory, and the results was obtained mainly by Drensky. We'll try to exhibit all the necessary language and results for the presentation of the main theorems' proofs in this work, and we expect that a reader of this work can has notions of some topics on non-commutative algebra, notions of basic theory of PI-algebras and notions of the importance and simplification of the techniques with representations and generic matrices / Mestrado / Matematica / Mestre em Matemática

Page generated in 0.0927 seconds