• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 1
  • Tagged with
  • 33
  • 33
  • 33
  • 18
  • 14
  • 8
  • 8
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nonlinear FEM load bearing capacity assessment of a concrete bridge subjected to support settlements : Case of a continious slab bridge with angled supports

Hansson, Daniel January 2013 (has links)
A nonlinear finite element analysis was performed for an existing road bridge in order to see if that could show a higher load bearing capacity, as an alternative to repairing or replacing. The regular linear analysis had shown that the bridge could not take any traffic load due to the effects from large and uneven support settlements. It is a five-span reinforced concrete bridge with a continuous slab on supports made out of rows of columns. The width-to-span ratio was around 1 and the supports were angled up to about 30°, giving rise to a complex three-dimensional behaviour, which was seen and studied in the nonlinear results. Since the bending moment was the limiting factor, the nonlinear analysis focused on that. The direct result was that the load bearing capacity was 730 kN for the traffic vehicle boogie load, B, in the ultimate limit state. This was however only for the load case tested, and several more disadvantageous vehicle positions may exist. Other aspects also became limiting, as the maximum allowed vertical deflection in the serviceability limit state was reached at 457 kN. The most restraining though, was the shear capacity from the linear analysis; 78 kN, since it was not possible to simulate that type of failure with the shell elements used in the nonlinear finite element analysis. The main aim of the thesis was nonetheless reached, since the nonlinear analysis was able to show a significant increase in load bearing capacity.  A comparison was made with the settlements for the nonlinear case, to see how much influence they had on the load bearing capacity for traffic load. This was performed for both the bridge and a simple two-span beam. Both showed that there was no effect on the load bearing capacity in the ultimate limit. One thing to note was that the full settlements were applied, and with no relaxation due to creep.  Another aim of the thesis was to make comments on the practical usability of the nonlinear finite element method in load bearing capacity assessments. A linear analysis was performed before the nonlinear in order to be able to determine the load case to be used in the latter. This worked well, as the strengths of the two methods could then be utilized. Convergence problems were however encountered for the nonlinear when using the regular static solver. Due to this, the dynamic explicit calculation scheme was used instead, treating the case as quasi-static. This managed to produce enough usable results. It was concluded that the nonlinear finite element method is useable for assessment calculations, but that its strengths and weaknesses must be known in order to make it an efficient method.
12

Nonlinear FEM load bearing capacity of a concrete bridge subjected to support settlements : Case of a continuous slab bridge with angled supports

Hansson, Daniel January 2013 (has links)
A nonlinear finite element analysis was performed for an existing road bridge in order to see if that could show a higher load bearing capacity, as an alternative to repairing or replacing. The regular linear analysis had shown that the bridge could not take any traffic load due to the effects from large and uneven support settlements. It is a five-span reinforced concrete bridge with a continuous slab on supports made out of rows of columns. The width-to-span ratio was around 1 and the supports were angled up to about 30°, giving rise to a complex three-dimensional behaviour, which was seen and studied in the nonlinear results. Since the bending moment was the limiting factor, the nonlinear analysis focused on that. The direct result was that the load bearing capacity was 730 kN for the traffic vehicle boogie load, B, in the ultimate limit state. This was however only for the load case tested, and several more disadvantageous vehicle positions may exist. Other aspects also became limiting, as the maximum allowed vertical deflection in the serviceability limit state was reached at 457 kN. The most restraining though, was the shear capacity from the linear analysis; 78 kN, since it was not possible to simulate that type of failure with the shell elements used in the nonlinear finite element analysis. The main aim of the thesis was nonetheless reached, since the nonlinear analysis was able to show a significant increase in load bearing capacity. A comparison was made with the settlements for the nonlinear case, to see how much influence they had on the load bearing capacity for traffic load. This was performed for both the bridge and a simple two-span beam. Both showed that there was no effect on the load bearing capacity in the ultimate limit. One thing to note was that the full settlements were applied, and with no relaxation due to creep. Another aim of the thesis was to make comments on the practical usability of the nonlinear finite element method in load bearing capacity assessments. A linear analysis was performed before the nonlinear in order to be able to determine the load case to be used in the latter. This worked well, as the strengths of the two methods could then be utilized. Convergence problems were however encountered for the nonlinear when using the regular static solver. Due to this, the dynamic explicit calculation scheme was used instead, treating the case as quasi-static. This managed to produce enough usable results. It was concluded that the nonlinear finite element method is useable for assessment calculations, but that its strengths and weaknesses must be known in order to make it an efficient method.
13

Evaluating the Use of Ductile Envelope Connectors for Improved Blast Protection of Buildings

Lavarnway, Daniel L. 19 August 2013 (has links)
No description available.
14

COMPUTATIONAL MODELING OF SKIN GROWTH TO IMPROVE TISSUE EXPANSION RECONSTRUCTION

Tianhong Han (15339766) 29 April 2023 (has links)
<p>Breast cancer affects 12.5\% of women over their life time and tissue expansion (TE) is the most common technique for breast reconstruction after mastectomy. However, the rate of complications with TE can be as high as 15\%. Even though the first documented case of TE happened in 1957, there has yet to be a standardized procedure established due to the variations among patients and the TE protocols are currently designed based on surgeon's experience. There are several studies of computational and theoretical framework modeling skin growth in TE but these tools are not used in the clinical setting. This dissertation focuses on bridging the gap between the already existing skin growth modeling efforts and it's potential application in the clinical setting.</p> <p><br></p> <p>We started with calibrating a skin growth model based on porcine skin expansions data. We built a predictive finite element model of tissue expansion. Two types of model were tested, isotropic and anisotropic models. Calibration was done in a probabilistic framework, allowing us to capture the inherent biological uncertainty of living tissue. We hypothesized that the skin growth rate was proportional to stretch. Indeed, the Bayesian calibration process confirmed that this conceptual model best explained the data. </p> <p><br></p> <p>Although the initial model described the macroscale response, it did not consider any activity on the cellular level. To account for the underlying cellular mechanisms at the microscopic scale, we have established a new system of differential equations that describe the dynamics of key mechanosensing pathways that we observed to be activated in the porcine model. We calibrated the parameters of the new model based on porcine skin data. The refined model is still able to reproduce the observed macroscale changes in tissue growth, but now based on mechanistic knowledge of the cell mechanobiology.  </p> <p><br></p> <p>Lastly, we demonstrated how our skin growth model can be used in a clinical setting. We created TE simulations matching the protocol used in human patients and compared the results with clinical data with good agreement. Then we established a personalized model built from 3D scans of a patient unique geometry. We verified our model by comparing the skin growth area with the area of the skin harvested in the procedure, again with good agreement.</p> <p><br></p> <p>Our work shows that skin growth modeling can be a powerful tool to aid surgeons design TE procedures before they are actually performed. The simulations can help with optimizing the protocol to guarantee the correct amount of skin is growth in the shortest time possible without subjecting the skin to deformations that can compromise the procedure.</p>
15

Safety formats for non-linear finite element analyses of reinforced concrete beams loaded to shear failure

Ekesiöö, Anton, Ekhamre, Andreas January 2018 (has links)
There exists several different methods that can be used to implement a level of safety when performing non-linear finite element analysis of a structure. These methods are called safety formats and they estimate safety by different means and formulas which are partly discussed further in this thesis. The aim of this master thesis is to evaluate a model uncertainty factor for one safety format method called the estimation of coefficient of variation method (ECOV) since it is suggested to be included in the next version of Eurocode. The ECOV method will also be compared with the most common and widely used safety format which is the partial factor method (PF). The first part of this thesis presents the different safety formats more thoroughly followed by a theoretical part. The theory part aims to provide a deeper knowledge for the finite element method and non-linear finite element analysis together with some beam theory that explains shear mechanism in different beam types. The study was conducted on six beams in total, three deep beams and three slender beams. The deep beams were previously tested in the 1970s and the slender beams were previously tested in the 1990s, both test series were performed in a laboratory. All beams failed due to shear in the experimental tests. A detailed description of the beams are presented in the thesis. The simulations of the beams were all performed in the FEM- programme ATENA 2D to obtain high resemblance to the experimental test. In the results from the simulations it could be observed that the ECOV method generally got a higher capacity than the PF method. For the slender beams both methods received rather high design capacities with a mean of about 82% of the experimental capacity. For the deep beams both method reached low design capacities with a mean of around 46% of the experimental capacity. The results regarding the model uncertainty factor showed that the mean value for slender beams should be around 1.06 and for deep beams it should be around 1.25.
16

Effects of Column Stiffness on Seismic Behavior of Steel Plate Shear Walls

Guo, Xuhua 01 November 2011 (has links) (PDF)
Steel plate shear walls (SPSWs) are a lateral force resisting system consisting of thin infill steel plates surrounded by boundary frame members. The infill steel plates are allowed to buckle in shear and subsequently form diagonal tension field actions during earthquake events. Hysteretic energy dissipation of this system is primarily achieved through yielding of the infill plates. Conceptually, in a SPSW system with ideally rigid columns pinned to ground, the infill plates at different stories will yield simultaneously as a result of the lateral loads. However, when the columns become flexible, infill plate yielding may initially occur at one story and progressively spread into the other stories with increasing roof displacement. This research investigates the effect of column stiffness on infill plate yielding sequence and distribution along the height of steel plate shear walls subjected to earthquake forces. Analytical models are derived and validated for two-story SPSWs. Based on the derived model, probabilistic simulations are conducted to calculate the probability of achieving infill plate yielding in both stories before occurrence of a premature failure caused by excessive inter story drift at the initially yielded story. A total of three simulation methods including the Monte-Carlo method, the Latin Hypercube sampling method, and the Rosenblueth’s 2K+1 point estimate method were considered to account for the uncertain infill plate thickness and lateral force distributions in the system.The investigation is also extended to multi-story SPSWs. Three example six-story SPSWs are evaluated using the Rosenblueth's 2K+1 point estimation method which is identified to be most efficient from the simulation on two-story SPSWs. Moreover, the effectiveness of the column minimum moment of inertia required in the current code for achieving infill plate yielding at every story of SPSWs is evaluated.
17

Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections

Dai, Xianghe, Lam, Dennis January 2010 (has links)
This paper presents the axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel and carbon steel hollow sections. The finite element method developed via ABAQUS/Standard solver was used to carry out the simulations. The accuracy of the FE modelling and the proposed confined concrete stress-strain model were verified against experimental results. A parametric study on stub concrete-filled columns with various elliptical hollow sections made with stainless steel and carbon steel was conducted. The comparisons and analyses presented in this paper outline the effect of hollow sectional configurations to the axial compressive behaviour of elliptical concrete-filled steel tubular columns, especially the merits of using stainless steel hollow sections is highlighted.
18

GPU-based Parallel Computing for Nonlinear Finite Element Deformation Analysis

Mafi, Ramin 04 1900 (has links)
<p>Computer-based surgical simulation and non-rigid medical image registration in image-guided interventions are examples of applications that would benefit from real-time deformation simulation of soft tissues. The physics of deformation for biological soft-tissue is best described by nonlinear continuum mechanics-based models which then can be discretized by the Finite Element Method (FEM) for a numerical solution. Computational complexity of nonlinear FEM-based models has limited their use in real-time applications. The data-parallel nature and intense arithmetic operations in nonlinear FEM models are suitable for massive parallelization of the computations, in order to meet the response time requirements in such applications.</p> <p>This thesis is concerned with computational aspects of complex nonlinear deformation analysis problems with an emphasis on the speed of response using a parallel computing philosophy. It proposes a fast, accurate and scalable Graphic Processing Unit (GPU)-based implementation of the total Lagrangian FEM using implicit time integration for dynamic nonlinear deformation analysis. This is a general formulation valid for large deformations and strains and can account for material nonlinearities. A penalty method is used to satisfy the physical boundary constraints due to contact between deformable objects. The proposed set of optimized GPU kernels for computing the FEM matrices achieves more than 100 GFLOPS on a GTX 470 GPU device. The use of a novel vector assembly kernel and memory optimization strategies result in a performance gain of up to 25 GFLOPS in the PCG computations.</p> / Doctor of Philosophy (PhD)
19

Modeling and Control of Tensegrity-Membrane Systems

Yang, Shu 30 June 2016 (has links)
Tensegrity-membrane systems are a class of new bar-tendon-membrane systems. Such novel systems can be treated as extensions of tensegrity structures and are generally lightweight and deployable. These two major advantages enable tensegrity-membrane systems to become one of the most promising candidates for lightweight space structures and gossamer spacecraft. In this dissertation, modeling and control of tensegrity-membrane systems is studied. A systematic method is developed to determine the equilibrium conditions of general tensegrity-membrane systems. Equilibrium conditions can be simplified when the systems are in symmetric configurations. For one-stage symmetric systems, analytical equilibrium conditions can be determined. Three mathematical models are developed to study the dynamics of tensegrity-membrane systems. Two mathematical models are developed based on the nonlinear finite element method. The other model is a control-oriented model, which is suitable for control design. Numerical analysis is conducted using these three models to study the mechanical properties of tensegrity-membrane systems. Two control strategies are developed to regulate the deployment process of tensegrity-membrane systems. The first control strategy is to deploy the system by a nonlinear adaptive controller and use a linear H∞ controller for rapid system stabilization. The second control strategy is to regulate the dynamics of tensegrity-membrane systems using a linear parameter-varying (LPV) controller during system deployment. A gridding method is employed to discretize the system operational region in order to carry out the LPV control synthesis. / Ph. D.
20

Performance of Columnar Reinforced Ground during Seismic Excitation

Kamalzare, Soheil 31 January 2017 (has links)
Deep soil mixing to construct stiff columns is one of the methods used today to improve performance of loose ground and remediate liquefaction problems. This research adopts a numerical approach to study seismic performance of soil-cement columnar reinforcements in loose sandy profiles. Different constitutive models were investigated in order to find a model that can properly predict soil behavior during seismic excitations. These models included NorSand, Dafalias-Manzari, Plasticity Model for Sands (PM4Sand) and Pressure-Dependent-Multi-Yield-02 (PDMY02) model. They were employed to predict behavior of soils with different relative densities and under different confining pressures during monotonic and cyclic loading. PDMY02 was identified as the most suitable model to represent soil seismic behavior for the system studied herein. The numerical aspects of the finite element approach were investigated to minimize the unintended numerical miscalculations. The focus was put on convergence tolerance, solver time-step, constraint definition, and, integration, material and Rayleigh damping. This resulted in forming a robust numerical configuration for 3-D nonlinear models that were later used for studying behavior of the reinforced grounds. Nonlinear finite element models were developed to capture the seismic response of columnar reinforced ground during dynamic centrifuge testing. The models were calibrated with results from tests with unreinforced profiles. Thereafter, they were implemented to predict the response of two reinforced profiles during seismic excitations with different intensities and liquefaction triggering. Model predictions were compared with recordings and the possible effects from the reinforcements were discussed. Finally, parametric studies were performed to further evaluate the efficiency of the reinforcements with different extension depths and area replacement ratios. The results collectively showed that the stiff elements, if constructed appropriately, can withstand seismic excitations with different intensities, and provide a firm base for overlying structures. However, the presence of the stiff elements within the loose ground resulted in stronger seismic intensities on the soil surface. The columns were not able to considerably reduce pore water pressure generation, nor prevent liquefaction triggering. The reinforced profiles, comparing to the free-field profiles, had larger settlements on the soil surface but smaller settlements on the columns. The results concluded that utilization of the columnar reinforcements requires great attention as these reinforcements may result in larger seismic intensities at the ground surface, while not considerably reducing the ground deformations. / Ph. D.

Page generated in 0.0825 seconds