• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 67
  • 28
  • 27
  • 12
  • 8
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 424
  • 424
  • 71
  • 70
  • 66
  • 64
  • 57
  • 57
  • 56
  • 54
  • 45
  • 43
  • 42
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

[en] ANALYSIS AND MODELING OF TORSIONAL VIBRATIONS AND STICK-SLIP PHENOMENON IN SLENDER STRUCTURE SYSTEMS: EXPERIMENTAL INVESTIGATIONS AND NONLINEAR IDENTIFICATION / [pt] ANÁLISE E MODELAGEM DE VIBRAÇÃO TORCIONAL E STICK-SLIP EM SISTEMAS DE ESTRUTURAS ESBELTAS: INVESTIGAÇÕES EXPERIMENTAIS E IDENTIFICAÇÃO NÃO LINEAR

INGRID PIRES MACEDO OLIVEIRA DOS SANTOS 31 October 2023 (has links)
[pt] Durante a perfuração de poços de petróleo, a coluna de perfuração apresenta um comportamento dinâmico complexo, esta tese foca no estudo experimental e na modelagem matemática deste comportamento. Neste trabalho, destaca-se as vibrações autoexcitadas axiais, laterais e torcionais, que podem levar a efeitos como o bit bouncing, o whirling e stick-slip torcional. A primeira contribuição desta tese é a análise experimental de um bancada de testes, que fornece informações sobre a dinâmica de sistemas torcionais. A influência dos parâmetros de controle não lineares na resposta do sistema é investigada, identificando as condições sob as quais o fenômeno stick-slip ocorre. Em segundo lugar, a tese propõe estratégias de identificação de sistemas para sistemas não lineares, utilizando a mesma bancada de testes supracitada. Uma abordagem híbrida para a identificação é proposta, onde técnicas de modelagem de caixa cinza e caixa preta são combinadas para calibrar os parâmetros do sistema, particularmente aqueles associados ao atrito. Essa abordagem aumenta a precisão das estimativas em comparação com os métodos tradicionais de caixa cinza, mantendo a interpretabilidade. Além disso, a pesquisa emprega physics-informed deep learning para estimar os parâmetros mecânicos e de atrito do modelo de dois graus de liberdade. A calibração usando dados experimentais obtidos de uma bancada de testes fornece informações sobre o comportamento de sistemas de perfuração. Finalmente, a tese apresenta investigações experimentais sobre o acoplamento entre oscilações torcionais e axiais utilizando uma bancada experimental de perfuração em escala de laboratório modificada e adaptada equipada com brocas e amostras de rocha reais. Em resumo, esta tese aumenta a compreensão da dinâmica de colunas de perfuração e apresenta aplicações úteis para técnicas de identificação de sistemas na análise de oscilações torcionais e axiais. / [en] During drilling for oil extraction purposes, the drill string experiences complex dynamic behavior, and this work delves into the experimental study and the mathematical modeling of such behavior. Self-excited vibrations, such as axial, lateral, and torsional vibrations, which can lead to detrimental effects such as bit bouncing, whirling, and torsional stick-slip are highlighted in this thesis. Distinct aspects of drilling dynamics are considered in this investigation to enhance the understanding of various phenomena. Initially, an experimental analysis of a lab-scale rig is conducted, providing valuable insights into the dynamics of such systems. And the influence of control parameters on the system’s response is examined, particularly in identifying the conditions under which the stick-slip phenomenon is likely to occur. Secondly, the thesis proposes system identification strategies for nonlinear systems, specifically focusing on the same laboratory test rig. An innovative ensemble approach is proposed, which combines gray and black-box modeling techniques to effectively calibrate the parameters of a dynamical system, particularly those associated with friction. This approach improves prediction accuracy compared to traditional gray-box methods while maintaining interpretability in the dynamic responses. Furthermore, the research employs physics-informed deep learning to estimate the low-dimensional model mechanical and friction parameters. Calibration using experimental data obtained from a specialized setup provides insights into the drill-string system s behavior. Finally, the thesis involves experimental investigations on the coupling between torsional and axial oscillations using a modified and adapted lab-scale drilling rig equipped with real drill bits and rock samples. In summary, this thesis advances our understanding of drill-string dynamics and presents helpful applications for system identification techniques.
332

Nonrenewal spiking in Neural and Calcium signaling

Ramlow, Lukas 24 January 2024 (has links)
Sowohl in der neuronalen als auch in der Kalzium Signalübertragung werden Informationen durch kurze Pulse oder Spikes, übertragen. Obwohl beide Systeme grundlegende Eigenschaften der Spike-Erzeugung teilen, wurden Integrate-and-fire (IF)-Modelle bisher nur auf neuronale Systeme angewendet. Diese Modelle bleiben auch dann behandelbar, wenn sie um Prozesse erweitert werden, die in Übereinstimmung mit Experimenten Spike-Zeiten mit korrelierten Interspike-Intervallen (ISI) erzeugen. Die statistische Analyse solcher nicht erneuerbarer Modelle ist Gegenstand dieser Arbeit. Das zweite Kapitel konzentriert sich auf die Berechnung des seriellen Korrelationskoeffizienten (SCC) in neuronalen Systemen. Es wird ein adaptives Modell betrachtet, das durch einen korrelierten Eingangsstrom getrieben wird. Es zeigt sich, dass neben den langsamen Prozessen auch die Dynamik des Modells den SCC bestimmt. Obwohl die Theorie für schwach gestörte IF-Modelle entwickelt wurde, kann sie auch auf stärker gestörte leitfähigkeitsbasierte Modelle angewendet werden und ist damit in der Lage, ein breites Spektrum biophysikalischer Situationen zu beschreiben. Im dritten Kapitel wird ein IF-Modell zur Beschreibung von Kalzium-Spikes formuliert, das die stochastische Freisetzung von Kalzium aus dem endoplasmatischen Retikulum (ER) und dessen Entleerung berücksichtigt. Die beobachtete Zeitskalentrennung zwischen Kalziumfreisetzung und Spikegenerierung motiviert eine Diffusionsnäherung, die eine analytische Behandlung des Modells ermöglicht. Die experimentell beobachtete Transiente, in der sich die ISIs einem stationären Wert annähern, kann durch die Entleerung des ER beschrieben werden. Es wird untersucht, wie die Statistiken der Transienten mit den stationären Intervallkorrelationen zusammenhängen. Es zeigt sich, dass eine stärkere Anpassung der Intervalle und eine kurze Transiente mit stärkeren Korrelationen einhergehen. Der Vergleich mit experimentellen Daten bestätigt diese Trends qualitativ. / In both neuronal and calcium signaling, information is transmitted by short pulses, so-called spikes. Although both systems share some basic principles of spike generation, integrate-and-fire (IF) models have so far only been applied to neuronal systems. These models remain analytically tractable even when extended to include processes that lead to the generation of spike times with correlated interspike intervals (ISIs) as observed in experiments. The statistical analysis of such non-renewal models is the subject of this thesis. In the second chapter we focus on the calculation of the serial correlation coefficient (SCC) in neural systems. We consider an adaptive model driven by a correlated input current. We show that in addition to the two slow processes, the dynamics of the model also determines the SCC. Although the theory is developed for weakly perturbed IF models, it can also be applied to more strongly perturbed conductance-based models and is thus able to account for a wide range of biophysical situations. In the third chapter, we formulate an IF model to describe the generation of calcium spikes, taking into account the stochastic release of calcium from the endoplasmic reticulum (ER) and its depletion. The observed time-scale separation between calcium release and spike generation motivates a diffusion approximation that allows an analytical treatment of the model. The experimentally observed transient, during which the ISIs approach a steady state value, can be captured by the depletion of the ER. We study how the transient ISI statistics are related to the stationary interval correlations. We show that a stronger adaptation of the intervals as well as a short transient are associated with stronger interval correlations. Comparison with experimental data qualitatively confirms these trends.
333

Numerical Investigation of the Nonlinear Dynamics of a Hybrid Acousto-Optic Bragg Cell with a Variable Feedback Gain

Zhou, Hao 26 August 2014 (has links)
No description available.
334

Analytical Modeling and Impedance Characterization of Nonlinear, Steady-State Structural Dynamics in Thermomechanical Loading Environments

Goodpaster, Benjamin A. 27 August 2018 (has links)
No description available.
335

Model Order Reduction of Incompressible Turbulent Flows

Deshmukh, Rohit January 2016 (has links)
No description available.
336

Bloch oscillations of cold atoms in a cavity

Balasubramanian, Prasanna Venkatesh 10 1900 (has links)
<p>Ultracold atoms in an optical lattice Bloch oscillate when subject to a constant force. In the first work presented in this thesis we have theoretically studied the scenario where the optical lattice potential is provided by the electric field inside an optical cavity. The coherent atom-light interaction in a cavity gives rise to a backaction effect on the light field which can modify the intracavity field amplitude and phase. In our first treatment of this problem we model the cavity light field and atoms by classical fields and solve the coupled atom-light equations of motion. As a result, we find that the amplitude and phase of the transmitted light field is modulated at the Bloch frequency. Remarkably, the Bloch frequency itself is not modified by the backaction. Thus the transmitted light field can be used to observe the oscillations continuously, allowing high-precision measurement with small clouds of atoms.</p> <p>In the second problem presented in this thesis, we explore the band structure of the steady state solutions of the atom-cavity system. A crucial first step towards determining the band structure is the identification of an energy functional that describes the coupled atom-light system. Although, we do not include direct atom-atom interactions in our models, the coupling of the atoms to the single mode light field of the cavity introduces an effective mutual interaction which is correctly taken into account by the energy functional we introduce. Corresponding to each point in the band there exists a steady state light field associated with an average cavity photon number. The dispersive nonlinear atom-light interaction can lead to bistable solutions for this intracavity photon number. For parameters where the atom-cavity system exhibits bistability, the atomic band structure develops loop structures akin to the ones predicted for Bose-Einstein condensates in ordinary (non-cavity) optical lattices. However, in our case the nonlinearity derives from the cavity backaction rather than from direct interatomic interactions. We find both bi- and tri-stable regimes associated with the lowest band, and show that the multistability we observe can be analysed in terms of swallowtail catastrophes. Dynamic and energetic stability of the meanfield solutions is also studied, and we show that the bistable solutions have, as expected, one unstable and two stable branches. The presence of loops in the band structure can lead to a breakdown in adiabaticity during Bloch oscillations as the entire band is sampled during the dynamics. We therefore use the insight gleaned from this work in choosing parameters for the Bloch oscillation measurement proposal presented in the rest of the thesis.</p> <p>In the third work presented in the thesis, we go beyond the mean field description and consider effects of the quantised nature of the light and atomic fields. The cavity light field is always in contact with external electromagnetic fields through the partially transmissive mirrors. This coupling to the external modes enters as quantum noise in the dynamics of the intracavity field and can also be viewed as a manifestation of quantum measurement backaction corresponding to the continuous observation of the transmitted light field. We solve the Heisenberg-Langevin equations for linearized fluctuations about the atomic and optical meanfields and examine how this influences the signal-to-noise ratio of a measurement of external forces using this system. In particular, we investigate the effects of changing the number of atoms, the intracavity lattice depth, and the atom-light coupling strength, and show how resonances between the Bloch oscillation dynamics and the quasiparticle spectrum have a strong influence on the signal-to-noise ratio as well as heating effects. One of the hurdles we overcome along the way is the proper treatment of fluctuations about time-dependent meanfields in the context of cold atom cavity-QED.</p> / Doctor of Philosophy (PhD)
337

PHASE FIELD CRYSTAL STUDIES OF STRAIN-MEDIATED EFFECTS IN THE THERMODYNAMICS AND KINETICS OF INTERFACES

Stolle, Jonathan F. E. 04 1900 (has links)
<p>In this dissertation, the Phase Field Crystal (PFC) Method is used to study a number of problems in which interfaces and elastic effects play important roles in alloys. In particular, the three topics covered in this work are grain boundary thermodynamics in alloys, dislocation-mediated formation of clusters in binary and ternary alloys, and solutal effects in explosive crystallization. Physical phenomena associated with grain boundaries, such as Read-Shockley-like behaviour and Gibbs adsorp- tion theorem, were shown to be accurately captured in both PFC- and XPFC-type models. In fact, a connection between the solute segregation behaviour and physical properties of the system—such as energy of mixing, mismatch, and undercooling—were shown. Also, grain boundary premelting was investigated. It was shown how solute can change the disjoining potential of a grain boundary and a mechanism for hysteresis in grain boundary premelting was discussed. Regarding the phenomenon of cluster formation, a general coexistence approach and a nucleation-like approach were used to describe the mechanism consistently with observations; the process is facilitated by lowering the energy increase associated with it. The final phenomenon studied was explosive crystallization. It was shown that the temperature oscillations due to unsteady motion of an interface could be captured with PFC-type models and that this behaviour leaves patterns, such as solute traces, in the material. The versatility of this PFC formalism was demonstrated by capturing the underlying physics and elucidating the role of misfit strain in altering interface oscillations during explosive crystallization. Finally, it was demonstrated in all projects how PFC model parameters relate to coarse-grained material properties, thereby connecting these phenomena on larger scales to atomistic-scale properties.</p> / Doctor of Philosophy (PhD)
338

A novel method for sensitivity analysis of time-averaged chaotic system solutions

Spencer-Coker, Christian A. 13 May 2022 (has links)
The direct and adjoint methods are to linearize the time-averaged solution of bounded dynamical systems about one or more design parameters. Hence, such methods are one way to obtain the gradient necessary in locally optimizing a dynamical system’s time-averaged behavior over those design parameters. However, when analyzing nonlinear systems whose solutions exhibit chaos, standard direct and adjoint sensitivity methods yield meaningless results due to time-local instability of the system. The present work proposes a new method of solving the direct and adjoint linear systems in time, then tests that method’s ability to solve instances of the Lorenz system that exhibit chaotic behavior. Promising results emerge and are presented in the form of a regression analysis across a parametric study of the Lorenz system.
339

Absence of nonlinear responses in cells and tissues exposed to RF energy at mobile phone frequencies using a doubly resonant cavity

Kowalczuk, C., Yarwood, G., Blackwell, R., Priestner, M., Sienkiewicz, Z., Bouffler, S., Ahmed, I., Abd-Alhameed, Raed, Excell, Peter S., Hodzic, V., Davis, C., Gammon, R., Balzano, Q. January 2010 (has links)
A doubly resonant cavity was used to search for nonlinear radiofrequency (RF) energy conversion in a range of biological preparations, thereby testing the hypothesis that living tissue can demodulate RF carriers and generate baseband signals. The samples comprised high-density cell suspensions (human lymphocytes and mouse bone marrow cells); adherent cells (IMR-32 human neuroblastoma, G361 human melanoma, HF-19 human fibroblasts, N2a murine neuroblastoma (differentiated and non-differentiated) and Chinese hamster ovary (CHO) cells) and thin sections or slices of mouse tissues (brain, kidney, muscle, liver, spleen, testis, heart and diaphragm). Viable and non-viable (heat killed or metabolically impaired) samples were tested. Over 500 cell and tissue samples were placed within the cavity, exposed to continuous wave (CW) fields at the resonant frequency (f) of the loaded cavity (near 883 MHz) using input powers of 0.1 or 1 mW, and monitored for second harmonic generation by inspection of the output at 2f. Unwanted signals were minimised using low pass filters (</= 1 GHz) at the input to, and high pass filters (>/= 1 GHz) at the output from, the cavity. A tuned low noise amplifier allowed detection of second harmonic signals above a noise floor as low as -169 dBm. No consistent second harmonic of the incident CW signals was detected. Therefore, these results do not support the hypothesis that living cells can demodulate RF energy, since second harmonic generation is the necessary and sufficient condition for demodulation.
340

Modeling Analysis and Control of Nonlinear Aeroelastic Systems

Bichiou, Youssef 15 January 2015 (has links)
Airplane wings, turbine blades and other structures subjected to air or water flows, can undergo motions depending on their flexibility. As such, the performance of these systems depends strongly on their geometry and material properties. Of particular importance is the contribution of different nonlinear aspects. These aspects can be of two types: aerodynamic and structural. Examples of aerodynamic aspects include but are not lomited to flow separation and wake effects. Examples of structural aspects include but not limited to large deformations (geometric nonlinearities), concentrated masses or elements (inertial nonlinearities) and freeplay. In some systems, and depending on the parameters, the nonlinearities can cause multiple solutions. Determining the effects of nonlinearities of an aeroelastic system on its response is crucial. In this dissertation, different aeroelastic configurations where nonlinear aspects may have significant effects on their performance are considered. These configurations include: the effects of the wake on the flutter speed of a wing placed under different angles of attack, the impacts of the wing rotation as well as the aerodynamic and structural nonlinearities on the flutter speed of a rotating blade, and the effects of the recently proposed nonlinear energy sink on the flutter and ensuing limit cycle oscillations of airfoils and wings. For the modeling and analysis of these systems, we use models with different levels of fidelity as required to achieve the stated goals. We also use nonlinear dynamic analysis tools such as the normal form to determine specific effects of nonlinearities on the type of instability. / Ph. D.

Page generated in 0.1046 seconds