Spelling suggestions: "subject:"erps"" "subject:"rps""
11 |
Métabolites secondaires de champignons de sédiments marins profonds : criblages génétique et fonctionnel et caractérisation structurale de molécules antimicrobiennes / Secondary metabolites from deep subseafloor fungi : genetic and functional screenings, and antimicrobial molecules characterizationNavarri, Marion 16 December 2016 (has links)
La propagation des micro-organismes résistants aux antibiotiques menace le système mondial de santé publique. Pour lutter contre ce phénomène, le renouvellement des molécules utilisées en antibiothérapie est devenu une priorité mondiale. Les antibiotiques étant principalement d’origine microbienne, l’étude des micro-organismes et de leurs métabolites s’est donc renforcée et s’oriente vers des écosystèmes peu explorés comme les biotopes marins.Nous avons exploré les activités antimicrobiennes d’une collection de 183 champignons isoles de sédiments marins profonds et collectés entre 4 et 1884 mètres sous le plancher océanique. Le potentiel de production de métabolites de cette collection a été révélé par un criblage génétique ciblant les PolyKetide synthase (PKS), les Non-Ribosomal Peptide Synthetase (NPRS), les TerPene Synthase (TPS) et les hybrides PKS-NRPS. Après avoir regroupé les isolats en fonction de leur profil MSP PCR, 110 ont été sélectionnés pour un criblage fonctionnel, montrant une forte proportion de champignons filamenteux antimicrobiens (32%).Après extraction et fractionnement, les composés bioactifs de 3 souches ont été caractérisés aux niveaux structural et fonctionnel. Ainsi, O. griseum UBOCC-A-114129 produit la fuscine, la dihydrofuscine, la secofuscine et la dihydrosecofuscine, P. bialowiezense UBOCC-A-114097 produit l’acide mycophénolique et Penicillium sp. produit UBOCC-A-114109 la rugulosine.Parallèlement, des analyses en LC-HRMS, réalisées sur des extraits fongiques, ont révélé un grand nombre de métabolites non décrits dans les bases de données. Les champignons des sédiments marins constituent donc un réservoir de structures originales à explorer. / The spreading of antimicrobial resistant microorganisms jeopardizes global health caresystem. To counteract this threat the renewal of antibiotic molecules is a global priority. Antibioticcompounds are mainly originated from microorganisms, so microorganisms and their secondarymetabolites received an increasing interest. The search for new natural antimicrobial compoundsfrom microorganisms gained untapped ecosystems as marine biosphere.We investigated the antimicrobial properties of a fungal collection. The 183 fungal isolateswere collected from deep subseafloor sediment and isolated between 4 and 1,884 meters belowthe seafloor. Secondary metabolites production potential was studied for all isolates in thecollection by screening genes coding PolyKetide Synthase (PKS), Non-Ribosomal Peptide Synthetase(NRPS), TerPene Synthase (TPS) and hybrid PKS-NRPS. After isolates dereplication according to theirMSP-PCR fingerprinting, an antimicrobial screening was performed for 110 isolates, highlighting ahigh proportion of filamentous fungi with antimicrobial properties (32%).After extraction and bio-guided fractionation bioactive metabolites isolated from 3 strains,were characterized in a structural and functional manner: O. griseum UBOCC-A-114129 producedfuscin, dihydrofuscin, secofuscin and dihydrosecofuscine, P. bialowiezense UBOCC-A-114097synthetized mycophenolic acid and Penicillium sp. UBOCC-A-114109 produced rugulosin.In the meantime, LC-HRMS analysis, performed on fungal extracts, showed a great proportionof metabolites not detected in interrogated databases. So, deep subseafloor fungi, represent anuntapped reservoir of original structures to explore.
|
12 |
Adenylate forming enzymes involved in NRPS-independent siderophore biosynthesisSchmelz, Stefan January 2010 (has links)
Activation of otherwise unreactive substrates is a common strategy in chemistry and in nature. Adenylate-forming enzymes use adenosine monophosphate to activate the hydroxyl of their carboxylic substrate, creating a better leaving group. In a second step this reactive group is replaced in a nucleophilic elimination reaction to form esters, amides or thioesters. Recent studies have revealed that NRPS- independent siderophore (NIS) synthetases are also adenylate-forming enzymes, but are not included in the current superfamily description. NIS enzymes are involved in biosynthesis of high-affinity iron chelators which are used for iron acquisition by many pathogenic microorganisms. This is an important area of study, not only for potential therapeutic intervention, but also to illuminate new enzyme chemistries. Here the structural and biochemical studies of AcsD from Pectobacterium chrysanthemi are reported. AcsD is a NIS synthetase involved in achromobactin biosynthesis. The co-complex structures of ATP and citrate provide a mechanism for the stereospecific formation of an enzyme-bound citryl-adenylate. This intermediate reacts with L-serine to form a likely achromobactin precursor. A detailed characterization of AcsD nucleophile profile showed that it can not only catalyze ester formation, but also amide and possibly thioester formation, creating new stereospecific citric acid derivatives. The structure of a N-citryl-ethylenediamine product co-complex identifies the residues that are important for both recognition of L-serine and for catalyzing ester formation. The structural studies on the processive enzyme AlcC, which is involved in the final step of alcaligin biosynthesis of Bordetella pertussis, show that it has a similar topology to AcsD. It also shows that ATP is coordinated in a manner similar to that seen in AcsD. Biochemical studies of a substrate analogue establish that AlcC is not only capable of synthesizing substrate dimers and trimers, but also able to assemble the respective dimer and trimer macrocycles. A series of docked binding models have been developed to illustrate the likely substrate coordination and the steps along dimerization and macrocyclization formation. Structural and mechanistic comparison of NIS enzymes with other adenylate-forming enzymes highlights the diversity of the fold, active site architecture, and metal coordination that has evolved. Hence, a new classification scheme for adenylate forming enzymes is proposed.
|
13 |
Absolute Configuration and Biosynthesis of Pahayokolide A from Lyngbya sp. Strain 15-2 of the Florida EvergladesLiu, Li 01 November 2009 (has links)
Pahayokolides A-D are cytotoxic cyclic polypeptides produced by the freshwater cyanobacterium Lyngbya sp. strain 15-2 that possess an unusual β-amino acid, 3-amino-2,5,7,8-tetrahydroxy-10-methylundecanoic acid (Athmu). The absolute configuration of pahayokolides A-D was determined using advanced Marfey’s method. It was also confirmed that a pendant N-acetyl-N-methyl leucine moiety in pahayokolide A was absent in pahayokolides B and pahayokolides C-D were conformers of pahayokolide A. Feeding experiments indicated that the biosynthesis of the Athmu sidechain arises from leucine or α-ketoisovalerate, however could not be further extended by three rounds of condensation with malonate units. Putative four peptide and one unique polyketide synthetases in Lyngbya sp. strain 15-2 were identified by using a PCR method and degenerate primers derived from conserved core sequences of known NRPSs and PKSs. Identification of one unique KS domain conflicted with the logic rule that the long side chain of Athmu was assembled by three rounds of ketide extensions if PKSs were involved. A gene cluster (pah) encoding a peptide synthetase putatively producing pahayokolide was cloned, partially sequenced and characterized. Seven modules of the non-ribosomal peptide synthetase (NRPS) were identified. Ten additional opening reading frames (ORFs) were found, responsible for peptide resistance, transport and degradation. Although the predicted substrate specificities of NRPS agreed with the structure of pahayokolide A partially, the disagreement could be explained. However, no PKS gene was found in the pah gene cluster.
|
14 |
Peptides et protéines de Xanthomonas oryzae pv. oryzae : vers l'identification de nouveaux facteurs de virulence. / Peptides and proteins from Xanthomonas oryzae pv. oryzae : towards the identification of virulence-associated factorsRobin, Guillaume P. 06 December 2010 (has links)
Xanthomonas oryzae pv. oryzae (Xoo) est une bactérie phytopathogène responsable de la bactériose vasculaire du riz, maladie pouvant engendrer de fortes pertes de rendement à travers le monde. La course à l'armement entre la bactérie et sa plante hôte correspond d'une part à la mise en place de la virulence par le microorganisme et d'autre part en la résistance du végétal face à l'agression. Comprendre les mécanismes par lesquels Xoo accompli son cycle infectieux est d'une importance cruciale pour le développement futur de nouvelle méthode de luttes. Plusieurs approches complémentaires ont été mises en uvre afin de caractériser des éléments associés au pouvoir pathogène de Xoo.Dans un premier temps nous avons effectué une analyse protéomique comparative. Cette approche a permis l'identification chez une souche Africaine de Xoo d'un jeu de protéines induites par HrpX et susceptibles de jouer un rôle dans la virulence. Dans un second temps, l'implication de deux peptides dans la virulence Xoo a été étudiée. Le premier de ces peptides, supposé être le facteur d'avirulenceAvrXa21, a fait l'objet d'une caractérisation fonctionnelle et phylogénique. Le second peptide est synthétisé par un cluster NRPS, similaire à l'un de ceux présent chez Xanthomonas albilineans. Afin d'élucider l'importance de la molécule synthétisée par cette voie pour Xoo, une étude préliminaire impliquant la mutation d'un élément régulateur des NRPS a été effectuée. En dernier lieu, des informations nouvelles ont été apportées sur la topologie de la protéine membranaire HrcR qui est une composante essentielle du système de sécrétion de type III chez la plupart des bactéries appartenant au genre Xanthomonas. / Xanthomonas oryzae pv. oryzae (Xoo) is the agent of bacterial leaf blight BLB in rice, a disease which causes considerable yield losses throughout the world. In the arms race underlying the interactions between the microorganism and the host, the presence of virulence factors in the former parallels that of resistance factors in the latter. Understanding the mechanisms of Xoo's infectious cycle is of paramount importance for the elaboration of new fighting strategies to combat BLB. To achieve this, several complementary approaches to characterize components of Xoo's pathogenicity have been employed.First, we performed comparative proteomics that allowed us to identify novel HrpX-induced candidate pathogenicity factors of an African Xoo strain. Second, the involvement of two peptides in Xoo's pathogenicity has been investigated. One was speculated to be the avirulence factor AvrXa21 and has been characterized both functionally and phylogenetically. The other one was found to be synthesized by a Non-Ribosomal Peptide Synthetase (NRPS), reminescent to NRPS genes found in Xanthomonas albilineans. In order to determine the role of NRPS-mediated synthesis in Xoo virulence, we studied a strain carrying a mutated regulatory gene of the NRPS pathway. Finally, we provide new information on the topology of the HrcR membrane protein which is a conserved component of the type III secretion system of most Xanthomonas.
|
15 |
SURE PROTEIN FOR PEPTIDE CYCLIZATIONBrianne S Nunez (11185875) 26 July 2021 (has links)
<div>Cyclic peptides are important sources of medicines. </div><div>They are advantageous compared to linear peptides because they possess lower flexibility, which allows for high-affinity target binding and enhanced proteolytic stability. Unfortunately, achieving head-to-tail cyclization of peptides is quite challenging, as it is hard to control efficiency and regiospecificity of peptide macrocyclization. Many have attempted to improve peptide cyclization, including the use of different synthetic reagents as well as synthetic techniques to allow amide-bond formation and promote cyclization. While these strategies have offered great potential solutions, the aim of this study is to explore an alternative strategy that utilizes biocatalysis as a method of achieving successful peptide cyclization. Biocatalysis is the use of enzymes as natural process catalysts under artificial in vitro conditions. Biocatalysis is often more environmentally friendly and safer compared to traditional organic synthesis methods. Non-ribosomal peptide synthetases (NRPSs) are one of the major sources of cyclic peptides in nature. These are systems of large multifunctional proteins are organized into functional domains that act as an assembly line to generate peptide natural products. Normally, the thioesterase domain is responsible for hydrolysis and cyclization of the peptide. Recently, a novel cyclase (SurE) that is physically discrete from the NRPS was discovered. Based on this unique quality, we hypothesized that SurE would be easier to express compared to thioesterase domains and, for this reason, SurE could be a fantastic biocatalyst for the cyclization of peptides. To test this, we designed and generated an expression vector for SurE. We then expressed and purified the SurE protein. We also synthesized three linear peptides of varying lengths. To test for SurE activity, we attempted to add N-acetylcysteamine (SNAC) to mimic its native substrate. Unfortunately, we were unable to successfully attach the SNAC to our linear peptide. To combat this issue, a new synthesis strategy is currently being developed. This work is currently ongoing in the Parkinson lab, with the aim being to test the SurE protein, as well as other PBP-like cyclases, on other modified linear peptides and demonstrate whether the protein has the ability to cyclase a wide scope of peptides.</div><div><br></div>
|
16 |
Essays on Economics of Education and Health PolicyWANG, BO 20 October 2021 (has links)
No description available.
|
17 |
Exploring the Role of Nonribosomal Peptides in the Human Microbiome Through the Oral Commensal Streptococcus mutans, the Probiotic Lactobacillus plantarum, and Crohn’s Disease Associated Faecalibacterium prausnitziiLukenda, Nikola 10 1900 (has links)
<p>Nonribosomal peptides, polyketides, and fatty acids comprise a distinct subset of microbial secondary metabolites produced by similar biosynthetic methods and exhibit broad structural diversity with a high propensity for biological activity. Dedicated studies of these specific microbial small molecules have identified numerous potent actions towards human cells with many clinical translations. Interestingly, most therapeutically used nonribosomal peptides and polyketides were discovered from soil bacteria, meanwhile, bacteria that have co-evolved within a human context, the human microbiota, have barely been explored for secondary metabolites. The central goal of this thesis is to explore the secondary metabolome of human microbiota for nonribosomal peptides and polyketides, which are hypothesized to possess biological activities significant within the human host context. Candidate organisms were chosen for their established connections to human health and evidence suggestive of secondary metabolite production. Specifically, questions about gene to molecule prediction capability, metabolite production, structural diversity, and biological activity were explored from studies of the dental caries linked Streptococcus mutans UA159, from the probiotic Lactobacillus plantarum WCFS1, and the Crohn’s disease associated Faecalibacterium prausnitzii.</p> / Master of Science (MSc)
|
18 |
Investigation of Protein Dynamics and Communication in Adomet-Dependent Methyltransferases: Non-Ribosomal Peptide Synthetase and Protein Arginine MethyltransferaseMay, Kyle M. 01 August 2019 (has links)
For many enzymes to function correctly they must have the freedom to display a level of dynamics or communication during their catalytic cycle. The effects that protein dynamics and communication can have are wide ranging, from changes in substrate specificity or product profiles, to speed of reaction or switching activity on or off. This project investigates the protein dynamics and communication in two separate systems, a non-ribosomal peptide synthetase (NRPS), and a protein arginine methyltransferase (PRMT).
PRMT1, the enzyme responsible for 80% of arginine methylation in humans, has been implicated in a variety of disease states when functioning incorrectly. For this reason, much focus has been placed on better understanding how PRMT1 determines which products it creates and at what times. This project aims to shed light on how dynamics and communication within PRMT1 dictate its activity. We have to this point developed a protocol for creating and purifying a linked PRMT1 construct which will enable us to conduct the necessary experiments capable of answering our larger questions about the PRMT1 catalytic mechanism.
Our collaborators in the Zhan lab discovered the presence of a methyltransferase (Mt) in the two NRPS systems they study, which produce two different and medically relevant compounds, bassianolide and beauvericin. The Hevel lab is well suited to study methyltransferases and so were asked to help evaluate the role of these Mt domains and how they affect the production of the relevant natural products. Achieving a more complete understanding of these systems will move us closer toward the “holy grail” of being able to manipulate and harness NRPS systems for the engineering of novel medically relevant compounds. This project has found that the Mt domain substrate specificity is affected by the surrounding protein domains, or even small portions of them.
|
19 |
Beiträge zur Biosynthese der antiparasitären Naturstoffe Hormaomycin und Borrelidin sowie Strukturaufklärung von Sekundärmetaboliten aus Actinomyceten / Studies towards the biosynthesis of the antiparasitic agents hormaomycin and borrelidin and structure elucidation of secondary metabolites from actinomycetesRadzom, Markus 05 July 2006 (has links)
No description available.
|
Page generated in 0.0524 seconds