Spelling suggestions: "subject:"buclear import"" "subject:"buclear emport""
11 |
A yeast gene that affects both nuclear import and exportSingleton, David Rivers January 1994 (has links)
No description available.
|
12 |
Charakterizace mechanismů jaderného transportu proteinu 53BP1 / Characterisation of the mechanisms regulating 53BP1 nuclear transportLiďák, Tomáš January 2016 (has links)
Tumor suppressor p53-binding protein 1 (53BP1) is an integral part of a sophisticated network of cellular pathways termed as the DNA damage response (DDR). These pathways are specialized in the maintenance of genome integrity. Recently, it was reported that nuclear import of 53BP1 depends on importin ß. Here, I used fluorescence microscopy and co-immunoprecipitation experiments to identify its nuclear localization signal (NLS). Clusters of basic amino acids 1667-KRK-1669 and 1681-KRGRK- 1685 were required for 53BP1 interaction with importin ß and for its nuclear localization. Short peptide containing these two clusters was sufficient for interaction with importin ß and targeting EGFP to the nucleus. Additionally, the effect of 53BP1 phosphorylation at S1678 on its nuclear import was examined. Mimicking the phosphorylation in the 53BP1-S1678D mutant decreased the binding to importin ß and resulted in a mild defect in 53BP1 nuclear import. However, 53BP1 entered the nucleus continuously during the cell cycle, suggesting that CDK-dependent phosphorylation of S1678 probably does not significantly contribute to the regulation of 53BP1 nuclear transport. Taken together, 53BP1 NLS meets the attributes of a classical bipartite NLS. Although no cell cycle-dependent regulation of its import was observed, the...
|
13 |
Mutation-function analysis in vivo of the nuclear localization signals of L2 minor capsid proteins of high risk HPV16 and low risk HPV11Bockstall, Katy Elizabeth January 2008 (has links)
Thesis advisor: Junona Moroianu / During the papillomavirus replication cycle, the L2 minor capsid protein enters the nucleus in the initial phase after uncoating of the incoming virions and in the productive phase when L2 together with L1 major capsid protein mediate the encapsidation of the newly replicated viral genome. L2 proteins of both high risk HPV16 L2 and low risk HPV11 L2 have two nuclear localization signals (NLSs): one at the N-terminus (nNLS) and one at the C terminus (cNLS). The purpose of these experiments is to determine the minimal mutations necessary to inhibit the function of the NLSs. In this study, subcellular localization of enhanced green fluorescent protein (EGFP) fusions with full length L2 and L2 mutants lacking either the cNLS (EGFP-L2ΔC), nNLS (EGFP-L2ΔN), or both NLSs (EGFP-L2ΔNΔC) was analyzed in HeLa cell transfection assays. Full length HPV16 L2 and HPV11 L2 proteins localize to the nucleus. For both HPV16 and 11 L2, each NLS could independently mediate nuclear import in vivo. EGFP fusions were also made with mutated nNLS (EGFP-L2ΔCSbN) or mutated cNLS (EGFP-L2ΔNSbC). Transfected HeLa cells were examined by fluorescence microscopy and quantitative studies were done. In both HPV16 and 11 L2 proteins, mutation of basic residues in either NLS inhibited its nuclear import ability. / Thesis (BS) — Boston College, 2008. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Biology. / Discipline: College Honors Program.
|
14 |
Nuclear localization and transactivation of sys-1/β-catenin, a regulator of Wnt target gene expression and asymmetric cell divisionWolf, Arielle Koonyee-Lam 01 May 2019 (has links)
Human β-catenin is a dual-functioned protein responsible for regulating cell-cell adhesion and gene transcription. To activate gene transcription, β-catenin must be shuttled into the nucleus where it interacts with various co-activators to activates gene transcription. Various studies have identified proteins that bind to specific amino acid sequences in β-catenin for proper gene transcription regulation. Compared to the single beta-catenin in most animals, C. elegans surprisingly contains four β-catenins. Though structurally similar, these beta-catenins became distinct during nematode evolution, resulting in four β-catenins that differ in functions. SYS-1 is one such β-catenin that loses its adhesion ability and is specialized in activating transcription of genes in the nucleus. Across different animals, β-catenin shares similar amino acid sequences and structure. SYS-1, while it shares the similar structure to other β-catenins, is the most divergent C. elegans beta-catenin when comparing amino acid sequences. In addition, while SYS-1 interacts with homologs of proteins that bind to and regulate human β-catenin, the binding sites of those proteins to SYS-1 is unknown. Here, we identify novel sites for beta-catenin’s gene transcription role within SYS-1 that greatly differed from human β-catenin. We also identify a novel mechanism for beta-catenin nuclear import, which is still largely unknown in any system, by identifying a candidate importer that associates with SYS-1 is required for SYS-1 dependent cell fate. In summary, though SYS-1 has a well-conserved function dictating cell fate in response to developmental signals, it has evolved novel regulatory, functional and localization mechanisms and therefore serves as a model for the plasticity nuclear importer that helps shuttle SYS-1 into the nucleus identified specific regions in SYS-1 that is involved in activating transcription which will result in cell fate changes.
|
15 |
HIV-1 capsid engages nucleoporin NUP153 to promote viral nuclear entryMatreyek, Kenneth Anzai 25 February 2014 (has links)
Lentiviruses can infect non-dividing cells, and various cellular nuclear transport proteins provide crucial functions for lentiviral nuclear entry and integration. Genome-wide small interfering RNA screens previously identified nuclear pore complex component nucleoporin 153 (NUP153) as being important for infection by human immunodeficiency virus type 1 (HIV-1). We found that HIV-1 infection of NUP153 depleted cells resulted in normal levels of reverse transcription, a moderate reduction of 2-long terminal repeat circles, and a relatively large reduction in integrated proviruses, consistent with a role for NUP153 during nuclear entry of the HIV-1 pre-integration complex. We ascertained the capsid (CA) to be the major viral determinant for NUP153 dependence during infection, and accordingly observed a direct interaction between the CA N-terminal domain and the phenylalanine-glycine (FG)-repeat enriched NUP153 C-terminal domain (NUP153C). NUP153C fused to the effector domains of the rhesus Trim5alpha restriction factor (Trim-NUP153C) potently restricted HIV-1, providing an intracellular readout for the NUP153C-CA interaction during retroviral infection. Primate lentiviruses and equine infectious anemia virus (EIAV) bound NUP153C under these conditions, results that correlated with direct binding between purified recombinant proteins in vitro. These binding phenotypes moreover correlated with the requirement for endogenous NUP153 function during infection. Mutagenesis experiments identified NUP153C and CA residues important for binding, and different FG motifs within NUP153C mediated binding to HIV-1 versus EIAV CA proteins. HIV-1 CA binding mapped to residues that line a common alpha helix 3/4 hydrophobic pocket that also mediates binding to the small molecule PF-3450074 (PF74) inhibitor and cleavage and polyadenylation specific factor 6 (CPSF6) protein, with Asn57 (Asp58 in EIAV) playing a particularly important role. PF74 and CPSF6 each competed with NUP153C for binding to HIV-1 CA, and significantly higher concentrations of PF74 were needed to inhibit HIV-1 infection in the face of Trim-NUP153C expression or NUP153 knockdown. Correlation between CA mutant viral cell cycle and NUP153 dependencies moreover indicated that the NUP153C-CA interaction underlies the ability of HIV-1 to infect non-dividing cells. We propose that HIV-1 CA binds NUP153 FG motifs to affect viral nuclear import, serving as a novel example of viral hijacking of a fundamental cellular process.
|
16 |
The functional interplay between TNPO3, CPSF6 and HIV-1 CAOztop, Ilker 21 October 2014 (has links)
Lentiviruses can infect postmitotic cells, indicative of a role for the nucleocytoplasmic transport machinery. Genome-wide RNA interference screens identified transportin 3 (TNPO3) that may regulate human immunodeficiency virus type 1 (HIV-1) preintegration complex (PIC) nuclear import but plays no role during murine leukemia virus (MLV) infection. Independently, TNPO3 was shown to bind HIV-1 integrase (IN), a PIC component, suggesting a potential mechanism for nuclear import. We demonstrated direct binding between TNPO3 and several retroviral INs, which did not correlate with TNPO3 dependency profiles of the respective retroviruses. Infectivity assays employing HIV-1/MLV chimeric viruses ascertained that the capsid (CA) domain, but not IN, was the functional determinant of TNPO3 dependence. A carboxy-terminal truncation mutant of the serine-arginine rich (SR) protein family member, cleavage and polyadenylation specific factor 6 (CPSF6), CPSF6-358, which lacks its RS domain, was shown to restrict HIV-1 PIC nuclear import. We demonstrated that CPSF6 interacts with HIV-1 CA, and a single point mutation in CA, Asn74Asp (N74D), abolished this interaction. N74D also rendered HIV-1 TNPO3-independent and impaired cyclophilin A (CypA) binding to CA. The CA:CPSF6 binding interface, as described in a partial co-crystal structure, defined a surface pocket on CA that faces the CA hexamer:hexamer interspace. Infectivities and CA binding profiles of CA mutants within this pocket or with aberrant CypA-related phenotypes were assessed to compare their CPSF6-358 sensitivity and TNPO3 dependence, which largely correlated. We showed an overall correlation between the CPSF6/CPSF6-358 binding profiles of these HIV-1 CA mutants and their CPSF6-358 sensitivity, whereas TNPO3 binding and TNPO3 dependence did not correlate. Based on similar infectivity profiles of CA mutants and the loss of the RS domain from CPSF6-358 we tested for a direct interaction between CPSF6 and TNPO3. We demonstrated specific binding between recombinant TNPO3 and the CPSF6.RS domain. Mutagenesis experiments suggested a multicontact binding interface. The interaction was downmodulated by Ras-related nuclear protein (Ran)-GTP, indicating that CPSF6 is a bona fide import substrate of TNPO3. Our results support a model where TNPO3 regulates nuclear CPSF6 localization and that in its absence CPSF6 may restrict infection by directly interacting with HIV-1 CA at the hexamer:hexamer interface.
|
17 |
NUCLEAR IMPORT AND INTERACTIONS OF POTATO YELLOW DWARF VIRUS NUCLEOCAPSID, MATRIX, AND PHOSPHOPROTEINAnderson, Gavin Lloyd Franklin 01 January 2014 (has links)
Potato yellow dwarf virus (PYDV) is the type species of the genus Nucleorhabdovirus and, like all members of this genus, replication and morphogenesis occurs inside the nuclei of infected cells. Protein localization prediction algorithms failed to identify a nuclear localization signal (NLS) in PYDV nucleocapsid (N) protein, although PYDV-N has been shown to localize exclusively to the nucleus when expressed as a green fluorescent protein (GFP):N fusion in plant cells. Deletion analysis and alanine-scanning mutagenesis identified two amino acid motifs, 419QKR421 and 432KR433, that were shown to be essential for nuclear import and interaction with importin-α. Additional bimolecular fluorescence complementation showed that the PYDV-N-NLS mutants cannot be ferried into the nucleus via interaction with PYDV-P or-M. In contrast, interaction with N-NLS mutants appeared to retard the nuclear import of PYDV-P. Taken together, it was determined that PYDV-N contains the bipartite NLS 419QKRANEEAPPAAQKR433. Similarly, alanine-scanning mutagenesis was performed to determine the regions responsible for the nuclear import of PYDV-M and -P. A non-canonical NLS was identified in PYDV-P, consisting of three regions in the N-terminus of the protein required for nuclear import. PYDV-P does not interact with any Nicotiana benthamiana importins, but was found to interact with importin-α7 and -α9 of the non-host plant Arabidopsis thaliana. Two amino acids of PYDV-M, 225KR226, were found to be critical for nuclear import and interaction with importin-α. In addition, site-directed mutagenesis identified that amino acids 223LL224 of PYDV-M, which are adjacent to the two amino acids identified as responsible for nuclear import, are critical for inducing invaginations of the inner nuclear membrane. Bimolecular fluorescence complementation (BiFC) was then used to identify any differences in localization and interaction caused by the mutations introduced to PYDV-P and -M. The PYDV-P and -M proteins were still able to interact with other PYDV proteins, although the localization of the interaction differs between mutants.
|
18 |
Molecular analysis of the contributions of human immunodeficiency virus type-1 integrase in post entry steps of early stage virus replicationDanappa Jayappa, Kallesh 23 August 2014 (has links)
Human immunodeficiency virus type 1 (HIV-1) infection causes general loss of immune response in humans. Presently, an estimated 34 million (31.4-35.9 million) people worldwide are HIV-1 positive and many more are being newly infected. In the absence of a definitive cure, anti-HIV-1 drug therapy helps to manage the infection by suppressing virus replication. However, extensive drug resistance against most of existing drugs demands alternative anti-HIV-1 strategies. The proper knowledge about HIV-1 replication is essential to guide the development of new anti-HIV-1 strategies. The research presented in this thesis aims to understand the role of HIV-1 Integrase (IN) and cellular co-factors interactions in the early stage virus replication.
In the cytoplasm, HIV-1 cDNA exists as a high molecular weight nucleoprotein complex called pre-integration complex (PIC). The cDNA enters the nucleus as a part of PIC by active nuclear import and integrates into the host genome. HIV-1 Integrase (IN) protein has been recognized as a primary viral factor for HIV-1 nuclear import, but the key contributing cellular factor(s) is unknown. We have examined the requirement of different Importinα (Impα) isoforms for HIV-1 replication and identified the requirement of Impα3 for HIV-1 replication in HeLa cells, C8166T cells, and human macrophages. Further investigations showed the specific requirement of Impα3 for HIV-1 nuclear import. By analyzing the Impα3 interaction with HIV-1 proteins, we detected the IN interaction with Impα3 and C-terminal domain (CTD) of IN was essential for Impα3 interaction. These data led to the conclusion that Impα3 is required for HIV-1 nuclear import and interacts with IN. The IN-CTD consists of conserved basic amino acid rich motifs (211KELQKQITK, 236KGPAKLLWK, and 262RRKAK) that closely resemble the consensus classical nuclear localization signal (NLS) for Impα interaction. By substitution mutation and interaction analysis, 211KELQKQITK and 262RRKAK motifs in IN were identified as required for Impα3 interaction, IN nuclear localization, and HIV-1 nuclear import. Together, these data were useful in explaining the molecular mechanism of IN and Impα3 interaction and its requirement for HIV-1 nuclear import.
Retrograde transportation of macromolecules in the cytoplasm is one of the prerequisites for their nuclear import. Although an earlier study implicated the dynein complex in retrograde transport of HIV-1, cellular and viral factors that are involved in this process are unknown. In this study, we have elucidated the HIV-1 IN interaction with the dynein light chain 1 (DYNLL1) in 293T cells, in vitro, and in HIV-1 infected cells. DYNLL1 is one of the adapter proteins that mediate the cargo recruitment to dynein complex. However, our data suggested that the IN and DYNLL1 interaction is essential for proper HIV-1 uncoating and cDNA synthesis but not for nuclear import. Surprisingly, DYNLL1 interaction of IN was dispensable for HIV-1 recruitment to dynein complex. These data led to the conclusion that the IN and DYNLL1 interaction is essential for proper HIV-1 uncoating and cDNA synthesis but not required for HIV-1 recruitment to the dynein complex or for retrograde transport.
In summary, this study advances our knowledge on the role of IN and cellular factors interactions in different early steps of HIV-1 replication and offers potential contributions in the development of future anti-HIV-1 strategies.
|
19 |
Import nucléaire de la capside du virus de l’hépatite B et libération du génome viral / Nuclear Import of the Hepatitis B virus and release of the viral genomeDelaleau, Mildred 09 December 2011 (has links)
Le virus de l’hépatite B (VHB) est un virus du foie qui cause 1 à 2 millions de morts chaque année. Approximativement 400 millions d’individus sont infectés chroniquement. Le VHB est un virus enveloppé et comprend un génome ADN de ~3.2 kbp au sein d’une capside icosaédrique. La capside est formée de 240 copies d’une protéine unique appelée Core ou protéine de la capside. Durant l’infection, la capside est importée dans le noyau pour libérer le génome viral. L’import est facilité au travers du complexe du pore nucléaire (NPC) en utilisant des récepteurs de transport nucléaire. Des biopsies réalisées sur des patients infectés par le VHB ont montrées que les capsides nucléaires sont issues de l’entrée nucléaire mais aussi de protéines Core nouvellement traduites.Ce travail analyse l’import nucléaire de la capside du VHB et la libération du génome viral. Nous avons montré que les imports des protéines Core et de la capside suivent des systèmes d’import différents. Il a été démontré à partir de tests d’import nucléaire basés sur des cellules perméabilisées par la digitonine que les capsides utilisent l’hétérodimère des importines α et β. Cette découverte est en accord avec de précédentes observations qui ont également démontrées l’exposition de NLS à la surface de la capside, sur lequel s’attache l’importine α. Des expériences de contrôle utilisant le GST-NLS ont permis de démontrer que la fixation du NLS sur l’importine nécessite une interaction avec l’importine pour la stabilisation du complex de l’import. En analysant l’import nucléaire de la protéine Core non assemblée, nous avons pu observer un import basé uniquement sur l’interaction avec l’importine β, ce qui implique que la protéine Core présente un domaine IBB et non un NLS. Le transport a travers le NPC se termine par l’arrivée des capsides dans le panier nucléaire, qui est une structure en cage, du côté nucléaire. En accord avec la littérature, nous avons observé une liaison de l’importine β sur le domaine C-terminal de la Nup153. L’ajout de RanGTP, qui dissocie les complexes d’import, ne dissocie pas l’importine β de ce domaine, ce qui permet d’émettre l’hypothèse qu’un autre domaine de la Nup153 est impliqué. Contrairement aux autres cargos, la capside du VHB est stoppée dans le panier nucléaire par sont interaction avec la Nup153. Puisque le domaine de liaison de l’importine β chevauche celui de la capside, l’importine β doit se dissocier de la Nup153. L’interaction capside-Nup153 est supposée déstabiliser la capside et permettre la libération du génome viral dans le noyau et la diffusion des protéines Core en supériorité numérique par rapport à la Nup153.En conséquence, les capsides montrent une instabilité, comme nous l’avons démontré par chromatographie d’exclusion de taille, révélant non seulement la capside mais aussi ses intermédiaires d’association/dissociation. Ces expériences sont limitées aux capsides recombinantes car elles nécessitent une grande quantité d’échantillons. Dans le but de confirmer l’instabilité des autres capsides (matures et immatures), nous avons analysé l’accessibilité des acides nucléiques encapsidés pour la nucléase S7. Les résultats ont confirmé une dissociation in vitro partielle pour toutes les capsides, mais avec une cinétique lente, ce qui n’est pas cohérent avec la réaction in vivo. En analysant l’impact de la Nup153 sur cette accessibilité, nous observons qu’un facteur nucléaire supplémentaire, présent du moins dans les cellules hépatiques, accélère la cinétique de dissociation. / The hepatitis B virus (HBV) is a hepatotropic virus which causes 1 to 2 million of death every year. Approximately 400 million individuals are chronically infected. HBV is enveloped and comprises a DNA genome of ~3.2 kbp within an icosaedral capsid. The capsid is formed by 240 copies of one single protein species termed core or capsid protein. During the infection, the capsid is imported to the nucleus in order to release the viral genome. The import is facilitated through the nuclear pore complex (NPC) using nuclear transport receptors. Biopsies of HBV-infected patients show nuclear capsids, which are derived from nuclear entry of the capsid but also from nuclear import of progeny core proteins.This work investigates the nuclear import of the HBV capsid and the release of the viral genome. We showed that the imports of core protein and capsid follow different pathways. Capsids were shown to use the heterodimer of importin α and β for nuclear import as it was demonstrated by nuclear import essay, based on digitonin-permeabilised cells. This finding is consistent with earlier observations, which also demonstrated the exposure of NLS on the capsid surface, to which importin attaches. Control experiments using GST-NLS demonstrated that binding of the NLS to importin required interaction with importin for stabilization of the import complex. Analysing the nuclear import of the unassembled core protein we observed an import based on interaction with only importin β implying that the core protein expose an importin -binding domain rather than an NLS.The transport through the NPC is terminated with the arrival of a cargo capsid in the nuclear basket, which is a cage like structure at the nuclear side of the NPC. Consistent with the literature we observed an attachment of importin to the C terminal domain of Nup153. Addition of RanGTP, which dissociates import complexes, did not dissociate importin from this domain, which led to the hypothesis that other Nup153 domains are involved. In contrast to other karyophilic cargos HBV capsids become arrested within the nuclear basket by capsid-Nup153 interaction. As the binding site of importin overlaps with the binding site of the capsid such importin -Nup153 interaction has to be dissociated. The subsequent capsid-Nup153 interaction was thought to destabilize the capsid allowing liberation of the viral genome into the nuclear and the diffusion of core proteins, supernumerous with regard to the Nup153 molecules, deeper into the nucleus. Accordingly, capsids show an imminent instability as we demonstrated by separation of capsids using size exclusion chromatography revealing not only capsids but assembly/disassembly intermediates. These experiments were limited to recombinant, E. coli-expressed due to the high amounts needed. To confirm the instability of other capsids e.g. genome-containing ones, we analyzed the accessibility of the capsid enclosed nucleic acids to the S7 nuclease. The results confirmed partial dissociation in vitro similar for all capsids but with a slow kinetic, which is not coherent with the in vivo reaction. Investigating the impact of Nup153 we observed that an additional nuclear factor, present in at least hepatoma cells accelerates the dissociation kinetic.
|
20 |
The emerging value of the viroid model in understanding plant responses to foreign RNAsMa, Junfei 09 December 2022 (has links)
RNAs play essential roles in various biological processes. Mounting evidence has demonstrated that RNA subcellular localization and intercellular trafficking govern their functions in coordinating plant growth at the organismal level. Beyond that, plants constantly encounter foreign RNAs (i.e., RNAs from pathogens including viruses and viroids). The subcellular localizations of RNAs are crucial for their function. While numerous types of RNAs (i.e., mRNAs, small RNAs, rRNAs, tRNAs, and long noncoding RNAs) have been found to traffic in a non-cell-autonomous fashion within plants, the underlying regulatory mechanism remains unclear. Viroids are single-stranded circular noncoding RNAs, which entirely rely on their RNA motifs to exploit cellular machinery for organelle entry and exit, cell-to-cell movement through plasmodesmata, and systemic trafficking. Viroids represent an excellent model to dissect the role of RNA 3-dimensional (3D) structural motifs in regulating RNA movement. Using nuclear-replicating viroids as a model, we showed that cellular Importin alpha-4 is likely involved in viroid RNA nuclear import, empirically supporting the involvement of Importin-based cellular pathway in RNA nuclear import. We also confirmed the involvement of a cellular protein (Virp1) that binds both Importin alpha-4 and viroids. Moreover, a conserved C-loop in nuclear-replicating viroids serves as a key signal for nuclear import. Disrupting C-loop impairs Virp1 binding, viroid nuclear accumulation and infectivity. Further, C-loop exists in a subviral satellite noncoding RNA that relies on Virp1 for nuclear import.
On the other hand, no viroid can systemically infect the model plant Arabidopsis thaliana, suggesting the existence of non-host resistance yet to be understood. Here, we attempted to test whether a gene involved in RNA silencing, RNA-dependent RNA polymerase 6 (RDR6), plays a role in non-host resistance in Arabidopsis. I will discuss the data below in detail.
|
Page generated in 0.033 seconds