• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 182
  • 99
  • 20
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 385
  • 385
  • 62
  • 36
  • 35
  • 35
  • 33
  • 32
  • 31
  • 30
  • 29
  • 27
  • 27
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Modelling saturated tearing modes in tokamaks.

McLoud, Willem Stephanus. January 1992 (has links)
In this thesis a model for saturated tearing mode islands is developed. The equations for the mode amplitudes are essentially those of R B White et al,after a pertubation expansion has been made. It is well known that these equations are not then analytic at the mode rational surface. In our model this problem is overcome when a suitable choice of the axisymmetric current density perturbation is added to the unperturbed equilibrium current density profile. The modelled axisymmetric current density perturbation flattens the unperturbed profile locally at the rational surface and is sufficient to induce an island. No modelling in the interior of the island is necessary. The axisymmetric perturbation has a free variable which adjusts the amount of local flattening. However, when the boundary conditions are taken into account, this free parameter is determined, and the problem becomes an eigenvalue problem. The boundary condition thus determines the amount of local flattening at the rational surface. The saturated island widths are determined using D.' (W) criterion. The model allows for non axsymmetric plasma surface in a simple way, requiring careful choice of D (W). The different criteria are compared to establish the validity of the use of such criteria for perturbed boundaries. In the cylindrical approximation, one or two modes may be included in the model. In the case of two modes, non-linear coupling via the current density profile is introduced. Toroidal coupling between modes can also be simply introduced. Two modes that are toroidally coupled are considered, but mode-mode coupling is ignored. The emphasis falls in large part on the boundary conditions. Various boundary conditions can be considered because distortion of the plasma surface can be fixed by wall effects, plasma rotation, external DC coil currents, plasma rotation with external coil currents, etc. Of particular interest is the case of toroidally coupled modes, coupled in turn to these external conditions as this is the first study of such a nature. Results flowing from the study include among others that: for the special case of circular boundaries the model agrees reasonably with the results of R B White et al. No significant difference was found between the D. I (W) criterion of P H Rutherford, which is valid for circular boundaries, and that of A H Reiman, which is also valid for perturbed boundaries, when the boundary is perturbed significantly. Toroidally coupled islands do not increase in size if the boundary condition of that particular mode is not changed. If a coil current of particular helicity is switched on, it will only affect the mode of that particular helicity. Toroidally induced sideband islands have approximately the same width as natural tearing islands when the size of the natural island is large. / Thesis (Ph.D.)-University of Natal, Durban, 1992.
282

The influence of rotating and locked magnetic islands on edge transport in Tokoloshe tokamak.

Van Vuuren, Gary Wayne. January 1993 (has links)
The turbulence and fluctuation induced transport in the edge plasma of the Tokoloshe tokamak was studied using a Langmuir probe array. In this thesis three separate experiments are presented, each of which examines a particular aspect of the edge plasma. In the first experiment measurements of edge plasma parameters are presented. These include standard parameters (such as Ne, Op , Te, etc.) as well as features such as the velocity shear, T(t) during periods of both high and low Mirnov activity, Te/Te and Q. These are compared with results from other machines as well as predictions of several turbulence theories. It was found that many of the results are very similar to those obtained on other machines and that, since the operating parameter space on Tokoloshe is well within the parameter space described by drift wave theories, resistivity-driven gradient driven turbulence theories do not describe the edge turbulence. In the second experiment external windings are used to produce fields which can slow and lock magnetic islands in the toroidally rotating plasma. Edge parameters are again presented and these results compared with those from the so-called 'reference' plasmas, i.e. ones in which no locking occurred. During locking some parameters are dramatically altered, e.g.Te/Te Standard transport theory ignores the effect of Te/Te since they are usually small in reference discharges. During the locked phase, however, certain measurements used to deduce T and Q are greatly affected by increases in Te/Te. As a result, certain assumptions regarding these measurements are no longer valid. Comparison of results for different island positions (produced by different coils) indicates that the assumption of poloidal and toroidal symmetry of edge conditions is invalid. The third experiment investigates the high frequency (~60 kHz), low amplitude, magnetic oscillation which characterises the locked phase and which exhibits some small degree of correlation with the fluctuations observed on (e.g.) Of'. Since over 80% of the spectral power of Te/Te lies below 70 kHz and since Of /Te depends strongly on Te/Te , it is suggested that the magnetic mode and these large variations in Te, may be due to a similar physical process. / Thesis (Ph.D.)-University of Natal, 1993.
283

Activation products in the biological shield of the Georgia Tech Research Reactor

Blaylock, Dwayne Patrick 08 1900 (has links)
No description available.
284

Studie zur Partitionierung und Transmutation (P&T) hochradioaktiver Abfälle Stand der Grundlagen- und technologischen Forschung

Merk, Bruno, Glivici-Cotruta, Varvara 29 October 2014 (has links) (PDF)
Das, dem Teilprojekt zu Grunde liegende, Gesamtprojekt gliederte sich in zwei Module: In Modul A (Förderung durch das BMWi, Federführung durch KIT) und Modul B (Förderung durch das BMBF, Federführung durch acatech). Projektpartner im Modul A waren DBE TECHNOLOGY GmbH, die Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), das Helmholtz-Zentrum Dresden-Rossendorf (HZDR), das Karlsruher Institut für Technologie (KIT) und die Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen zusammen mit dem Forschungszentrum Jülich (FZJ). Modul B wurde vom Zentrum für Interdisziplinäre Risiko- und Innovationsforschung der Universität Stuttgart (ZIRIUS) bearbeitet. Die Gesamtkoordination der beidem Module erfolgte durch die Deutsche Akademie der Technikwissenschaften (acatech). Auf Grundlage einer Analyse der wissenschaftlich-technischen Aspekte durch Modul A wurden die gesellschaftlichen Implikationen bewertet und daraus in Modul B Kommunikations- und Handlungsempfehlungen für die zukünftige Positionierung von P&T formuliert. Im, vom HZDR koordinierten, Teilprojekt „Stand der Grundlagen- und technologischen Forschung“ wird eine Übersicht über den genannten Bereich gegeben. Eingeführt wird das Thema mit einer Kurzbeschreibung möglicher Reaktorsysteme für die Transmutation. Danach wird der Entwicklungsstand der Spezialbereiche Trennchemie, Sicherheitstechnologie, Beschleunigertechnologie Flüssigmetalltechnologie, Entwicklung von Spallationstargets, Transmutationsbrennstoffen und Werkstoffkonzepten sowie Konditionierung von Abfällen, beschrieben. Dies wird ergänzt durch Spezifika von Transmutationsanlagen beginnend bei physikalischen Grundlagen und Kerndesigns, über Reaktorphysik von Transmutationsanlagen, Simulationstools und die Entwicklung von Safety Approaches. Im Anschluss wird der Stand existierender Bestrahlungseinrichtungen mit schnellem Spektrum beschrieben. Nachfolgend werden basierend auf dem derzeitigen Stand von F&E die offenen Fragen und Forschungslücken in den einzelnen Teilbereichen – Wiederaufbereitung und Konditionierung, Beschleuniger und Spallationstarget, Reaktor – zusammengestellt und sowohl eine Strategie, als auch ein Fahrplan zur Schließung der Technology Gaps entwickelt. Zusätzlich werden die Hauptbeiträge, des HZDR zur Gesamtstudie beschrieben. Dies sind insbesondere die Beschreibungen der Möglichkeiten und Grenzen von P&T, die Herausforderungen an Bestrahlungseinrichtungen zur Transmutation und deren Effektivität, sowie Sicherheitsmerkmale beschleuniger-getriebener unterkritischer Systeme inclusive grundlegender Störfallbetrachtungen und Sicherheitscharakteristik. / The main project, where this sub project contributed to, has been structured into two modules: module A (funded by the federal ministry of economics, managed by KIT) and module B (funded by the federal ministry of education and research, managed by acatech). Partners in module A were DBE TECHNOLOGY GmbH, the Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Karlsruher Institute of Technology (KIT) and the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, in co-operation with the Forschungszentrum Jülich (FZJ). Modul B has been executed by the Zentrum für Interdisziplinäre Risiko- und Innovationsforschung der Universität Stuttgart (ZIRIUS). The overall coordination has been carried out by the Deutsche Akademie der Technikwissenschaften (acatech). The social implications have been evaluated in module B based on the analysis of the scientific and technological aspects in module A. Recommendations for communication and actions to be taken for the future positioning of P&T have been developed. In the project part, coordinated by HZDR – status of R&D – an overview on the whole topic P&T is given. The topic is opened by a short description of reactor systems possible for transmutation. In the following the R&D status of separation technologies, safety technology, accelerator technology, liquid metal technology, spallation target development, transmutation fuel and structural material development, as well as waste conditioning is described. The topic is completed by the specifics of transmutation systems, the basic physics and core designs, the reactor physics, the simulation tools and the development of Safety Approaches. Additionally, the status of existing irradiation facilities with fast neutron spectrum is described. Based on the current R&D status, the research and technology gaps in the topics: separation and conditioning, accelerator and spallation target, and reactor are characterized and a strategy as well as a roadmap for closing these gaps has been developed. In addition the major contributions of HZDR to the main project are described. The major parts are the description of the potential and the limits of P&T, the requirements and challenges for transmutation systems and the related efficiency, as well as the safety features of accelerator driven subcritical systems including the transient behavior and the safety characteristics.
285

A coarse mesh radiation transport method for prismatic block thermal reactors in two dimensions

Connolly, Kevin John 07 July 2011 (has links)
In this paper, the coarse mesh transport method is extended to hexagonal geometry. This stochastic-deterministic hybrid transport method calculates the eigenvalue and explicit pin fission density profile of hexagonal reactor cores. It models the exact detail within complex heterogeneous cores without homogenizing regions or materials, and neither block-level nor core-level asymmetry poses any limitations to the method. It solves eigenvalue problems by first splitting the core into a set of coarse meshes, and then using Monte Carlo methods to create a library of response expansion coefficients, found by expanding the angular current in phase-space distribution using a set of polynomials orthogonal on the angular half-space defined by mesh boundaries. The coarse meshes are coupled by the angular current at their interfaces. A deterministic sweeping procedure is then used to iteratively construct the solution. The method is evaluated using benchmark problems based on a gas-cooled, graphite-moderated high temperature reactor. The method quickly solves problems to any level of detail desired by the user. In this paper, it is used to explicitly calculate the fission density of individual fuel pins and determine the reactivity worth of individual control rods. In every case, results for the core multiplication factor and pin fission density distribution are found within several minutes. Results are highly accurate when compared to direct Monte Carlo reference solutions; errors in the eigenvalue calculations are on the order of 0.02%, and errors in the pin fission density average less than 0.1%.
286

Top-down scaling analysis of the integral reactor vessel test facility

Graves, Joshua D. 07 December 2012 (has links)
Oregon State University has conducted research in collaboration with TerraPower, LLC, to perform a top-down scaling analysis of an integrated test facility. The goal of this facility is to simulate transient and quasi-steady phenomena at a reduced scale, including steady-state operation, pump coastdown, natural circulation, reactor head heat transfer, and coolant stratification. To support this goal, this thesis presents the methodology and analysis by which approximate facility dimensions were generated. This analysis includes implementation of the hierarchical two-tiered scaling methodology, as outlined by the Nuclear Regulatory Commission and optimization through the general reduced gradient methodology. / Graduation date: 2013
287

Aerosol measurement techniques developed for nuclear reactor accident simulations /

Novick, Vincent John, January 1989 (has links)
Thesis (Ph. D.)--University of Washington, 1989. / Vita. Includes bibliographical references.
288

A study of opposing mixed convection in the GRTS and in downward pipe flows using the FLUENT CFD code /

Jackson, R. Brian. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 132-137). Also available on the World Wide Web.
289

Design and analysis of a nuclear reactor core for innovative small light water reactors /

Soldatov, Alexey I. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 331-360). Also available on the World Wide Web.
290

MURR nodal analysis with simple interactive simulation /

Enani, Mohammad A. January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 75-78). Also available on the Internet.

Page generated in 0.0398 seconds