• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse eines Druckwasserreaktors mit überkritischem Wasser als Kühlmittel

Vogt, Bastian. January 2008 (has links)
Zugl.: Stuttgart, Univ., Diss., 2008.
2

Entwicklung eines Rollenmodells zur nachhaltigen Unterstützung der Forschung und Lehre im Bereich Kerntechnik

Piater, Andreas. January 2008 (has links)
Zugl.: Stuttgart, Univ., Diss., 2008.
3

Studie zur Partitionierung und Transmutation (P&T) hochradioaktiver Abfälle Stand der Grundlagen- und technologischen Forschung

Merk, Bruno, Glivici-Cotruta, Varvara 29 October 2014 (has links) (PDF)
Das, dem Teilprojekt zu Grunde liegende, Gesamtprojekt gliederte sich in zwei Module: In Modul A (Förderung durch das BMWi, Federführung durch KIT) und Modul B (Förderung durch das BMBF, Federführung durch acatech). Projektpartner im Modul A waren DBE TECHNOLOGY GmbH, die Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), das Helmholtz-Zentrum Dresden-Rossendorf (HZDR), das Karlsruher Institut für Technologie (KIT) und die Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen zusammen mit dem Forschungszentrum Jülich (FZJ). Modul B wurde vom Zentrum für Interdisziplinäre Risiko- und Innovationsforschung der Universität Stuttgart (ZIRIUS) bearbeitet. Die Gesamtkoordination der beidem Module erfolgte durch die Deutsche Akademie der Technikwissenschaften (acatech). Auf Grundlage einer Analyse der wissenschaftlich-technischen Aspekte durch Modul A wurden die gesellschaftlichen Implikationen bewertet und daraus in Modul B Kommunikations- und Handlungsempfehlungen für die zukünftige Positionierung von P&T formuliert. Im, vom HZDR koordinierten, Teilprojekt „Stand der Grundlagen- und technologischen Forschung“ wird eine Übersicht über den genannten Bereich gegeben. Eingeführt wird das Thema mit einer Kurzbeschreibung möglicher Reaktorsysteme für die Transmutation. Danach wird der Entwicklungsstand der Spezialbereiche Trennchemie, Sicherheitstechnologie, Beschleunigertechnologie Flüssigmetalltechnologie, Entwicklung von Spallationstargets, Transmutationsbrennstoffen und Werkstoffkonzepten sowie Konditionierung von Abfällen, beschrieben. Dies wird ergänzt durch Spezifika von Transmutationsanlagen beginnend bei physikalischen Grundlagen und Kerndesigns, über Reaktorphysik von Transmutationsanlagen, Simulationstools und die Entwicklung von Safety Approaches. Im Anschluss wird der Stand existierender Bestrahlungseinrichtungen mit schnellem Spektrum beschrieben. Nachfolgend werden basierend auf dem derzeitigen Stand von F&E die offenen Fragen und Forschungslücken in den einzelnen Teilbereichen – Wiederaufbereitung und Konditionierung, Beschleuniger und Spallationstarget, Reaktor – zusammengestellt und sowohl eine Strategie, als auch ein Fahrplan zur Schließung der Technology Gaps entwickelt. Zusätzlich werden die Hauptbeiträge, des HZDR zur Gesamtstudie beschrieben. Dies sind insbesondere die Beschreibungen der Möglichkeiten und Grenzen von P&T, die Herausforderungen an Bestrahlungseinrichtungen zur Transmutation und deren Effektivität, sowie Sicherheitsmerkmale beschleuniger-getriebener unterkritischer Systeme inclusive grundlegender Störfallbetrachtungen und Sicherheitscharakteristik. / The main project, where this sub project contributed to, has been structured into two modules: module A (funded by the federal ministry of economics, managed by KIT) and module B (funded by the federal ministry of education and research, managed by acatech). Partners in module A were DBE TECHNOLOGY GmbH, the Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Karlsruher Institute of Technology (KIT) and the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, in co-operation with the Forschungszentrum Jülich (FZJ). Modul B has been executed by the Zentrum für Interdisziplinäre Risiko- und Innovationsforschung der Universität Stuttgart (ZIRIUS). The overall coordination has been carried out by the Deutsche Akademie der Technikwissenschaften (acatech). The social implications have been evaluated in module B based on the analysis of the scientific and technological aspects in module A. Recommendations for communication and actions to be taken for the future positioning of P&T have been developed. In the project part, coordinated by HZDR – status of R&D – an overview on the whole topic P&T is given. The topic is opened by a short description of reactor systems possible for transmutation. In the following the R&D status of separation technologies, safety technology, accelerator technology, liquid metal technology, spallation target development, transmutation fuel and structural material development, as well as waste conditioning is described. The topic is completed by the specifics of transmutation systems, the basic physics and core designs, the reactor physics, the simulation tools and the development of Safety Approaches. Additionally, the status of existing irradiation facilities with fast neutron spectrum is described. Based on the current R&D status, the research and technology gaps in the topics: separation and conditioning, accelerator and spallation target, and reactor are characterized and a strategy as well as a roadmap for closing these gaps has been developed. In addition the major contributions of HZDR to the main project are described. The major parts are the description of the potential and the limits of P&T, the requirements and challenges for transmutation systems and the related efficiency, as well as the safety features of accelerator driven subcritical systems including the transient behavior and the safety characteristics.
4

Plutoniumfingerabdrücke und Brennstoffzyklusstudien für thermische Reaktorkonzepte

Volmert, Benjamin. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2003--Aachen.
5

Neutronenphysikalische Untersuchungen zu uranfreien Brennstoffen

Pistner, Christoph. Unknown Date (has links)
Techn. Universiẗat, Diss., 2006--Darmstadt.
6

Studie zur Partitionierung und Transmutation (P&T) hochradioaktiver Abfälle Stand der Grundlagen- und technologischen Forschung

Merk, Bruno, Glivici-Cotruta, Varvara January 2014 (has links)
Das, dem Teilprojekt zu Grunde liegende, Gesamtprojekt gliederte sich in zwei Module: In Modul A (Förderung durch das BMWi, Federführung durch KIT) und Modul B (Förderung durch das BMBF, Federführung durch acatech). Projektpartner im Modul A waren DBE TECHNOLOGY GmbH, die Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), das Helmholtz-Zentrum Dresden-Rossendorf (HZDR), das Karlsruher Institut für Technologie (KIT) und die Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen zusammen mit dem Forschungszentrum Jülich (FZJ). Modul B wurde vom Zentrum für Interdisziplinäre Risiko- und Innovationsforschung der Universität Stuttgart (ZIRIUS) bearbeitet. Die Gesamtkoordination der beidem Module erfolgte durch die Deutsche Akademie der Technikwissenschaften (acatech). Auf Grundlage einer Analyse der wissenschaftlich-technischen Aspekte durch Modul A wurden die gesellschaftlichen Implikationen bewertet und daraus in Modul B Kommunikations- und Handlungsempfehlungen für die zukünftige Positionierung von P&T formuliert. Im, vom HZDR koordinierten, Teilprojekt „Stand der Grundlagen- und technologischen Forschung“ wird eine Übersicht über den genannten Bereich gegeben. Eingeführt wird das Thema mit einer Kurzbeschreibung möglicher Reaktorsysteme für die Transmutation. Danach wird der Entwicklungsstand der Spezialbereiche Trennchemie, Sicherheitstechnologie, Beschleunigertechnologie Flüssigmetalltechnologie, Entwicklung von Spallationstargets, Transmutationsbrennstoffen und Werkstoffkonzepten sowie Konditionierung von Abfällen, beschrieben. Dies wird ergänzt durch Spezifika von Transmutationsanlagen beginnend bei physikalischen Grundlagen und Kerndesigns, über Reaktorphysik von Transmutationsanlagen, Simulationstools und die Entwicklung von Safety Approaches. Im Anschluss wird der Stand existierender Bestrahlungseinrichtungen mit schnellem Spektrum beschrieben. Nachfolgend werden basierend auf dem derzeitigen Stand von F&E die offenen Fragen und Forschungslücken in den einzelnen Teilbereichen – Wiederaufbereitung und Konditionierung, Beschleuniger und Spallationstarget, Reaktor – zusammengestellt und sowohl eine Strategie, als auch ein Fahrplan zur Schließung der Technology Gaps entwickelt. Zusätzlich werden die Hauptbeiträge, des HZDR zur Gesamtstudie beschrieben. Dies sind insbesondere die Beschreibungen der Möglichkeiten und Grenzen von P&T, die Herausforderungen an Bestrahlungseinrichtungen zur Transmutation und deren Effektivität, sowie Sicherheitsmerkmale beschleuniger-getriebener unterkritischer Systeme inclusive grundlegender Störfallbetrachtungen und Sicherheitscharakteristik. / The main project, where this sub project contributed to, has been structured into two modules: module A (funded by the federal ministry of economics, managed by KIT) and module B (funded by the federal ministry of education and research, managed by acatech). Partners in module A were DBE TECHNOLOGY GmbH, the Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS), the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Karlsruher Institute of Technology (KIT) and the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, in co-operation with the Forschungszentrum Jülich (FZJ). Modul B has been executed by the Zentrum für Interdisziplinäre Risiko- und Innovationsforschung der Universität Stuttgart (ZIRIUS). The overall coordination has been carried out by the Deutsche Akademie der Technikwissenschaften (acatech). The social implications have been evaluated in module B based on the analysis of the scientific and technological aspects in module A. Recommendations for communication and actions to be taken for the future positioning of P&T have been developed. In the project part, coordinated by HZDR – status of R&D – an overview on the whole topic P&T is given. The topic is opened by a short description of reactor systems possible for transmutation. In the following the R&D status of separation technologies, safety technology, accelerator technology, liquid metal technology, spallation target development, transmutation fuel and structural material development, as well as waste conditioning is described. The topic is completed by the specifics of transmutation systems, the basic physics and core designs, the reactor physics, the simulation tools and the development of Safety Approaches. Additionally, the status of existing irradiation facilities with fast neutron spectrum is described. Based on the current R&D status, the research and technology gaps in the topics: separation and conditioning, accelerator and spallation target, and reactor are characterized and a strategy as well as a roadmap for closing these gaps has been developed. In addition the major contributions of HZDR to the main project are described. The major parts are the description of the potential and the limits of P&T, the requirements and challenges for transmutation systems and the related efficiency, as well as the safety features of accelerator driven subcritical systems including the transient behavior and the safety characteristics.
7

Zur Geschichte der Kerntechnik in der DDR von 1955 bis 1962: Die Politik der Staatspartei zur Nutzung der Kernenergie

Hampe, Eckhard 03 June 2022 (has links)
„... Die vorliegende Studie reiht sich in die Untersuchungen des Hannah-Arendt-Instituts zur Rolle von Hochtechnologien in der Volkswirtschaft der DDR ein. Dabei hatte die Kerntechnik, besonders die Kernenergienutzung, im Hinblick auf den erwarteten Nutzen und die notwendigen wissenschaftlich-technischen Anstrengungen, in der frühen DDR eine ähnliche Bedeutung wie Hochtechnologien in heutigen Volkswirtschaften ...” [... aus der Einleitung]
8

Generische numerische Untersuchungen der kritischen Überdeckung der Ansaugstutzen von Pumpen zur Vermeidung von Luftmitriss

Pandazis, Peter 23 February 2024 (has links)
Im Rahmen der Dissertation wurde ein neues und effektives Verfahren entwickelt, um die Oberflächenwirbelbildung an Ansaugstutzen von Pumpen in großen, komplexen Becken (wie z. B. Gebäudesumpf oder Flutbehälter) zu untersuchen so-wie deren charakteristischen Größe, die kritische Überdeckung, zu bestimmen. Die kritische Überdeckung ist die minimale Überdeckung, über die eine Oberflächenwir-belbildung sich ausschließen lässt. Durch die verursachte Strömungsinhomogenität und durch mitgerissene Luft kann die Oberflächenwirbelbildung die Förderleistung der Pumpen stark einschränken und langfristig sogar Pumpenschäden hervorrufen. Deshalb die Sicherstellung eine wirbelfreie Ansaugung ist für einen sicheren Pum-penbetrieb erforderlich. In Leichtwasserreaktoren ist der sichere und langfristige Betrieb der Not- und Nach-kühlsysteme besonders wichtig, um die Einhaltung des kerntechnischen Schutzzie-les, Kühlung der Brennelemente, zu gewährleisten. Die Pumpen dieser Systeme för-dern unter Störfallbedingungen aus großen und komplexen Sicherheitsbehältern bzw. Sümpfen das Kühlwasser, wobei die Vorhersage der kritischen Überdeckung sehr schwierig ist. Für industrielle Prozesse wird die kritische Überdeckung entweder mit aufwendigen Experimenten oder mit einfachen empirischen und semiempirischen Korrelationen abgeschätzt. Auch die Deutsche Reaktor-Sicherheitskommission (RSK) empfiehlt im Falle des Sumpfbetriebs einer Anlage mit Druckwasserreaktor die Durchführung von großskaligen Experimenten, um die kritische Überdeckung zu ermitteln. Nach der Empfehlung der RSK kann beim Fehlen experimenteller Daten auf die einfache, anhand von Experimenten und analytischen Modellen abgeleitete ANSI-Korrelation zurückgegriffen werden. Das im Rahmen dieser Arbeit entwickelte CVA-Verfahren (Combined Vortex Analy-ses) basiert auf der Kombination von numerischen CFD-Simulationen mit dem analytischen Wirbelmodell von Burgers-Rott und bietet damit eine alternative und effektive Methode zur Bestimmung der kritischen Überdeckung samt weiterer wesentliche Parameter eines Oberflächenwirbels wie z. B. Zirkulation, Luftkernlänge und Tangentialgeschwindigkeitsverteilung. Die CFD-Methoden sind in der Lage die Strömungsparameter außerhalb der Wirbelkernregion auch in komplexen Anlagen zu berechnen. Die CFD-Berechnung der Wirbelkernregion eines Oberflächenwirbels inkl. der Luft-kernbildung erfordert jedoch sehr hohen Rechenaufwand. Das Wirbelmodell von Burgers und Rott dagegen kann die Luftkernlänge von Oberflächenwirbeln analytisch bestimmen, wenn die Zirkulation und der sog. Saugparameter außerhalb der Wirbel-kernregion bekannt sind. Im CVA-Verfahren werden diese Parameter mit dem CFD-Code ANSYS-CFX berechnet und in analytische Gleichungen, abgeleitet aus dem Burgers-Rot-Modell, eingesetzt. Basierend auf den Ergebnissen von zwei geeigneten CFD-Simulationen kann das CVA-Verfahren die kritische Überdeckung für eine breites Parameterspektrum, wie z. B. den Ansaugmassenstrom, analytisch berechnen. Die Validierung des CVA-Verfahrens erfolgte in dieser Arbeit anhand von zwei Experimenten für vertikale Ansaugstutzen. In dem Experiment von Moriya wurden die Typen der Oberflächenwirbel bestimmt und deren lokale Parameter gemessen. Anhand der Ergebnisse werden die erforderlichen physikalischen Modelle, Rand-bedingungen und weitere Modellparameter für die CFD-Simulationen festgelegt. Des Weiteren wird das CVA-Verfahren zur Berechnung der Luftkernlänge eines Oberflächenwirbels anhand der Moriya-Versuche erfolgreich validiert. Die Bestimmung der Luftkernlänge ist ein wichtiger Schritt des CVA-Verfahrens und ermöglicht die analytische Berechnung der kritischen Überdeckung. Das zweite Experiment zur Validierung wurde von Jain et al. durchgeführt. In diesem Experiment wurde die kritische Überdeckung für ein breites Spektrum diverser Ein-flussparameter gemessen. Auf der Basis dieser experimentellen Ergebnisse wird das CVA-Verfahren erfolgreich validiert, um die kritische Überdeckung bei unterschiedlichen Ansauggeschwindigkeiten, Zirkulationen, Viskositäten und Saugleitungsdurchmessern zu ermitteln. Des Weiteren wird eine einfache analytische Korrelation, nachfolgend CVA-Formel genannt, basierend auf dem CVA-Verfahren abgeleitet. Diese beschreibt den analytischen Zusammenhang zwischen der kritischen Überdeckung, der Froude-Zahl und dem Saugleitungsdurchmesser und berücksichtigt die Zirkulation durch eine vorgegebene Konstante. Im Rahmen der Nachrechnung der Versuche von Jain et al. wird diese Konstante für drei Fälle ermittelt. Das validierte CVA-Verfahren wird zunächst eingesetzt, um in den industriellen Prozessen häufig verwendete einfache Korrelationen zur Berechnung der kritischen Überdeckung zu untersuchen und deren Konservativitäten zu quantifizieren. Aus der Literatur wurde, neben der auch in der kerntechnischen Verfahren ange-wendete Korrelation von ANSI, die Korrelation von Odgaard, Rindells und Gulliver, Jain et al. und Knauss für die Analysen ausgewählt. Die Anwendung dieser Korrelationen sind nur in einem bestimmten Parameterbereich zulässig. Die Vergleichsanalysen haben die Konservativitäten, Einschränkungen sowie das Erweiterungspotential der Anwendungsbereiche der Korrelationen erfolgreich aufgezeigt. Darüber hinaus wird die Anwendungsgrenze der ANSI-Korrelation für die Zirkulation bestimmt und belegt, dass das CVA-Verfahren auch in kerntechnische Verfahren angewendet werden kann. Zuletzt wird das CVA-Verfahren angewendet, um die Problematik der Oberflächen-wirbelbildung im Sicherheitsbehältersumpf eines Vor-Konvoi-Druckwasserreaktors zu untersuchen. In dem postulierten Störfallszenario befindet sich das Not- und Nach-kühlsystem (TH-System) der Anlage im Sumpfbetrieb. Oberhalb der Saugstutzen der TH-Pumpen befindet sich eine Betondecke, die bei Sumpffüllstand oberhalb dieser Decke eine wirbelbrechende Maßnahme ist. Deshalb wurde zuerst ein Störfallszenario mit dem CFD-Code ANSYS-CFX untersucht, wobei der Füllstand des Sumpfs oberhalb der Betondecke liegt. In den Analysen wird ein Leckstörfall mit 400 cm2 Leckage im Kaltstrang des Primärkühlkreises betrachtet, bei dem nur 2 TH-Pumpen, jeweils mit einem Ansaugmassenstrom von 300 kg/s in Betrieb sind. Die Simulationen zeigen eine starke Wirbelbildung in den in Betrieb befindlichen Sumpfkammern ohne dass sich jedoch luftziehende Wirbel ausbilden. Anschließend wird die Bildung luftziehender Wirbel für Sumpffüllstände unterhalb der Betondecke untersucht. Um die Parameter für den analytischen Teil des CVA-Verfahrens zu bestimmen, werden CFD- Simulationen mit zwei unterschiedlichen TH-Massenströmen durchgeführt. Anhand der Ergebnisse der zwei CFD-Simulationen gelingt es mit dem CVA-Verfahren die kritische Überdeckung der TH-Pumpen für den gesamten Massenstrombereich zu berechnen. Damit wird die Anwendung des CVA-Verfahrens für große, komplexe Anlage erfolgreich demonstriert. Die durchgeführten Analysen bestätigen die vielseitigen Anwendungsmöglichkeiten des neuen Verfahrens und zeigen, dass das CVA-Verfahren für die kerntechnische Nachweisführung eine effektive Alternative ist.:Inhaltsverzeichnis Abstract I Kurzfassung IV Vorwort VII Inhaltsverzeichnis VIII Formelzeichen XI Bildverzeichnis XIV Tabellenverzeichnis XVII 1 Einleitung 1 2 Stand des Wissens 6 2.1 Theoretische Grundlagen von Wirbeln 6 2.2 Analytische Wirbelmodelle 11 2.2.1 Modell von Rankine 12 2.2.2 Modell von Burgers und Rott 12 2.2.3 Modell von Ito et al. 14 2.3 Experimentelle Untersuchungen 15 2.3.1 Experiment von Moriya 18 2.3.2 Experiment von Jain et al. 20 2.4 Auslegungsempfehlungen und Korrelationen 23 2.4.1 Korrelation von Odgaard 25 2.4.2 Korrelation von Jain et al. 26 2.4.3 Korrelation von Knauss 27 2.4.4 Korrelation von Rindels und Gulliver 28 2.4.5 ANSI Korrelation 29 2.4.6 Vergleich der Korrelationen für eine vertikale Ansaugung 30 2.5 Parameterbereich der Untersuchungen 32 3 Neues Verfahren zur Bestimmung der kritischen Überdeckung 35 3.1 Grundsätzliche Herangehensweise an eine CFD-Simulation 35 3.1.1 Lösungsverfahren 36 3.1.2 Modellierung der Turbulenz 39 3.1.3 Zweiphasenmodellierung 42 3.2 Relevante veröffentlichte CFD Analysen und eigene Vorstudien 44 3.2.1 Erkenntnisse aus relevanten, veröffentlichten CFD-Analysen 45 3.2.2 Eigene Vorstudien zur Simulation von Oberflächenwirbeln mit ANSYS CFX 47 3.3 CVA-Verfahren 48 3.3.1 Identifizierung von Oberflächenwirbeln in CFD-Simulationen 49 3.3.2 Bestimmung der Zirkulation aus den CFD-Ergebnissen 51 3.3.3 Bestimmung der Saugparameter aus den CFD-Ergebnissen 52 3.3.4 Berechnung der kritischen Überdeckung 54 4 Validierung des CVA-Verfahrens anhand von Experimenten 59 4.1 Validierung anhand der Versuche von Moriya 60 4.1.1 CFD-Modell 60 4.1.1.1 Optimierung des Rechengitters 62 4.1.1.2 Sensitivitätsanalyse zur Turbulenzmodellierung 67 4.1.2 Ergebnisse der Validierungsrechnungen anhand des Moriya Versuches 72 4.2 Validierung und Parameteruntersuchung anhand der Versuche von Jain et al. 75 4.2.1 CFD-Modell und Anwendung des CVA-Verfahrens 75 4.2.2 Ergebnisse der Validierungsrechnungen und der Parameteruntersuchung 78 4.2.2.1 Einfluss des Anströmwinkels 79 4.2.2.2 Einfluss des Saugleitungsdurchmessers 80 4.2.2.3 Einfluss der Viskosität 83 4.2.2.4 Einfluss der Zirkulation 85 4.3 Ableitung einer analytischen Korrelation zur Abschätzung der kritischen Überdeckung 86 4.4 Fazit der Validierung und Empfehlungen zur Anwendung des CVA-Verfahrens 88 5 Anwendung des neuen CVA-Verfahrens 90 5.1 Analyse der Korrelationen zur Berechnung der kritischen Überdeckung 91 5.1.1 Analyse der Korrelation von Jain et al. 91 5.1.2 Analyse der Korrelation von Odgaard 93 5.1.3 Analyse der Korrelation von Knauss 95 5.1.4 Analyse der Korrelation von Rindels und Gulliver 96 5.1.5 Analyse der Korrelation von ANSI 98 5.1.6 Fazit der Analysen der Korrelationen zur Berechnung der kritischen Überdeckung mit dem CVA-Verfahren 102 5.2 Analyse der Sumpfansaugung bei Druckwasserreaktoren 104 5.2.1 Beschreibung der ausgewählten Störfallszenarien 106 5.2.2 Geometriemodell des Sicherheitsbehälters 108 5.2.3 Untersuchung der Sumpfansaugung bei einem 400-cm²-Leck 110 5.2.3.1 CFD-Modell 111 5.2.3.2 Ergebnisse 115 5.2.4 Bestimmung der kritischen Überdeckung der TH-Pumpen in Sumpfbetrieb mit dem CVA-Verfahren 116 5.2.4.1 CFD-Modell 117 5.2.4.2 Ergebnisse der Analysen mit dem Gesamtmodell und Bestimmung der Zirkulation 121 5.2.4.3 Ergebnisse der Simulationen mit dem Submodell und Bestimmung des Saugparameters 125 5.2.4.4 Berechnung der kritischen Überdeckung der TH-Pumpen im Sumpfbetrieb 127 6 Zusammenfassung und Ausblick 131 Literaturverzeichnis 135 Vorveröffentlichungen von Teilergebnissen 141
9

Zauberstab der Atomwissenschaft

Abele, Johannes 17 April 2014 (has links) (PDF)
No description available.
10

Zauberstab der Atomwissenschaft: Hans Geiger und die Magie der Kerntechnik

Abele, Johannes January 2001 (has links)
No description available.

Page generated in 0.0293 seconds