• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 24
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 7
  • 6
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 345
  • 124
  • 118
  • 117
  • 75
  • 73
  • 73
  • 66
  • 60
  • 43
  • 40
  • 40
  • 36
  • 35
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Dissecting Somatic Cell Reprogramming by MicroRNAs and Small Molecules: A Dissertation

Li, Zhonghan 12 March 2012 (has links)
Somatic cells could be reprogrammed into an ES-like state called induced pluripotent stem cells (iPSCs) by expression of four transcriptional factors: Oct4, Sox2, Klf4 and cMyc. iPSCs have full potentials to generate cells of all lineages and have become a valuable tool to understand human development and disease pathogenesis. However, reprogramming process suffers from extremely low efficiency and the molecular mechanism remains poorly understood. This dissertation is focused on studying the role of small non-coding RNAs (microRNAs) and kinases during the reprogramming process in order to understand how it is regulated and why only a small percentage of cells could achieve fully reprogrammed state. We demonstrate that loss of microRNA biogenesis pathway abolished the potential of mouse embryonic fibroblasts (MEFs) to be reprogrammed and revealed that several clusters of mES-specific microRNAs were highly induced by four factors during early stage of reprogramming. Among them, miR-93 and 106b were further confirmed to enhance iPSC generation by promoting mesenchymal-to-epithelial transition (MET) and targeting key p53 and TGFβ pathway components: p21 and Tgfbr2, which are important barrier genes to the process. To expand our view of microRNAs function during reprogramming, a systematic approach was used to analyze microRNA expression profile in iPSC-enriched early cell population. From a list of candiate microRNAs, miR-135b was found to be most highly induced and promoted reprogramming. Subsequent analysis revealed that it targeted an extracellular matrix network by directly modulating key regulator Wisp1. By regulating several downstream ECM genes including Tgfbi, Nov, Dkk2 and Igfbp5, Wisp1 coordinated IGF, TGFβ and Wnt signaling pathways, all of which were strongly involved in the reprogramming process. Therefore, we have identified a microRNA-regulated network that modulates somatic cell reprogramming, involving both intracellular and extracellular networks. In addition to microRNAs, in order to identify new regulators and signaling pathways of reprogramming, we utilized small molecule kinase inhibitors. A collection of 244 kinase inhibitors were screened for both enhancers and inhibitors of the process. We identified that inhibition of several novel kinases including p38, IP3K and Aurora kinase could significantly enhance iPSC generation, the effects of which were also confirmed by RNAi of specific target genes. Further characterization revealed that inhibition of Aurora A kinase enhanced phosphorylation and inactivation of GSK3β, a process mediated by Akt kinase. All together, in this dissertation, we have identified novel role of both small non-coding RNAs and kinases in regulating the reprogramming of MEFs to iPSCs.
282

Molecular Mechanisms of Endocytosis: Trafficking and Functional Requirements for the Transferrin Receptor, Small Interfering RNAs and Dopamine Transporter: A Dissertation

Navaroli, Deanna M. 30 April 2012 (has links)
Endocytosis is an essential function of eukaryotic cells, providing crucial nutrients and playing key roles in interactions of the plasma membrane with the environment. The classical view of the endocytic pathway, where vesicles from the plasma membrane fuse with a homogenous population of early endosomes from which cargo is sorted, has recently been challenged by the finding of multiple subpopulations of endosomes. These subpopulations vary in their content of phosphatidylinositol 3- phosphate (PI3P) and Rab binding proteins. The role of these endosomal subpopulations is unclear, as is the role of multiple PI3P effectors, which are ubiquitously expressed and highly conserved. One possibility is that the different subpopulations represent stages in the maturation of the endocytic pathway. Alternatively, endosome subpopulations may be specialized for different functions, such as preferential trafficking of specific endocytosed cargo. To determine whether specific receptors are targeted to distinct populations of endosomes, we have built a platform for total internal reflection fluorescence (TIRF) microscopy coupled with structured illumination capabilities named TESM (TIRF Epifluorescence Structured light Microscope.) In this study, TESM, along with standard biochemical and molecular biological tools, was used to analyze the dynamic distribution of two highly conserved Rab5 and PI3P effectors, EEA1 and Rabenosyn-5, and systematically study the trafficking of transferrin. Rabenosyn-5 is necessary for proper expression of the transferrin receptor as well as internalization and recycling of transferrin-transferrin receptor complexes. Results of combining TIRF with structured light Epifluorescence (SLE) indicate that the endogenous populations of EEA1 and Rabenoysn-5 are both distinct and partially overlapping. The application of antisense oligonucleotides as potential therapeutic agents requires effective methods for their delivery to the cytoplasm of target cells. In collaboration with RXi Pharmaceuticals we show the efficient cellular uptake of the antisense oligonucleotide sd-rxRNA® in the absence of delivery vehicle or protein carrier. In this study TIRF, SLE, and biochemical approaches were utilized to determine whether sd-rxRNA traffics and functions along specific endosomal pathways. Sd-rxRNA was found to traffic along the degradative pathway and require EEA1 to functionally silence its target. These new findings will help define the cellular pathways involved in RNA silencing. Neurotransmitter reuptake and reuse by neurotransmitter transport proteins is fundamental to transmitter homeostasis and synaptic signaling. In order to understand how trafficking regulates transporters in the brain and how this system may be disregulated in monoamine-related pathologies, the transporter internalization signals and their molecular partners must be defined. We utilized a yeast two-hybrid system to identify proteins that interact with the dopamine transporter (DAT) endocytic signal. The small, membrane associated, GTPase Rin was determined to specifically and functionally interact with the DAT endocytic signal, regulating constitutive and protein kinase C (PKC) – stimulated DAT endocytosis. The results presented in this study provide new insights into functions and components of endocytosis and enhance the understanding of endocytic organization.
283

Transposition Driven Genomic Heterogeneity in the <em>Drosophila</em> Brain: A Dissertation

Perrat, Paola N. 01 June 2012 (has links)
In the Drosophila brain, memories are processed and stored in two mirrorsymmetrical structures composed of approximately 5,000 neurons called Mushroom Bodies (MB). Depending on their axonal extensions, neurons in the MB can be further classified into three different subgroups: αβ, α’β’ and γ. In addition to the morphological differences between these groups of neurons, there is evidence of functional differences too. For example, it has been previously shown that while neurotransmission from α’β’ neurons is required for consolidation of olfactory memory, output from αβ neurons is required for its later retrieval. To gain insight into the functional properties of these discrete neurons we analyzed whether they were different at the level of gene expression. We generated an intersectional genetic approach to exclusively label each population of neurons and permit their purification. Comparing expression profiles, revealed a large number of potentially interesting molecular differences between the populations. We focused on the finding that the MB αβ neurons, which are the presumed storage site for transcription-dependent long-term memory, express high levels of mRNA for transposable elements and histones suggesting that these neurons likely possess unique genomic characteristics. For decades, transposable elements (TE) were considered to be merely “selfish” DNA elements inserted at random in the genome and that they their sole function was to self-replicate. However, new studies have started to arise that indicate TE contribute more than just “junk” DNA to the genome. Although it is widely believed that mobilization of TE destabilize the genome by insertional mutagenesis, deletions and rearrangements of genes, some rearrangements might be advantageous for the organism. TE mobilization has recently been documented to occur in some somatic cells, including in neuronal precursor cells (NPCs). Moreover, mobilization in NPCs seems to favor insertions within neuronal expressed genes and in one case the insertion elevated the expression. During the last decade, the discovery of the small RNA pathways that suppress the expression and mobilization of TE throughout the animal have helped to uncover new functions that TE play. In this work, we demonstrate that proteins of the PIWI-associated RNA pathway that control TE expression in the germline are also required to suppress TE expression in the adult fly brain. Moreover, we find that they are differentially expressed in subsets of MB neurons, being under represented in the αβ neurons. This finding suggests that the αβ neurons tolerate TE mobilization. Lastly, we demonstrate by sequencing αβ neuron DNA that TE are mobile and we identify >200 de novo insertions into neurally expressed genes. We conclude that this TE generated mosaicism, likely contributes a new level of neuronal diversity making, in theory, each αβ neuron genetically different. In principle the stochastic nature of this process could also render every fly an individual.
284

Post-Transcriptional Control of Human Cellular Senescence: A Dissertation

Burns, David M. 15 July 2010 (has links)
The central dogma of biology asserts that DNA is transcribed into RNA and RNA is translated into protein. However, this overtly simplistic assertion fails to portray the highly orchestrated and regulated mechanisms of transcription and translation. During the process of transcription, RNA provides the template for translation and protein synthesis as well as the structural and sequence specificity of many RNA and protein-based machines. While only 1-5% of the genome will escape the nucleus to be translated as mRNAs, complex, parallel, highly-conserved mechanisms have evolved to regulate specific mRNAs. Trans-acting factors bind cis-elements in both the 5" and 3" untranslated regions of mRNA to regulate their stability, localization, and translation. While a few salient examples have been elucidated over the last few decades, mRNA translation can be reversibly regulated by the shortening and lengthening of the 3" polyadenylate tail of mRNA. CPEB, an important factor that nucleates a complex of proteins to regulate the polyadenylate tail of mRNA, exemplifies a major paradigm of translational control during oocyte maturation and early development. CPEB function is also conserved in neurons and somatic foreskin fibroblasts where it plays an important role in protein synthesis dependent synaptic plasticity and senescence respectively. Focusing on the function of CPEB and its role in mRNA polyadenylation during human cellular senescence, the following dissertation documents the important finding that CPEB is required for the normal polyadenylation of p53 mRNA necessary for its normal translation and onset of senescence. Cells that lack CPEB have abnormal levels of mitochondria and ROS production, which are demonstrated to arise from the direct result of hypomorphic p53 levels. Finally, in an attempt to recapitulate the model of CPEB complex polyadenylation in human somatic cells, I unexpectedly find that Gld-2, a poly(A) polymerase required for CPEB-mediated polyadenylation in Xenopus laevis oocytes, is not required for p53 polyadenylation, but instead regulates the stability of a microRNA that in turn regulates CPEB mRNA translation. Furthermore, I demonstrate that CPEB requires Gld-4 for the normal polyadenylation and translation of p53 mRNA.
285

Regulation of Cellular and HIV-1 Gene Expression by Positive Transcription Elongation Factor B: A Dissertation

O'Brien, Siobhan 26 October 2010 (has links)
RNA polymerase II-mediated transcription of HIV-1 genes depends on positive transcription elongation factor b (P-TEFb), the complex of cyclin T1 and CDK9. Recent evidence suggests that regulation of transcription by P-TEFb involves chromatin binding and modifying factors. To determine how P-TEFb may connect chromatin remodeling to transcription, we investigated the relationship between P-TEFb and histone H1. We show that P-TEFb interacts with H1 and that H1 phosphorylation in cell culture correlates with P-TEFb activity. Importantly, P-TEFb also directs H1 phosphorylation during Tat transactivation and wild type HIV-1 infection. Our results also show that P-TEFb phosphorylates histone H1.1 at a specific C-terminal site. Expression of a mutant H1.1 that cannot be phosphorylated by P-TEFb disrupts Tat transactivation as well as transcription of the c-fos and hsp70 genes in HeLa cells. P-TEFb phosphorylation of H1 also plays a role in the expression of muscle differentiation marker genes in the skeletal myoblast cell line C2C12. Additionally, ChIP experiments demonstrate that H1 dissociates from the HIV-1 LTR in MAGI cells, stress-activated genes in HeLa cells, and muscle differentiation marker genes in C2C12 cells under active P-TEFb conditions. Our results overall suggest a new role for P-TEFb in both cellular and HIV-1 transcription through chromatin.
286

Analysis of Integrin α6β4 Function in Breast Carcinoma: A Dissertation

Gerson, Kristin D. 06 April 2012 (has links)
The development and survival of multicellular organisms depends upon the ability of cells to move. Embryogenesis, immune surveillance, wound healing, and metastatic disease are all processes that necessitate effective cellular locomotion. Central to the process of cell motility is the family of integrins, transmembrane cell surface receptors that mediate stable adhesions between cells and their extracellular environment. Many human diseases are associated with aberrant integrin function. Carcinoma cells in particular can hijack integrins, harnessing their mechanical and signaling potential to propagate cell invasion and metastatic disease, one example being integrin α6β4. This integrin, often referred to simply as β4, is defined as an adhesion receptor for the laminin family of extracellular matrix proteins. The role of integrin β4 in potentiating carcinoma invasion is well established, during which it serves both a mechanical and signaling function. miRNAs are short non-coding RNAs that regulate gene expression posttranscriptionally, and data describing the role of extracellular stimuli in governing their expression patterns are sparse. This observation coupled to the increasingly significant role of miRNAs in tumorigenesis prompted us to examine their function as downstream effectors of β4, an integrin closely linked to aggressive disease in breast carcinoma. The work presented in this dissertation documents the first example that integrin expression correlates with specific miRNA patterns. Moreover, integrin β4 status in vitro and in vivo is associated with decreased expression of distinct miRNA families in breast cancer, namely miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, with purported roles in cell motility. Another miRNA, miR-29a, is significantly downregulated in response to de novo expression of β4 in a breast carcinoma cell line, and β4-mediated repression of the miRNA is required for invasion. Another major conclusion of this study is that β4 integrin expression and ligation can regulate the expression of SPARC in breast carcinoma cells. These data reveal distinct mechanisms by which β4 promotes SPARC expression, involving both a miR-29a-mediated process and a TOR-dependent translational mechanism. Our observations establish a link between miRNA expression patterns and cell motility downstream of β4 in the context of breast cancer, and uncover a novel effector of β4-mediated invasion.
287

Characterization of New Factors in the 18S Nonfunctional Ribosomal RNA Decay Pathway in S. cerevisiae: A Dissertation

Merrikh, Christopher N. 05 March 2012 (has links)
The molecular biology revolution of the 1960s has given rise to an enormous body of literature describing, in great detail, the inner workings of the cell. Over the course of the past 50 years, and countless hours at the bench, biologists have used the implications of basic research to produce vaccines, antibiotics, and other therapies that have improved both the quality and duration of our lives. Despite these incredible advances, basic questions remain unanswered. In even the simplest model organism, hundreds of essential genes have never been studied. Moreover, the central dogma of molecular biology—DNA to RNA to Protein—is understood largely in terms of how the cell functions under ideal conditions. What happens when things go wrong? This study seeks to characterize one of the cell’s contingency plans—a quality control measure for the eukaryotic ribosome. Today, despite the abundance of ribosomes in all cells, we are only beginning to understand the details of how they function, and the mechanisms that monitor their behavior. Recently, inactivated ribosomes were shown to be destroyed by the cell's own quality control measures, potentially preventing them from harming the cell. This system, dubbed 18S Nonfunctional rRNA Decay, is known to utilize a pair of ribosome-binding proteins to carry out its function. Yet the pathway still functions, albeit more slowly, in the absence of these two proteins, suggesting that other components must exist. The work discussed here is largely concerned with identifying these other factors, characterizing their activities, and determining how the 18S Nonfunctional rRNA Decay pathway impacts the health of the cell.
288

Identification of Novel (<em>R</em>NAi <em>De</em>ficient) Genes in <em>C. elegans</em>: A Dissertation

Chen, Chun-Chieh G. 26 September 2006 (has links)
RNA interference or RNAi was first discovered as an experimental approach that induces potent sequence-specific gene silencing. Remarkably, subsequent studies on dissecting the molecular mechanism of the RNAi pathway reveal that RNAi is conserved in most eukaryotes. In addition, genes and mechanisms related to RNAi are employed to elicit the regulation of endogenous gene expression that controls a variety of important biological processes. To investigate the mechanism of RNAi in the nematode C. elegans, we performed genetic screens in search of RNAi deficient mutants (rde). Here I report the summary of the genetic screens in search of rde mutants as well as the identification of two novel genes required for the RNAi pathway, rde-3 and rde-8. In addition, we demonstrate that some of the rde genes, when mutated, render the animals developmentally defective, suggesting that these rde genes also function in developmental gene regulation. This work presents novel insights on the components of the RNAi pathway and the requirement of these components in the regulation of endogenous gene expression.
289

Nucleic Acid Sensing by the Immune System: Roles For the Receptor For Advanced Glycation End Products (RAGE) and Intracellular Receptor Proteins: A Dissertation

Sirois, Cherilyn M. 14 July 2011 (has links)
As humans, we inhabit an environment shared with many microorganisms, some of which are harmless or beneficial, and others which represent a threat to our health. A complex network of organs, cells and their protein products form our bodies’ immune system, tasked with detecting these potentially harmful agents and eliminating them. This same system also serves to detect changes in the healthy balance of normal functions in the body, and for repairing tissue damage caused by injury. Immune recognition of nucleic acids, DNA and RNA, is one way that the body detects invading pathogens and initiates tissue repair. A number of specialized receptor proteins have evolved to distinguish nucleic acids that represent “threats” from those involved in normal physiology. These proteins include members of the Toll-like receptor family and diverse types of cytosolic proteins, all of which reside within the confines of the cell. Few proteins on the cell surface have been clearly characterized to interact with nucleic acids in the extracellular environment. In this dissertation, I present collaborative work that identifies the receptor for advanced glycation end products (RAGE) as a cell surface receptor for nucleic acids and positions it as an important modulator of immune responses. Molecular dimers of RAGE interact with the sugar-phosphate backbones of nucleic acid ligands, allowing this receptor to recognize a variety of DNA and RNA molecules regardless of their nucleotide sequence. Expression of RAGE on cells promotes uptake of DNA and enhances subsequent responses that are dependent on the nucleic acid sensor Toll-like receptor 9. When mice deficient in RAGE are exposed to DNA in the lung, the predominant site of RAGE expression, they do not mount a typical early inflammatory response, suggesting that RAGE is important in generating immune responses to DNA in mammalian organisms. Further evidence suggests that RAGE interacts preferentially with multimolecular complexes that contain nucleic acids, and that these complexes may induce clustering of receptor dimers into larger multimeric structures. Taken together, the data reported here identify RAGE as an important cell surface receptor protein for nucleic acids, which is capable of modulating the intensity of immune responses to DNA and RNA. Understanding of and intervention in this recognition pathway hold therapeutic promise for diseases characterized by excessive responses to self nucleic acids, such as systemic lupus erythematosus, and for the pathology caused by chronic inflammatory responses to self and foreign nucleic acids.
290

THE DISCOVERY AND CHARACTERIZATION OF NOVEL POTENT 5-SUBSTITUTED 3, 3’, 4’, 7-TETRAMETHOXYFLAVONOID DNA TRIPLEX SPECIFIC BINDING LIGANDS

Rangel, Vanessa Marie 01 January 2023 (has links)
Chemotherapy works by killing fast dividing cells. Unfortunately, these drugs are not specific to cancer tissue and can damage normal cells. Chemotherapy is like taking poison and hoping it kills the cancer cells before it kills you. As an alternative, many researchers have investigated the use of antigene therapy to selectively target cancer causing genes to avoid off target effects. Although promising, the theory is limited by the stability of the triplex structure. Here, we report the discovery of potent triplex binding ligands derived from the natural product quercetin. Chemical derivatives of 5-substituted 3, 3’, 4’, 7-tetramethoxyquercetin derivatives were characterized using several biophysical methods: thermal denaturation monitored by UV, circular dichroism, viscometry, differential scanning calorimetry, and isothermal titration calorimetry. The data revealed that these derivatives specifically stabilize triplex DNA and do not influence the stability of duplex DNA, triple RNA, or duplex RNA. Structurally, the amino containing side chains at the 5-position and the linker length are critical for the observed binding affinity and specificity. Two derivatives, 5 and 7, are comparable (if not better) to the triplex groove binder Neomycin. Our data confirm the binding mode as enthalpically driven intercalation. Piperidine or pyrrolidine 5-substituted 3, 3’, 4’, 7-tetramethoxyquercetin derivatives with a three-carbon linker are the lead compounds for development as a potential antigene enhancer.

Page generated in 0.0383 seconds